
1

Software Testing and Maintenance 1

Input Space Partitioning

  Introduction

  Equivalence Partitioning

  Boundary-Value Analysis

  Summary

Software Testing and Maintenance 2

The Test Selection Problem

  The input domain of a program consists of all
possible inputs that could be taken by the program.

  Ideally, the test selection problem is to select a
subset T of the input domain such that the execution
of T will reveal all errors.
  In practice, the test selection problem is to select
a subset of T within budget such that it reveals as
many errors as possible.

2

Software Testing and Maintenance 3

Example

  Consider a program that is designed to sort a
sequence of integers into the ascending order.

  What is the input domain of this program?

Software Testing and Maintenance 4

Main Idea

  Partition the input domain into a relatively small
number of groups, and then select one
representative from each group.

1

2

3

4

I1

I2
V1

V2 V3

Valid

Invalid

3

Software Testing and Maintenance 5

Major Steps

  Step 1: Identify the input domain
  Read the requirements carefully and identify all input and

output variables, any conditions associated with their use.

  Step 2: Identify equivalence classes
  Partition the set of values of each variable into disjoint

subsets, based on the expected behavior.

  Step 3: Combine equivalence classes
  Use some well-defined strategies to avoid potential

explosion

  Step 4: Remove infeasible combinations of
equivalence classes

Software Testing and Maintenance 6

Input Space Partitioning

  Introduction

  Equivalence Partitioning

  Boundary-Value Analysis

  Summary

4

Software Testing and Maintenance 7

Input Parameter Modeling

  Step 1: Identify testable components, which could
be a method, a use case, or the entire system

  Step 2: Identify all of the parameters that can
affect the behavior of a given testable component

  Input parameters, environment configurations, state
variables.

  For example, insert(obj) typically behaves differently
depending on whether the object is already in a list or
not.

  Step 3: Identify characteristics, and create
partitions for each characteristic

  Step 4: Select values from each partition, and
combine them to create tests

Software Testing and Maintenance 8

Partition

  A partition defines a set of equivalent classes, or
blocks

  All the members in an equivalence class contribute to
fault detection in the same way

  A partition must satisfy two properties:
  Completeness: A partition must cover the entire domain
  Disjoint: The blocks must not overlap

  A partition is usually based on certain
characteristic

  e.g., whether a list of integer is sorted or not, whether a
list allows duplicates or not

5

Software Testing and Maintenance 9

Interface-Based IPM (1)

  The main idea is to identify parameters and values,
typically in isolation, based on the interface of the
component under test.
  Advantage: Relatively easy to identify
characteristics
  Disadvantage: Not all information is reflected in
the interface, and testing some functionality may
require parameters in combination

Software Testing and Maintenance 10

Interface-Based IPM (2)

  Range: one class with values inside the range, and
two with values outside the range

  For example, let speed ∈ [60 .. 90]. Then, we generate
three classes {{50}, {75}, {92}}.

  String: at least one containing all legal strings and
one containing all illegal strings.

  For example, let fname: string be a variable to denote a
first name. Then, we could generate the following
classes: {{ε}, {Sue}, {Sue2}, {Too long a name}}.

6

Software Testing and Maintenance 11

Interface-Based IPM (3)

  Enumeration: Each value in a separate class
  For example, consider auto_color ∈ {red, blue, green}.

The following classes are generated, {{red}, {blue},
{green}}

  Array: One class containing all legal arrays, one
containing only the empty array, and one containing
arrays larger than the expected size

  For example, consider int[] aName = new int [3]. The
following classes are generated: {{[]}, {[-10, 20]}, {[-9, 0,
12, 15]}.

Software Testing and Maintenance 12

Functionality-Based IPM (1)

  The main idea is to identify characteristics that
correspond to the intended functionality of the
component under test
  Advantage: Includes more semantic information,
and does not have to wait for the interface to be
designed

  Disadvantage: Hard to identify characteristics,
parameter values, and tests

7

Software Testing and Maintenance 13

Functionality-Based IPM (2)

  Preconditions explicitly separate normal behavior
from exceptional behavior

  For example, a method requires a parameter to be non-
null.

  Postconditions indicates what kind of outputs may
be produced

  For example, if a method produces two types of outputs,
then we want to select inputs so that both types of
outputs are tested.

  Relationships between different parameters can
also be used to identify characteristics

  For example, if a method takes two object parameters x
and y, we may want to check what happens if x and y
point to the same object or to logically equal objects

Software Testing and Maintenance 14

Example (1)

  Consider a triangle classification program which
inputs three integers representing the lengths of
the three sides of a triangle, and outputs the type of
the triangle.

