
1

Software Testing and Maintenance 1

Combinatorial Testing

!! Introduction

!! Combinatorial Coverage Criteria

!! Pairwise Test Generation

!! Summary

Software Testing and Maintenance 2

Motivation

!! The behavior of a software application may be
affected by many factors, e.g., input parameters,
environment configurations, and state variables.

!! Techniques like equivalence partitioning and
boundary-value analysis can be used to identify the
possible values of individual factors.

!! It is impractical to test all possible combinations
of values of all those factors. (Why?)

2

Software Testing and Maintenance 3

Combinatorial Explosion

!! Assume that an application has 10 parameters,
each of which can take 5 values. How many possible
combinations?

Software Testing and Maintenance 4

Example - sort

> man sort

Reformatting page. Wait... done

User Commands sort(1)

NAME

 sort - sort, merge, or sequence check text files

SYNOPSIS

 /usr/bin/sort [-cmu] [-o output] [-T directory]

 [-y [kmem]] [-z recsz] [-dfiMnr] [-b] [

 -t char]

 [-k keydef] [+pos1 [-pos2]] [file...]

 …

3

Software Testing and Maintenance 5

Combinatorial Design

!! Instead of testing all possible combinations, a
subset of combinations is generated to satisfy some
well-defined combination strategies.

!! A key observation is that not every factor
contributes to every fault, and it is often the case
that a fault is caused by interactions among a few
factors.

!! Combinatorial design can dramatically reduce the
number of combinations to be covered but remains
very effective in terms of fault detection.

Software Testing and Maintenance 6

Fault Model

!! A t-way interaction fault is a fault that is
triggered by a certain combination of t input values.

!! A simple fault is a t-way fault where t = 1; a
pairwise fault is a t-way fault where t = 2.

!! In practice, a majority of software faults consist
of simple and pairwise faults.

4

Software Testing and Maintenance 7

Example – Pairwise Fault

begin
 int x, y, z;
 input (x, y, z);
 if (x == x1 and y == y2)
 output (f(x, y, z));
 else if (x == x2 and y == y1)
 output (g(x, y));
 else
 output (f(x, y, z) + g(x, y))
end

Expected: x = x1 and y = y1 => f(x, y, z) – g(x, y); x =
x2, y = y2 => f(x, y, z) + g(x, y)

Software Testing and Maintenance 8

Example – 3-way Fault

// assume x, y ! {-1, 1}, and z ! {0, 1}
begin
 int x, y, z, p;
 input (x, y, z);
 p = (x + y) * z // should be p = (x – y) * z
 if (p >= 0)
 output (f(x, y, z));
 else
 output (g(x, y));
end

5

Software Testing and Maintenance 9

Combinatorial Testing

!! Introduction

!! Combination Strategies Criteria

!! Pairwise Test Generation

!! Summary

Software Testing and Maintenance 10

All Combinations Coverage

!! Every possible combination of values of the
parameters must be covered

!! For example, if we have three parameters P1 = (A,
B), P2 = (1, 2, 3), and P3 = (x, y), then all combinations
coverage requires 12 tests: {(A, 1, x), (A, 1, y), (A, 2,
x), (A, 2, y), (A, 3, x), (A, 3, y), (B, 1, x), (B, 1, y), (B,
2, x), (B, 2, y), (B, 3, x), (B, 3, y)}

6

Software Testing and Maintenance 11

Each Choice Coverage

!! Each parameter value must be covered in at least
one test case.

!! Consider the previous example, a test set that
satisfies each choice coverage is the following: {(A,
1, x), (B, 2, y), (A, 3, x)}

Software Testing and Maintenance 12

Pairwise Coverage

!! Given any two parameters, every combination of
values of these two parameters are covered in at
least one test case.

!! A pairwise test set of the previous example is the
following:

P1 P2 P3

A 1 x
A 2 x
A 3 x
A - y
B 1 y
B 2 y
B 3 y
B - x

7

Software Testing and Maintenance 13

T-Wise Coverage

!! Given any t parameters, every combination of
values of these t parameters must be covered in at
least one test case.

!! For example, a 3-wise coverage requires every
triple be covered in at least one test case.

!! Note that all combinations, each choice, and
pairwise coverage can be considered to be a special
case of t-wise coverage.

