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Motivation 

!! The behavior of a software application may be 
affected by many factors, e.g., input parameters, 
environment configurations, and state variables. 

!! Techniques like equivalence partitioning and 
boundary-value analysis can be used to identify the 
possible values of individual factors. 

!! It is impractical to test all possible combinations 
of values of all those factors. (Why?) 
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Combinatorial Explosion 

!! Assume that an application has 10 parameters, 
each of which can take 5 values. How many possible 
combinations?  
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Example - sort 

> man sort 

Reformatting page.  Wait... done 

User Commands                                             sort(1) 

NAME 

     sort - sort, merge, or sequence check text files 

SYNOPSIS 

     /usr/bin/sort [ -cmu ] [ -o output ] [ -T directory ] 

          [ -y [ kmem ]] [ -z recsz ]  [  -dfiMnr  ]  [  -b  ]  [ 

     -t char ] 

          [ -k keydef ] [ +pos1 [ -pos2 ]] [ file...] 

 … 



3 

Software Testing and Maintenance  5 

Combinatorial Design 

!! Instead of testing all possible combinations, a 
subset of combinations is generated to satisfy some 
well-defined combination strategies. 

!! A key observation is that not every factor 
contributes to every fault, and it is often the case 
that a fault is caused by interactions among a few 
factors. 

!! Combinatorial design can dramatically reduce the 
number of combinations to be covered but remains 
very effective in terms of fault detection. 
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Fault Model 

!!  A t-way interaction fault is a fault that is 
triggered by a certain combination of t input values. 

!! A simple fault is a t-way fault where t = 1; a 
pairwise fault is a t-way fault where t = 2. 

!! In practice, a majority of software faults consist 
of simple and pairwise faults.  
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Example – Pairwise Fault 

begin 
    int x, y, z; 
    input (x, y, z); 
    if (x == x1 and y == y2) 
        output (f(x, y, z)); 
    else if (x == x2 and y == y1) 
        output (g(x, y)); 
    else 
        output (f(x, y, z) + g(x, y)) 
end 

Expected: x = x1 and y = y1 => f(x, y, z) – g(x, y); x = 
x2, y = y2 => f(x, y, z) + g(x, y) 
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Example – 3-way Fault 

// assume x, y ! {-1, 1}, and z ! {0, 1} 
begin 
    int x, y, z, p; 
    input (x, y, z); 
    p = (x + y) * z // should be p = (x – y) * z 
    if (p >= 0) 
        output (f(x, y, z)); 
    else  
        output (g(x, y)); 
end 
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All Combinations Coverage 

!! Every possible combination of values of the 
parameters must be covered 

!! For example, if we have three parameters P1 = (A, 
B), P2 = (1, 2, 3), and P3 = (x, y), then all combinations 
coverage requires 12 tests: {(A, 1, x), (A, 1, y), (A, 2, 
x), (A, 2, y), (A, 3, x), (A, 3, y), (B, 1, x), (B, 1, y), (B, 
2, x), (B, 2, y), (B, 3, x), (B, 3, y)} 
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Each Choice Coverage 

!! Each parameter value must be covered in at least 
one test case. 

!! Consider the previous example, a test set that 
satisfies each choice coverage is the following: {(A, 
1, x), (B, 2, y), (A, 3, x)}  
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Pairwise Coverage 

!! Given any two parameters, every combination of 
values of these two parameters are covered in at 
least one test case. 

!! A pairwise test set of the previous example is the 
following: 

P1 P2 P3 

A 1 x 
A 2 x 
A 3 x 
A - y 
B 1 y 
B 2 y 
B 3 y 
B - x 
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T-Wise Coverage 

!! Given any t parameters, every combination of 
values of these t parameters must be covered in at 
least one test case. 

!! For example, a 3-wise coverage requires every 
triple be covered in at least one test case. 

