
1

Software Testing and Maintenance 1

Software Refactoring

  Introduction

  A Motivating Example

  Bad Smells in Code

  Catalog of Refactorings

  Summary

Software Testing and Maintenance 2

What is refactoring?

  A change made to the internal structure of
software to make it easier to understand and
cheaper to modify without changing its observable
behavior

  Or, to restructure software by applying a series
of refactoring without changing its observable
behavior

2

Software Testing and Maintenance 3

Why Refactoring?

  Improves the design of software
  The design of a program will inevitably decay, and

refactoring helps to restore its structure

  Makes software easier to understand
  When we program, we often focus on how to make it

work, i.e., understandable to the computer. Refactoring
helps us to think about how to make it understandable to
the people

  Helps to find bugs
  Refactoring forces one to think deep about the program

and thus help to detect bugs that may exist in the code

  Helps to code faster
  A good design is essential for rapid software

development

Software Testing and Maintenance 4

When to Refactor?

  Refactor when you add function
  Refactor as you try to understand the code
  “If only I’d designed the code this way, adding this

feature would be easy.”

  Refactor when you need to fix a bug
  The very existence of a bug might indicate that the code

is not well-structured

  Refactor when you do a code review
  Refactoring helps to produce concrete results from code

review

3

Software Testing and Maintenance 5

Problems with Refactoring

  Refactoring may change interfaces; this needs to
be handled carefully

  Retain the old interface until the users have had a
chance to react to the change

  Some designs may be very difficult to change
  When a design choice is to be made, consider how

difficult it would be if later you have to change it.
  If it seems easy, then don’t worry too much about the

choice. Otherwise, be careful.

Software Testing and Maintenance 6

When not to refactor?

  Easier to write from scratch
  The current code just doesn’t work

  Close to a deadline
  The long term benefit of refactoring may not appear

until after the deadline

4

Software Testing and Maintenance 7

Refactoring and Design

  Upfront design: Do all the design up front, and try
to find the best solution

  No design: Code first, get it working, and then
refactor it into shape

  Combined: Still do upfront design, but only try to
find a reasonable solution. Later, do refactoring to
improve the design

Software Testing and Maintenance 8

Refactoring and Performance

  Does refactoring make software run slower?

  True in some cases. But in general, refactoring can
make software more amenable to performance
tuning.

  Three general approaches to write fast software
  Time budgeting – typically applied in hard real-time

environments only
  Constant attention – slows development, and improvement

may be made with a narrow perspective
  Performance tuning – do performance tuning at a later

stage of development

5

Software Testing and Maintenance 9

Software Refactoring

  Introduction

  A Motivating Example

  Bad Smells in Code

  Catalog of Refactorings

  Summary

Software Testing and Maintenance 10

A Video Rental System (1)
public class Movie {
 public static final int CHILDRENS = 2;
 public static final int REGULAR = 0;
 public static final int NEW_RELEASE = 1;

 private String _title;
 private int _priceCode;

 public Movie (String title, int priceCode) {
 _title = title;
 _priceCode = priceCode;
 }
 public int getPriceCode () {
 return _priceCode;
 }
 public void setPriceCode (int arg) {
 _priceCode = arg;
 }
 public String getTitle () {
 return _title;
 }
}

6

Software Testing and Maintenance 11

A Video Rental System (2)

class Rental {
 private Movie _movie;
 private int _daysRented;

 public Rental (Movie movie, int daysRented) {
 _movie = movie;
 _daysRented = daysRented;
 }
 public int getDaysRented () {
 return _daysRented;
 }
 public Movie getMovie () {
 return _movie;
 }
}

Software Testing and Maintenance 12

A Video Rental System (3)

class Customer {
 private String _name;
 private Vector _rentals = new Vector ();

 public Customer (String name) {
 _name = name;
 }
 public void addRental(Rental arg) {
 _rentals.addElement (arg);
 }
 public String getName () {
 return _name;
 }
 public String statement () {
 …
 }
}

7

Software Testing and Maintenance 13

A Video Rental System (4)
public String statement () {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement ();

 // determine amounts for each line
 switch (each.getMovie().getPriceCode ()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented () > 2)
 thisAmount += (each.getDaysRented() – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3; break;
 case Movie.CHILDREN:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() – 3) * 1.5;
 break;
 }

 // add frequent renter points
 frequentRenterPoints ++;
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1)
 frequentRenterPoints ++;

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t” + String.valueOf(thisAmount) + “\n”;
 totalAmount += thisAmount;
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(totalAmount) + “\n”;
 result += “You earned “ + String.valueOf(frequentRenterPoints) + “ frequent renter points”;
 return result;
}

Software Testing and Maintenance 14

Good or Bad?

  What is your opinion?

  Consider the following possible changes:
  Add a method to print statement in HTML
  Make changes to the way the movies are classified, which

could affect both the way renters are charged and the
way frequent renter points are calculated

8

Software Testing and Maintenance 15

First Step in Refactoring

  Build a solid set of tests for the code you plan to
refactor.

  For example, we can create a few customers, give
each customer a few rentals of various kinds of
films, and generate the statement strings.

