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Motivation 

  Graph-based testing first builds a graph model for 
the program under test, and then tries to cover 
certain elements in the graph model. 
  Graph is one of the most widely used structures 
for abstraction. 

  Transportation network, social network,  molecular 
structure, geographic modeling, etc.  

  Graph is a well-defined, well-studied structure 
  Many algorithms have been reported that allow for easy 

manipulation of graphs.  
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Major Steps 

  Step 1: Build a graph model 
  What information to be captured, and how to represent 

those information? 

  Step 2: Identify test requirements 
  A test requirement is a structural entity in the graph 

model that must be covered during testing 

  Step 3: Select test paths to cover those 
requirements 

  Step 4: Derive test data so that those test paths 
can be executed 
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Graph Models 

  Control flow graph: Captures information about 
how the control is transferred in a program. 

  Data flow graph: Augments a CFG with data flow 
information 

  Dependency graph: Captures the data/control 
dependencies among program statements 

  Cause-effect graph: Modeling relationships among 
program input conditions, known as causes, and 
output conditions, known as effects 
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Graph 

  A graph consists of a set of nodes and edges that 
connect pairs of nodes. 

  Formally, a graph G = <N, N0, Nf, E): 
  N: a set of nodes 
  N0 ⊆ N: a set of initial nodes 
  Nf ⊆ N: a set of final nodes 
  E ⊆ N × N: a set of edges 

  In our context, N, N0, and Nf contain at least one 
node. 
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Example 

n0 

n1 n2 

n3 

n3 n4 

n7 

n0 n1 n2 

n5 n6 

n8 n9 

N = {n0, n1, n2, n3} 
N0 = {n0} 
Nf = {n3} 
E = {(n0, n1), (n0, n2), (n1, n3), (n2, n3)} 

N = {n0, n1, n2, n3 , n4, n5, n6 , n7, n8, n9} 
N0 = {n0 , n1, n2} 
Nf = {n7, n8, n9} 
E = {(n0, n3), (n0, n4), (n1, n4), (n1, n5), …} 

Software Testing and Maintenance  8 

Path, Subpath, Test Path 

  A path is a sequence [n1, n2, …, nM] of nodes, where 
each pair of adjacent nodes (ni, ni+1) is an edge. 

  The length of a path refers to the number of edges in 
the path 

  A subpath of a path p is a subsequence of p, 
possibly p itself. 
  A test path is a path, possibly of length zero, that 
starts at an initial node, and ends at a final node 

  Represents a path that is executed during a test run 
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Reachability 

  A node n is syntactically reachable from node n’ if 
there exists a path from n’ to n. 

  A node n is semantically reachable from node n’ if 
it is possible to execute a path from n’ to n with 
some input. 
  reach(n): the set of nodes and edges that can be 
syntactically reached from node n. 
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Example 

n3 n4 

n7 

n0 n1 n2 

n5 n6 

n8 n9 

p1 = [n0, n3, n7] 
p2 = [n1, n4, n8, n5, n1] 

p3 = [n4, n8, n5] 
reach(n0) = ?  
reach(n5) = ? 



9/12/11 

6 

Software Testing and Maintenance  11 

SESE Graph 

n0 

n1 n2 

n3 

n4 n5 

n6 
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Visit & Tour 

  A test path p is said to visit a node n (or an edge 
e) if node n (or edge e) is in path p. 

  A test path p is said to tour a path q if q is a 
subpath of p. 
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Test Case vs Test Path 

n0 n1 

n2 n3 

a < b 

a > b 
a = b 

t1: (a = 0, b = 1) => p1 = [n0, n1, n3, n2] 
t2: (a = 1, b = 1) => p2 = [n0, n3, n2] 
t3: (a = 2, b = 1) => p3 = [n0, n2] 
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Graph-Based Testing 

  Introduction 

  Basic Concepts 

  Control Flow Testing 

  Data Flow Testing 

  Summary 
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Basic Block 

  A basic block, or simply a block, is a sequence of 
consecutive statements with a single entry and a 
single exit point. 
  Control always enters a basic block at its entry 
point, and exits from its exit point. 

