
9/12/11

1

Software Testing and Maintenance 1

Graph-Based Testing

  Introduction

  Basic Concepts

  Control Flow Testing

  Data Flow Testing

  Summary

Software Testing and Maintenance 2

Motivation

  Graph-based testing first builds a graph model for
the program under test, and then tries to cover
certain elements in the graph model.
  Graph is one of the most widely used structures
for abstraction.

  Transportation network, social network, molecular
structure, geographic modeling, etc.

  Graph is a well-defined, well-studied structure
  Many algorithms have been reported that allow for easy

manipulation of graphs.

9/12/11

2

Software Testing and Maintenance 3

Major Steps

  Step 1: Build a graph model
  What information to be captured, and how to represent

those information?

  Step 2: Identify test requirements
  A test requirement is a structural entity in the graph

model that must be covered during testing

  Step 3: Select test paths to cover those
requirements

  Step 4: Derive test data so that those test paths
can be executed

Software Testing and Maintenance 4

Graph Models

  Control flow graph: Captures information about
how the control is transferred in a program.

  Data flow graph: Augments a CFG with data flow
information

  Dependency graph: Captures the data/control
dependencies among program statements

  Cause-effect graph: Modeling relationships among
program input conditions, known as causes, and
output conditions, known as effects

9/12/11

3

Software Testing and Maintenance 5

Graph-Based Testing

  Introduction

  Basic Concepts

  Control Flow Testing

  Data Flow Testing

  Summary

Software Testing and Maintenance 6

Graph

  A graph consists of a set of nodes and edges that
connect pairs of nodes.

  Formally, a graph G = <N, N0, Nf, E):
  N: a set of nodes
  N0 ⊆ N: a set of initial nodes
  Nf ⊆ N: a set of final nodes
  E ⊆ N × N: a set of edges

  In our context, N, N0, and Nf contain at least one
node.

9/12/11

4

Software Testing and Maintenance 7

Example

n0

n1 n2

n3

n3 n4

n7

n0 n1 n2

n5 n6

n8 n9

N = {n0, n1, n2, n3}
N0 = {n0}
Nf = {n3}
E = {(n0, n1), (n0, n2), (n1, n3), (n2, n3)}

N = {n0, n1, n2, n3 , n4, n5, n6 , n7, n8, n9}
N0 = {n0 , n1, n2}
Nf = {n7, n8, n9}
E = {(n0, n3), (n0, n4), (n1, n4), (n1, n5), …}

Software Testing and Maintenance 8

Path, Subpath, Test Path

  A path is a sequence [n1, n2, …, nM] of nodes, where
each pair of adjacent nodes (ni, ni+1) is an edge.

  The length of a path refers to the number of edges in
the path

  A subpath of a path p is a subsequence of p,
possibly p itself.
  A test path is a path, possibly of length zero, that
starts at an initial node, and ends at a final node

  Represents a path that is executed during a test run

9/12/11

5

Software Testing and Maintenance 9

Reachability

  A node n is syntactically reachable from node n’ if
there exists a path from n’ to n.

  A node n is semantically reachable from node n’ if
it is possible to execute a path from n’ to n with
some input.
  reach(n): the set of nodes and edges that can be
syntactically reached from node n.

Software Testing and Maintenance 10

Example

n3 n4

n7

n0 n1 n2

n5 n6

n8 n9

p1 = [n0, n3, n7]
p2 = [n1, n4, n8, n5, n1]

p3 = [n4, n8, n5]
reach(n0) = ?
reach(n5) = ?

9/12/11

6

Software Testing and Maintenance 11

SESE Graph

n0

n1 n2

n3

n4 n5

n6

Software Testing and Maintenance 12

Visit & Tour

  A test path p is said to visit a node n (or an edge
e) if node n (or edge e) is in path p.

  A test path p is said to tour a path q if q is a
subpath of p.

