

But, social networking providers share (sell) 'anonymized' social network datasets

- OSN providers are treasure troves of information for marketers and researchers
- OSN provides release anonymized social networks to third-parties for various purposes including targeted advertising, developing new applications, academic research, public competition, etc.
- To protect the privacy of its users, social networking services attempt to 'anonymize' social network data, before sharing the datasets.
- For example, they provide the social-network structure but Remove people's identities and
 - \succ Add some 'noise' by modifying relationships and attributes to a certain extent.

Attack model

- ✤ We assume the recipient of this data, if malicious, may try to de-anonymize the social network
- We assume the adversary has access to two networks: \succ One of these networks is anonymized and contains sensitive private information associated with the (anonymized) nodes in the graph.
- \succ The other network is public (not anonymized) but does not contain any sensitive information
- The goal of an attacker is to re-identify anonymized users, and reveal the private information obtained from the anonymized network.

Re-identification algorithm by Narayanan and Shmatikov (NS)

- **1. Seed identification** maps a small number of users (seeds) between two networks by searching for unique subgraphs.
- **2. Propagation** expands the set of matched users by incrementally comparing and mapping the neighbors of the previously mapped seeds.

Community-Enhanced De-anonymization of Online Social Networks

Shirin Nilizadeh, Apu Kapadia, Yong-Yeol Ahn School of Informatics and Computing, Indiana University Bloomington

Community-enhanced De-anonymization

- ✤ We propose a 'mesoscopic' approach to improve the degree of deanonymization.
- It divides the problem into smaller sub-problems that can be solved by leveraging existing network mapping methods recursively on multiple levels
- \succ First, it maps the community structure of two graphs by considering the community structure as a coarse-grained graph
- \succ It then applies the network mapping technique to the nodes inside each community (Local propagation) and finally to the entire graph (Global propagation)

Network 1

1) Detecting communities

2) Creating graph of communities and mapping communities

3) Community-based propagation: mapping individual nodes inside mapped communities

4) Global propagation: mapping remaining nodes

INDIANA UNIVERSITY

Mapping communities by creating a network of communities

- We create a weighted undirected graph of communities, where, \succ each community is a node and
 - > a weighted edge between two communities represents the number of connections between nodes in two communities

- Communities offer a much more narrow search space for seeds
- Two metrics
 - nodes' degrees (d), and,
 - \succ the clustering coefficients (**cc**)

community-blind NS algorithm

- ✤ Data Sets:

 - Network)
- > Performance metrics:

 - and provides no mapping

 - > Community mapping error rate

Seed enrichment

 $D_d(v_i, v_j) =$

 $|d(v_i) - d(v_j)|$ $max(d(v_i), d(v_j))$

 $D_{cc}(v_i, v_j) =$

 $|cc(v_i) - cc(v_j)|$ $max(cc(v_i), cc(v_j))$

Evaluation

We evaluate the performance of our approach by comparing it with the

> Synthetic benchmark graphs (LFR-Benchmark generator) Real-world graphs (collaboration network, and, Twitter mention)

Generate noisy anonymized networks through edge rewiring

> Success rate: the percentage of correctly re-identified users Error rate is the percentage of incorrectly mapped users > Failure threshold is the noise level that the algorithm starts to fail

> Community mapping success rate is the percentage of correctly mapped communities (based on Jaccard coefficient)

Results

Noise (%