  No entry, halt, or exit inside a basic block 

  If a basic block contains a single statement, then 
the entry and exit points coincide. 
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Example 

1.  begin 
2.     int x, y, power; 
3.     float z; 
4.     input (x, y); 
5.     if (y < 0) 
6.         power = -y; 
7.     else 
8.         power = y; 
9.     z = 1; 
10.     while (power != 0) { 
11.         z = z * x; 
12.         power = power – 1; 
13.     } 
14.     if (y < 0) 
15.         z = 1/z; 
16.     output (z); 
17. end; 

Block Lines Entry Exit 

1 2, 3, 4, 5 2 5 

2 6 6 6 
3 8 8 8 
4 9 9 9 
5 10 10 10 
6 11, 12 11 12 

7 14 14 14 
8 15 15 15 
9 16 16 16 
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Function Calls 

  Should a function call be treated like a regular 
statement or as a separate block of its own? 
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Control Flow Graph 

  A control flow graph is a graph with two 
distinguished nodes, start and end. 

  Node start has no incoming edges, and node end has no 
outgoing edges. 

  Every node can be reached from start, and can reach 
end. 

  In a CFG, a node is typically a basic block, and an 
edge indicates the flow of control from one block to 
another. 
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Example 
start 

end 

1 

2 3 

4 

5 

6 

7 
8 

9 

false 

false true 

true 

true 
false 
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Node Coverage 

  A test set T satisfies Node Coverage on graph G if 
and only if for every syntactically reachable node n 
in N, there is some path p in path(T) such that p 
visits n. 

  path(T): the set of paths that are exercised by the 
execution of T 

  In other words, the set TR of test requirements 
for Node Coverage contains each reachable node in 
G. 
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Edge Coverage 

  The TR for Edge Coverage contains each reachable 
path of length up to 1, inclusive, in a graph G. 

  Note that Edge Coverage subsumes Node 
Coverage. 
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Node vs Edge Coverage 

n0 

n1 

n2 
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Edge-Pair Coverage 

  The TR for Edge-Pair Coverage contains each 
reachable path of length up to 2, inclusive, in a graph 
G. 
  This definition can be easily extended to paths of 
any length, although possibly with diminishing 
returns. 
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Edge-Pair vs Edge Coverage 

n0 

n1 

n6 

n2 

n3 

n4 n5 

a b 

c d 

e f 

g h 
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Complete Path Coverage 

  The TR for Complete Path Coverage contain all 
paths in a graph. 

n0 

n1 

n3 

n4 

n2 

How many paths do we need to cover in the above graph? 
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Simple & Prime Path 

  A path is simple if no node appears more than once 
in the path, with the exception that the first and 
last nodes may be identical. 
  A path is a prime path if it is a simple path, and it 
does not appear as a proper subpath of any other 
simple path. 



9/12/11 

14 

Software Testing and Maintenance  27 

Prime Path Coverage 

  The TR for Prime Path Coverage contains every 
prime path in a graph. 

Software Testing and Maintenance  28 

Example 

n0 

n1 

n3 

n4 

n2 

Prime paths = {[n0, n1, n2], [n0, n1, n3, n4], [n1, n3, n4, n1], 
[n3, n4, n1, n3], [n4, n1, n3, n4], [n3, n4, n1, n2]}  
Path (t1) = [n0, n1, n2] 
Path (t2) = [n0, n1, n3, n4, n1, n3, n4, n1, n2] 
T = {t1, t2} 
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Infeasible Test Requirements 

  The notion of “tour” is rather strict. 

S0 a b d Sf 

c 

Let q = [a, b, d], and p = [S0, a, b, c, d, Sf]. 

Does path p tour path q? 
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Sidetrips/Detours 

  Tour: Test path p is said to tour path q if and only 
if q is a subpath of p. 