9/12/11

7

Software Testing and Maintenance 13

Test Case vs Test Path

n0 n1

n2 n3

a < b

a > b
a = b

t1: (a = 0, b = 1) => p1 = [n0, n1, n3, n2]
t2: (a = 1, b = 1) => p2 = [n0, n3, n2]
t3: (a = 2, b = 1) => p3 = [n0, n2]

Software Testing and Maintenance 14

Graph-Based Testing

  Introduction

  Basic Concepts

  Control Flow Testing

  Data Flow Testing

  Summary

9/12/11

8

Software Testing and Maintenance 15

Basic Block

  A basic block, or simply a block, is a sequence of
consecutive statements with a single entry and a
single exit point.
  Control always enters a basic block at its entry
point, and exits from its exit point.

  No entry, halt, or exit inside a basic block

  If a basic block contains a single statement, then
the entry and exit points coincide.

Software Testing and Maintenance 16

Example

1.  begin
2.  int x, y, power;
3.  float z;
4.  input (x, y);
5.  if (y < 0)
6.  power = -y;
7.  else
8.  power = y;
9.  z = 1;
10.  while (power != 0) {
11.  z = z * x;
12.  power = power – 1;
13.  }
14.  if (y < 0)
15.  z = 1/z;
16.  output (z);
17. end;

Block Lines Entry Exit

1 2, 3, 4, 5 2 5

2 6 6 6
3 8 8 8
4 9 9 9
5 10 10 10
6 11, 12 11 12

7 14 14 14
8 15 15 15
9 16 16 16

9/12/11

9

Software Testing and Maintenance 17

Function Calls

  Should a function call be treated like a regular
statement or as a separate block of its own?

Software Testing and Maintenance 18

Control Flow Graph

  A control flow graph is a graph with two
distinguished nodes, start and end.

  Node start has no incoming edges, and node end has no
outgoing edges.

  Every node can be reached from start, and can reach
end.

  In a CFG, a node is typically a basic block, and an
edge indicates the flow of control from one block to
another.

9/12/11

10

Software Testing and Maintenance 19

Example
start

end

1

2 3

4

5

6

7
8

9

false

false true

true

true
false

Software Testing and Maintenance 20

Node Coverage

  A test set T satisfies Node Coverage on graph G if
and only if for every syntactically reachable node n
in N, there is some path p in path(T) such that p
visits n.

  path(T): the set of paths that are exercised by the
execution of T

  In other words, the set TR of test requirements
for Node Coverage contains each reachable node in
G.

9/12/11

11

Software Testing and Maintenance 21

Edge Coverage

  The TR for Edge Coverage contains each reachable
path of length up to 1, inclusive, in a graph G.

  Note that Edge Coverage subsumes Node
Coverage.

Software Testing and Maintenance 22

Node vs Edge Coverage

n0

n1

n2

9/12/11

12

Software Testing and Maintenance 23

Edge-Pair Coverage

  The TR for Edge-Pair Coverage contains each
reachable path of length up to 2, inclusive, in a graph
G.
  This definition can be easily extended to paths of
any length, although possibly with diminishing
returns.

Software Testing and Maintenance 24

Edge-Pair vs Edge Coverage

n0

n1

n6

n2

n3

n4 n5

a b

c d

e f

g h

9/12/11

13

Software Testing and Maintenance 25

Complete Path Coverage

  The TR for Complete Path Coverage contain all
paths in a graph.

n0

n1

n3

n4

n2

How many paths do we need to cover in the above graph?

Software Testing and Maintenance 26

Simple & Prime Path

  A path is simple if no node appears more than once
in the path, with the exception that the first and
last nodes may be identical.
  A path is a prime path if it is a simple path, and it
does not appear as a proper subpath of any other
simple path.

9/12/11

14

Software Testing and Maintenance 27

Prime Path Coverage

  The TR for Prime Path Coverage contains every
prime path in a graph.

Software Testing and Maintenance 28

Example

n0

n1

n3

n4

n2

Prime paths = {[n0, n1, n2], [n0, n1, n3, n4], [n1, n3, n4, n1],
[n3, n4, n1, n3], [n4, n1, n3, n4], [n3, n4, n1, n2]}
Path (t1) = [n0, n1, n2]
Path (t2) = [n0, n1, n3, n4, n1, n3, n4, n1, n2]
T = {t1, t2}

9/12/11

15

Software Testing and Maintenance 29

Infeasible Test Requirements

  The notion of “tour” is rather strict.