Software Testing and Maintenance 14

Base Choice Coverage

!! For each parameter, one of the possible values is
designated as a base choice of the parameter

!! A base test is formed by using the base choice for
each parameter

!! Subsequent tests are chosen by holding all base
choices constant, except for one, which is replaced
using a non-base choice of the corresponding
parameter:

P1 P2 P3

A 1 x
B 1 x
A 2 x
A 3 x
A 1 y

8

Software Testing and Maintenance 15

Multiple Base Choices Coverage

!! At least one, and possibly more, base choices are
designated for each parameter.

!! The notions of a base test and subsequent tests
are defined in the same as Base Choice.

Software Testing and Maintenance 16

Subsumption Relation

All Combinations

T-Wise

Pairwise

Multiple Base
Choices

Base Choice

Each Choice

T>=2

9

Software Testing and Maintenance 17

Combinatorial Testing

!! Introduction

!! Combination Strategies Criteria

!! Pairwise Test Generation

!! Summary

Software Testing and Maintenance 18

Why Pairwise?

!! Many faults are caused by the interactions
between two parameters

"! 92% statement coverage, 85% branch coverage

!! Not practical to cover all the parameter
interactions

"! Consider a system with n parameter, each with m values.
How many interactions to be covered?

!! A trade-off must be made between test effort
and fault detection

"! For a system with 20 parameters each with 15 values,
pairwise testing only requires less than 412 tests,
whereas exhaustive testing requires 1520 tests.

10

Software Testing and Maintenance 19

Example (1)

Consider a system with the following parameters and
values:

!! parameter A has values A1 and A2

!! parameter B has values B1 and B2, and

!! parameter C has values C1, C2, and C3

Software Testing and Maintenance 20

Example (2)

A B C
A1 B1 C1
A1 B2 C2
A2 B1 C3
A2 B2 C1
A2 B1 C2
A1 B2 C3

A B C
A1 B1 C1
A1 B2 C1
A2 B1 C2
A2 B2 C3
A2 B1 C1
A1 B2 C2
A1 B1 C3

A B C
A1 B1 C1
A1 B2 C1
A2 B1 C2
A2 B2 C2
A2 B1 C1
A1 B1 C2
A1 B1 C3
A2 B2 C3

11

Software Testing and Maintenance 21

The IPO Strategy

!! First generate a pairwise test set for the first
two parameters, then for the first three
parameters, and so on

!! A pairwise test set for the first n parameters is
built by extending the test set for the first n – 1
parameters

"! Horizontal growth: Extend each existing test case by
adding one value of the new parameter

"! Vertical growth: Adds new tests, if necessary

Software Testing and Maintenance 22

Algorithm IPO_H (T, pi)

Assume that the domain of pi contains values v1, v2, …, and vq;
" = { pairs between values of pi and values of p1, p2, …, and pi-1

if (|T| <= q)
 for 1 <= j <= |T|, extend the jth test in T by adding value vj

and remove from " pairs covered by the extended test
else
 for 1 <=j <= q, extend the jth test in T by adding value vj and

remove from " pairs covered by the extended test;
 for q < j <= |T|, extend the jth test in T by adding one value of

pi such that the resulting test covers the most number of
pairs in ", and remove from " pairs covered by the
extended test

12

Software Testing and Maintenance 23

Algorithm IPO_V(T, ")

let T’ be an empty set;
for each pair in "
 assume that the pair contains value w of pk, 1 ! k <

i, and value u of pi;
 if (T’ contains a test with “-” as the value of pk and

u as the value of pi)
 modify this test by replacing the “-” with w
 else
 add a new test to T’ that has w as the value of

pk, u as the value of pi, and “-” as the value of
every other parameter;

 T = T # T’

Software Testing and Maintenance 24

Example Revisited

Show how to apply the IPO strategy to construct the
pairwise test set for the example system.

13

Software Testing and Maintenance 25

Combinatorial Testing

!! Introduction

!! Combinatorial Coverage Criteria

!! Pairwise Test Generation

!! Summary

Software Testing and Maintenance 26

Summary

!! Combinatorial testing makes an excellent trade-
off between test effort and test effectiveness.

!! Pairwise testing can often reduce the number of
dramatically, but it can still detect faults
effectively.

!! The IPO strategy constructs a pairwise test set
incrementally, one parameter at a time.

!! In practice, some combinations may be invalid from
the domain semantics, and must be excluded, e.g., by
means of constraint processing.