  Tour with sidetrips: Test path p is said to tour 
path q with sidetrips if and only if every edge in q is 
also in p in the same order. 
  Tour with detours: Test path p is said to tour path 
q with detours if and only if every node in q is also in 
p in the same order 
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Example 

S0 a b d Sf 

c 

1 2 

3 4 

5 6 

S0 a b d Sf 

c 

1 2 

3 

4 

5 
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Best Effort Touring 

  If a test requirement can be met without a 
sidetrip (or detour), then it should be done so. 

  In other words, sidetrips or detours should be 
allowed only if necessary. 
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Computing Prime Paths 

  Step 1: Find all the simple paths 
  Find all simple paths of length 0, extend them to length 1, 

and then to length 2, and so on 

  Step 2: Select those that are maximal 
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Example 

0 

4 

6 

5 

1 

3 

2 
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Example – Simple Paths (2) 

1. [0] 
2. [1] 
3. [2] 
4. [3] 
5. [4] 
6. [5] 
7. [6]! 

len = 0 
8. [0, 1] 
9. [0, 4] 
10. [1, 2] 
11. [1, 5] 
12. [2, 3] 
13. [3, 1] 
14. [4, 4]* 
15. [4, 6]! 
16. [5, 6]! 

len = 1 
17. [0, 1, 2] 
18. [0, 1, 5] 
19. [0, 4, 6]! 
20. [1, 2, 3] 
21. [1, 5, 6]! 
22. [2, 3, 1] 
23. [3, 1, 2] 
24. [3, 1, 5] 

len = 2 
25. [0, 1, 2, 3]! 
26. [0, 1, 5, 6]! 
27. [1, 2, 3, 1]* 
28. [2, 3, 1, 2]* 
29. [2, 3, 1, 5] 
30. [3, 1, 2, 3]* 
31. [3, 1, 5, 6] 

len = 3 

32. [2, 3, 1, 5, 6]! 
len = 4 
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Example – Prime Paths 

14. [4, 4]* 
19. [0, 4, 6]! 
25. [0, 1, 2, 3]! 
26. [0, 1, 5, 6]! 
27. [1, 2, 3, 1]* 
28. [2, 3, 1, 2]* 
30. [3, 1, 2, 3]* 
32. [2, 3, 1, 5, 6]! 
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Example – Test Paths 

  Start with the longest prime paths and extend 
them to the start and end nodes of the graph 
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1)  [0, 1, 2, 3, 1, 5, 6] 
2)  [0, 1, 2, 3, 1, 2, 3, 1, 5, 6] 
3)  [0, 1, 5, 6] 
4)  [0, 4, 6] 
5)  [0, 4, 4, 6] 
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Graph-Based Testing 

  Introduction 

  Basic Concepts 

  Control Flow Testing 

  Data Flow Testing 

  Summary 
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Definition/Use 

  A definition is a location where a value for a 
variable is stored into memory. 

  Assignment, input, parameter passing, etc. 

  A use is a location where a variable’s value is 
accessed. 

  p-use: a use that occurs in a predicate expression, i.e., an 
expression used as a condition in a branch statement 

  c-use: a use that occurs in an expression that is used to 
perform certain computation 
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Data Flow Graph 

  A data flow graph (DFG) captures the flow of data 
in a program 

  To build a DFG, we first build a CFG and then 
annotate each node n in the CFG with the following 
two sets: 

  def(n): the set of variables defined in node n 
  use(n): the set of variables used in node n 
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Example (1) 
1.  begin 
2.    float x, y, z = 0.0; 
3.    int count; 
4.    input (x, y, count); 
5.    do { 
6.       if (x <= 0) { 
7.          if (y >= 0) { 
8.              z = y * z + 1; 
9.          } 
10.       } 
11.       else { 
12.          z = 1/x; 
13.       } 
14.       y = x * y + z; 
15.       count = count – 1; 
16.    while (count > 0) 
17.    output (z); 
18.  end 