S0 a b d Sf

c

Let q = [a, b, d], and p = [S0, a, b, c, d, Sf].

Does path p tour path q?

Software Testing and Maintenance 30

Sidetrips/Detours

  Tour: Test path p is said to tour path q if and only
if q is a subpath of p.

  Tour with sidetrips: Test path p is said to tour
path q with sidetrips if and only if every edge in q is
also in p in the same order.
  Tour with detours: Test path p is said to tour path
q with detours if and only if every node in q is also in
p in the same order

9/12/11

16

Software Testing and Maintenance 31

Example

S0 a b d Sf

c

1 2

3 4

5 6

S0 a b d Sf

c

1 2

3

4

5

Software Testing and Maintenance 32

Best Effort Touring

  If a test requirement can be met without a
sidetrip (or detour), then it should be done so.

  In other words, sidetrips or detours should be
allowed only if necessary.

9/12/11

17

Software Testing and Maintenance 33

Computing Prime Paths

  Step 1: Find all the simple paths
  Find all simple paths of length 0, extend them to length 1,

and then to length 2, and so on

  Step 2: Select those that are maximal

Software Testing and Maintenance 34

Example

0

4

6

5

1

3

2

9/12/11

18

Software Testing and Maintenance 35

Example – Simple Paths (2)

1. [0]
2. [1]
3. [2]
4. [3]
5. [4]
6. [5]
7. [6]!

len = 0
8. [0, 1]
9. [0, 4]
10. [1, 2]
11. [1, 5]
12. [2, 3]
13. [3, 1]
14. [4, 4]*
15. [4, 6]!
16. [5, 6]!

len = 1
17. [0, 1, 2]
18. [0, 1, 5]
19. [0, 4, 6]!
20. [1, 2, 3]
21. [1, 5, 6]!
22. [2, 3, 1]
23. [3, 1, 2]
24. [3, 1, 5]

len = 2
25. [0, 1, 2, 3]!
26. [0, 1, 5, 6]!
27. [1, 2, 3, 1]*
28. [2, 3, 1, 2]*
29. [2, 3, 1, 5]
30. [3, 1, 2, 3]*
31. [3, 1, 5, 6]

len = 3

32. [2, 3, 1, 5, 6]!
len = 4

Software Testing and Maintenance 36

Example – Prime Paths

14. [4, 4]*
19. [0, 4, 6]!
25. [0, 1, 2, 3]!
26. [0, 1, 5, 6]!
27. [1, 2, 3, 1]*
28. [2, 3, 1, 2]*
30. [3, 1, 2, 3]*
32. [2, 3, 1, 5, 6]!

9/12/11

19

Example – Test Paths

  Start with the longest prime paths and extend
them to the start and end nodes of the graph

Software Testing and Maintenance 37

1)  [0, 1, 2, 3, 1, 5, 6]
2)  [0, 1, 2, 3, 1, 2, 3, 1, 5, 6]
3)  [0, 1, 5, 6]
4)  [0, 4, 6]
5)  [0, 4, 4, 6]

Software Testing and Maintenance 38

Graph-Based Testing

  Introduction

  Basic Concepts

  Control Flow Testing

  Data Flow Testing

  Summary

9/12/11

20

Software Testing and Maintenance 39

Definition/Use

  A definition is a location where a value for a
variable is stored into memory.

  Assignment, input, parameter passing, etc.

  A use is a location where a variable’s value is
accessed.

  p-use: a use that occurs in a predicate expression, i.e., an
expression used as a condition in a branch statement

  c-use: a use that occurs in an expression that is used to
perform certain computation

Software Testing and Maintenance 40

Data Flow Graph

  A data flow graph (DFG) captures the flow of data
in a program

  To build a DFG, we first build a CFG and then
annotate each node n in the CFG with the following
two sets:

  def(n): the set of variables defined in node n
  use(n): the set of variables used in node n

9/12/11

21

Software Testing and Maintenance 41

Example (1)
1.  begin
2.  float x, y, z = 0.0;
3.  int count;
4.  input (x, y, count);
5.  do {
6.  if (x <= 0) {
7.  if (y >= 0) {
8.  z = y * z + 1;
9.  }
10.  }
11.  else {
12.  z = 1/x;
13.  }
14.  y = x * y + z;
15.  count = count – 1;
16.  while (count > 0)
17.  output (z);
18.  end