!! Note that all combinations, each choice, and 
pairwise coverage can be considered to be a special 
case of t-wise coverage. 
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Base Choice Coverage 

!! For each parameter, one of the possible values is 
designated as a base choice of the parameter 

!! A base test is formed by using the base choice for 
each parameter 

!! Subsequent tests are chosen by holding all base 
choices constant, except for one, which is replaced 
using a non-base choice of the corresponding 
parameter: 

P1 P2 P3 

A 1 x 
B 1 x 
A 2 x 
A 3 x 
A 1 y 
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Multiple Base Choices Coverage 

!! At least one, and possibly more, base choices are 
designated for each parameter. 

!! The notions of a base test and subsequent tests 
are defined in the same as Base Choice. 
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Subsumption Relation 

All Combinations 

T-Wise 

Pairwise 

Multiple Base 
Choices 

Base Choice 

Each Choice  

T>=2 
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Why Pairwise? 

!! Many faults are caused by the interactions 
between two parameters 

"! 92% statement coverage, 85% branch coverage 

!! Not practical to cover all the parameter 
interactions 

"! Consider a system with n parameter, each with m values. 
How many interactions to be covered? 

!! A trade-off must be made between test effort 
and fault detection 

"! For a system with 20 parameters each with 15 values, 
pairwise testing only requires less than 412 tests, 
whereas exhaustive testing requires 1520 tests. 
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Example (1) 

Consider a system with the following parameters and 
values: 

!! parameter A has values A1 and A2 

!! parameter B has values B1 and B2, and 

!! parameter C has values C1, C2, and C3 
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Example (2) 

A  B  C 
A1  B1  C1 
A1  B2  C2 
A2  B1  C3 
A2  B2  C1 
A2  B1  C2 
A1  B2  C3 

A  B  C 
A1  B1  C1 
A1  B2  C1 
A2  B1  C2 
A2  B2  C3 
A2  B1  C1 
A1  B2  C2 
A1  B1  C3 

A  B  C 
A1  B1  C1 
A1  B2  C1 
A2  B1  C2 
A2  B2  C2 
A2  B1  C1 
A1  B1  C2 
A1  B1  C3 
A2  B2  C3 
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The IPO Strategy 

!! First generate a pairwise test set for the first 
two parameters, then for the first three 
parameters, and so on 

!! A pairwise test set for the first n parameters is 
built by extending the test set for the first n – 1 
parameters 

"! Horizontal growth: Extend each existing test case by 
adding one value of the new parameter 

"! Vertical growth: Adds new tests, if necessary 
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Algorithm IPO_H (T, pi) 

Assume that the domain of pi contains values v1, v2, …, and vq; 
" = { pairs between values of pi and values of p1, p2, …, and pi-1 

if ( |T| <= q) 
    for 1 <= j <= |T|, extend the jth test in T by adding value vj 

and remove from " pairs covered by the extended test 
else 
   for 1 <=j <= q, extend the jth test in T by adding value vj and 

remove from " pairs covered by the extended test; 
   for q < j <= |T|, extend the jth test in T by adding one value of 

pi such that the resulting test covers the most number of 
pairs in ", and remove from " pairs covered by the 
extended test 
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Algorithm IPO_V(T, ") 

let T’ be an empty set; 
for each pair in " 
   assume that the pair contains value w of pk, 1 ! k < 

i, and value u of pi; 
   if (T’ contains a test with “-” as the value of pk and 

u as the value of pi) 
        modify this test by replacing the “-” with w 
   else 
        add a new test to T’ that has w as the value of 

pk, u as the value of pi, and “-” as the value of 
every other parameter; 

    T = T # T’ 
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Example Revisited 

Show how to apply the IPO strategy to construct the 
pairwise test set for the example system. 
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Summary 

!! Combinatorial testing makes an excellent trade-
off between test effort and test effectiveness. 

!! Pairwise testing can often reduce the number of 
dramatically, but it can still detect faults 
effectively.  

!! The IPO strategy constructs a pairwise test set 
incrementally, one parameter at a time. 

!! In practice, some combinations may be invalid from 
the domain semantics, and must be excluded, e.g., by 
means of constraint processing. 