Node Lines 

1 1, 2, 3, 4 

2 5, 6 
3 7 
4 8, 9, 10 
5 11, 12, 13 
6 14, 15, 16 

7 17, 18 
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Example (2) 

1 

2 

3 5 

6 4 

7 

def={x, y, z, count} 

def={} 
use = {x} 

def={} 
use = {y} 

def={z} 
use = {y, z} 

def={z} 
use = {x} 

def={count, y} 
use = {count, x, y, z} 

def={} 
use = {z} 

count == 0 

x <= 0 x > 0 

y >= 0 y < 0 
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DU-pair & DU-path 

  A du-pair is a pair of locations (i, j) such that a 
variable v is defined in i and used in j. 

  Suppose that variable v is defined at node i, and 
there is a use of v at node j. A path p = (i, n1, n2, …, 
nk, j) is def-clear w.r.t. v if v is not defined along the 
subpath n1, n2, …, nk. 

  A definition of a variable v reaches a use of v if 
there is a def-clear path from the definition to the 
use w.r.t. v. 

  A du-path for a variable v is a simple path from a 
definition of v to a use of v that is def-clear w.r.t. v. 
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Example 

  Consider the previous example: 
  Path p = (1, 2, 5, 6) is def-clear w.r.t variables x, y and 

count, but is not def-clear w.r.t. variable z. 
  Path q = (6, 2, 5, 6) is def-clear w.r.t variables count and 

y. 
  Path r = (1, 2, 3, 4) is def-clear w.r.t variables y and z. 
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Notations 

  Def-path set du(n, v): the set of du-paths w.r.t 
variable v that start at node n. 

  Def-pair set du(n, n’, v): the set of du-paths w.r.t 
variable v that start at node n and end at node n’. 

  Note that du(n, v) = ∪n’ du(n, n’, v). 
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All-Defs Coverage 

  For each def-path set S = du(n, v), the TR for All-
Defs Coverage contains at least one path in S.  

  Informally, for each def, we need to tour at least 
one path to at least one use. 
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All-Uses Coverage 

  For each def-pair set S = du(n, n’, v), the TR for 
All-Uses Coverage contains at least one path in S. 

  Informally, it requires us to tour at least one path 
for every def-use pair. 

Software Testing and Maintenance  48 

All-DU-Paths Coverage 

  For each def-pair set S = du(n, n’, v), the TR for 
All-DU-Paths Coverage contains every path in S. 

  Informally, this requires to tour every du-path.  
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Example 

n0 

n1 n2 

n3 

n4 n5 

n6 

def(0) = {x} 

use(4) = {x} use(5) = {x} 

all-defs 

0-1-3-4 

all-uses 

0-1-3-4 

0-1-3-5 

all-du-paths 

0-1-3-4 

0-1-3-5 

0-2-3-4 

0-2-3-5 
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Why data flow? 

  Consider the previous example. Assume that there 
is a fault in line 14, which is supposed to be y = x + y 
+ z. 
  Does the following test set satisfy edge coverage? 
Can the test set detect the above fault? 

x y count 

t1 -2 2 1 

t2 -2 -2 1 

t3 2 2 1 

t4 2 2 2 
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Graph-Based Testing 

  Introduction 

  Basic Concepts 

  Control Flow Testing 

  Data Flow Testing 

  Summary 
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Subsumption Hierarchy 
Complete Path 

Coverage 

Prime Path 
Coverage 

All-du-paths 
Coverage 

All-Uses 
Coverage 

All-Defs 
Coverage 

Edge-pair 
Coverage 

Edge Coverage 

Node Coverage 
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Recap 

  Graph provides a good basis for systematic test 
selection. 

  Control flow testing focuses on the transfer of 
control, while data flow testing focuses on the 
definitions of data and their subsequent use. 
  Control flow coverage is defined in terms of nodes, 
edges, and paths; data flow coverage is defined in 
terms of def, use, and du-path. 