Node Lines

1 1, 2, 3, 4

2 5, 6
3 7
4 8, 9, 10
5 11, 12, 13
6 14, 15, 16

7 17, 18

Software Testing and Maintenance 42

Example (2)

1

2

3 5

6 4

7

def={x, y, z, count}

def={}
use = {x}

def={}
use = {y}

def={z}
use = {y, z}

def={z}
use = {x}

def={count, y}
use = {count, x, y, z}

def={}
use = {z}

count == 0

x <= 0 x > 0

y >= 0 y < 0

9/12/11

22

Software Testing and Maintenance 43

DU-pair & DU-path

  A du-pair is a pair of locations (i, j) such that a
variable v is defined in i and used in j.

  Suppose that variable v is defined at node i, and
there is a use of v at node j. A path p = (i, n1, n2, …,
nk, j) is def-clear w.r.t. v if v is not defined along the
subpath n1, n2, …, nk.

  A definition of a variable v reaches a use of v if
there is a def-clear path from the definition to the
use w.r.t. v.

  A du-path for a variable v is a simple path from a
definition of v to a use of v that is def-clear w.r.t. v.

Software Testing and Maintenance 44

Example

  Consider the previous example:
  Path p = (1, 2, 5, 6) is def-clear w.r.t variables x, y and

count, but is not def-clear w.r.t. variable z.
  Path q = (6, 2, 5, 6) is def-clear w.r.t variables count and

y.
  Path r = (1, 2, 3, 4) is def-clear w.r.t variables y and z.

9/12/11

23

Software Testing and Maintenance 45

Notations

  Def-path set du(n, v): the set of du-paths w.r.t
variable v that start at node n.

  Def-pair set du(n, n’, v): the set of du-paths w.r.t
variable v that start at node n and end at node n’.

  Note that du(n, v) = ∪n’ du(n, n’, v).

Software Testing and Maintenance 46

All-Defs Coverage

  For each def-path set S = du(n, v), the TR for All-
Defs Coverage contains at least one path in S.

  Informally, for each def, we need to tour at least
one path to at least one use.

9/12/11

24

Software Testing and Maintenance 47

All-Uses Coverage

  For each def-pair set S = du(n, n’, v), the TR for
All-Uses Coverage contains at least one path in S.

  Informally, it requires us to tour at least one path
for every def-use pair.

Software Testing and Maintenance 48

All-DU-Paths Coverage

  For each def-pair set S = du(n, n’, v), the TR for
All-DU-Paths Coverage contains every path in S.

  Informally, this requires to tour every du-path.

9/12/11

25

Software Testing and Maintenance 49

Example

n0

n1 n2

n3

n4 n5

n6

def(0) = {x}

use(4) = {x} use(5) = {x}

all-defs

0-1-3-4

all-uses

0-1-3-4

0-1-3-5

all-du-paths

0-1-3-4

0-1-3-5

0-2-3-4

0-2-3-5

Software Testing and Maintenance 50

Why data flow?

  Consider the previous example. Assume that there
is a fault in line 14, which is supposed to be y = x + y
+ z.
  Does the following test set satisfy edge coverage?
Can the test set detect the above fault?

x y count

t1 -2 2 1

t2 -2 -2 1

t3 2 2 1

t4 2 2 2

9/12/11

26

Software Testing and Maintenance 51

Graph-Based Testing

  Introduction

  Basic Concepts

  Control Flow Testing

  Data Flow Testing

  Summary

Software Testing and Maintenance 52

Subsumption Hierarchy
Complete Path

Coverage

Prime Path
Coverage

All-du-paths
Coverage

All-Uses
Coverage

All-Defs
Coverage

Edge-pair
Coverage

Edge Coverage

Node Coverage

9/12/11

27

Software Testing and Maintenance 53

Recap

  Graph provides a good basis for systematic test
selection.

  Control flow testing focuses on the transfer of
control, while data flow testing focuses on the
definitions of data and their subsequent use.
  Control flow coverage is defined in terms of nodes,
edges, and paths; data flow coverage is defined in
terms of def, use, and du-path.