  The possible types of a triangle include scalene,
equilateral, isosceles, and invalid.

int classify (int side1, int side2, int side3)
0: scalene, 1: equilateral, 2: isosceles; -1: invalid

8

Software Testing and Maintenance 15

Example (2)

  Interface-based IPM: Consider the relation of the
length of each side to some special value such as zero

Partition b1 b2 b3

Relation of
Side 1 to 0

> 0 = 0 < 0

Relation of
Side 2 to 0

> 0 = 0 < 0

Relation of
Side 3 to 0

> 0 = 0 < 0

Software Testing and Maintenance 16

Example (3)

  Functionality-based IPM: Consider the
traditional geometric classification of triangles

Partition b1 b2 b3 b4
Geometric

classification
Scalene Isoceles Equilateral Invalid

9

Software Testing and Maintenance 17

Example (4)

Partition b1 b2 b3 b4
Geometric

classification
Scalene Isoceles, not

equilateral
Equilateral Invalid

Param b1 b2 b3 b4
Triangle (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)

Software Testing and Maintenance 18

GUI Design (1)

  Suppose that an application has a constraint on an
input variable X such that it can only assume integer
values in the range 0 .. 4.
  Without GUI, the application must check for out-
of-range values.
  With GUI, the user may be able to select a valid
value from a list, or may be able to enter a value in a
text field.

10

Software Testing and Maintenance 19

GUI Design (2)

Application

1
2

Correct
values

Incorrect
values

GUI-A
Core Application

Correct
values

GUI-B
Core Application

Correct
values

2

Software Testing and Maintenance 20

Input Space Partitioning

  Introduction

  Equivalence Partitioning

  Boundary-Value Analysis

  Summary

11

Software Testing and Maintenance 21

Motivation

  Programmers often make mistakes in processing
values at and near the boundaries of equivalence
classes.
  For example, a method M is supposed to compute a
function f1 when condition x <= 0 and function f2
otherwise. However, M has an error such that it
computes f1 for x < 0 and f2 otherwise.

Software Testing and Maintenance 22

Boundary-Value Analysis

  A test selection technique that targets faults in
applications at the boundaries of equivalence classes.

  Partition the input domain
  Identify the boundaries for each partition
  Select test data such that each boundary value occurs in

at least one test input

12

Software Testing and Maintenance 23

Example

  Consider a method findPrices that takes two
inputs, item code (99 .. 999) and quantity (1 .. 100).

  The method accesses a database to find and
display the unit price, the description, and the total
price, if the code and quantity are valid.
  Otherwise, the method displays an error message
and return.

Software Testing and Maintenance 24

Example (2)

  Equivalence classes for code:
  E1: Values less than 99
  E2: Values in the range
  E3: Values greater than 999

  Equivalence classes for quantity:
  E4: Values less than 1
  E5: Values in the range
  E6: Values greater than 100

13

Software Testing and Maintenance 25

Example (3)

99 999

98 100 998 1000

E1
E2

E2

1 100

0 2 99 101

E4
E5

E6

Software Testing and Maintenance 26

Example (4)

  Tests are selected to include, for each variable,
values at and around the boundary

  An example test set is T = { t1: (code = 98, qty =
0), t2: (code = 99, qty = 1), t3: (code = 100, qty = 2),
t4: (code = 998, qty = 99), t5: (code = 999, qty =
100), t6: (code = 1000, qty = 101) }

14

Software Testing and Maintenance 27

Example (5)

public void findPrice (int code, int qty)
{
 if (code < 99 or code > 999) {
 display_error (“Invalid code”); return;
 }
 // begin processing
}

Software Testing and Maintenance 28

Example (6)

  One way to fix the problem is to replace t1 and t6
with the following four tests: t7 = (code = 98, qty =
45), t8 = (code = 1000, qty = 45), t9 = (code = 250,
qty = 0), t10 = (code = 250, qty = 101).

15

Software Testing and Maintenance 29

Input Space Partitioning

  Introduction

  Equivalence Partitioning

  Boundary-Value Analysis

  Summary

Software Testing and Maintenance 30

Summary

  Test selection is about sampling the input space in
a cost-effective manner.

  The notions of equivalence partitioning and
boundary analysis are so common that sometimes we
apply them without realizing it.
  Interface-based IPM is easier to perform, but
may miss some important semantic information;
functionality-based IPM is more challenging, but can
be very effective in many cases.

  Boundary analysis considers values both at and
near boundaries.