Software Testing and Maintenance 16

Decompose statement
public String statement () {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement ();

 thisAmount = amountFor(each);

 // add frequent renter points
 frequentRenterPoints ++;
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1)
 frequentRenterPoints ++;

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t” + String.valueOf(thisAmount) + “\n”;
 totalAmount += thisAmount;
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(totalAmount) + “\n”;
 result += “You earned “ + String.valueOf(frequentRenterPoints) + “ frequent renter points”;
 return result;
}

private double amountFor (Rental each) {
 double thisAmount = 0;
 switch (each.getMovie().getPriceCode ()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented () > 2)
 thisAmount += (each.getDaysRented() – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3; break;
 case Movie.CHILDREN:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() – 3) * 1.5;
 break;
 }
 return thisAmount;
}

9

Software Testing and Maintenance 17

Rename Variables

private double amountFor (Rental aRental) {
 double result = 0;
 switch (aRental.getMovie().getPriceCode ()) {
 case Movie.REGULAR:
 result += 2;
 if (aRental.getDaysRented () > 2)
 result += (aRental.getDaysRented() – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += aRental.getDaysRented() * 3; break;
 case Movie.CHILDREN:
 result += 1.5;
 if (aRental.getDaysRented() > 3)
 result += (aRental.getDaysRented() – 3) * 1.5;
 break;
 }
 return result;
}

Software Testing and Maintenance 18

Move the Amount Calculation
class Rental …
 double getCharge () {
 double result = 0;
 switch (getMovie().getPriceCode ()) {
 case Movie.REGULAR:
 result += 2;
 if (getDaysRented () > 2)
 result += (getDaysRented() – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += getDaysRented() * 3; break;
 case Movie.CHILDREN:
 result += 1.5;
 if (getDaysRented() > 3)
 result += (getDaysRented() – 3) * 1.5;
 break;
 }
 return result;
}

class Customer …
 private double amountFor (Rental aRental) {
 return aRental.getCharge();
 }

10

Software Testing and Maintenance 19

Remove the Old method
public String statement () {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement ();

 thisAmount = each.getCharge ();

 // add frequent renter points
 frequentRenterPoints ++;
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1)
 frequentRenterPoints ++;

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t” + String.valueOf(thisAmount) + “\n”;
 totalAmount += thisAmount;
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(totalAmount) + “\n”;
 result += “You earned “ + String.valueOf(frequentRenterPoints)
 + “ frequent renter points”;
 return result;
}

Software Testing and Maintenance 20

Replace Temp with Query
public String statement () {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();

 // add frequent renter points
 frequentRenterPoints ++;
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1)
 frequentRenterPoints ++;

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t”
 + String.valueOf(each.getCharge()) + “\n”;
 totalAmount += each.getCharge();
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(totalAmount) + “\n”;
 result += “You earned “ + String.valueOf(frequentRenterPoints)
 + “ frequent renter points”;
 return result;
}

11

Software Testing and Maintenance 21

Extracting Frequent Renter Points
public String statement () {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();
 frequentRenterPoints += each.getFrequentRenterPoints ();

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t”
 + String.valueOf(each.getCharge()) + “\n”;
 totalAmount += each.getCharge();
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(totalAmount) + “\n”;
 result += “You earned “ + String.valueOf(frequentRenterPoints)
 + “ frequent renter points”;
 return result;
}

Class Rental …
 int getFrequentRenterPoints () {
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1)
 return 2;
 else
 return 1;
 }

Software Testing and Maintenance 22

Remove Temps - totalAmount
public String statement () {
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();
 frequentRenterPoints += each.getFrequentRenterPoints ();

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t”
 + String.valueOf(each.getCharge()) + “\n”;
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(getTotalCharge()) + “\n”;
 result += “You earned “ + String.valueOf(frequentRenterPoints)
 + “ frequent renter points”;
 return result;
}

private double getTotalCharge () {
 double result = 0;
 Enumeration rentals = _rentals.elements ();
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();
 result += each.getCharge ();
 }
 return result;
}

12

Software Testing and Maintenance 23

Remove Temps - frequentRenterPoints
public String statement () {
 Enumeration rentals = _rentals.elements ();
 String result = “Rental Record for ” + getName () + “\n”;
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();

 // show figures for this rental
 result += “\t” + each.getMovie.getTitle() + “\t”
 + String.valueOf(each.getCharge()) + “\n”;
 }
 // add footer lines
 result += “Amount owed is “ + String.valueOf(getTotalCharge()) + “\n”;
 result += “You earned “ + String.valueOf(getTotalFrequentRenterPoints())
 + “ frequent renter points”;
 return result;
}

private double getTotalFrequentRenterPoints () {
 double result = 0;
 Enumeration rentals = _rentals.elements ();
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();
 result += each.getFrequentRenterPoints ();
 }
 return result;
}

Software Testing and Maintenance 24

Add htmlStatement
public String htmlStatement () {
 Enumeration rentals = _rentals.elements ();
 String result = “<H1>Rental Record for ” + getName () + “</
EM></H1><P>\n”;
 while (rentals.hasMoreElements ()) {
 Rental each = (Rental) rentals.nextElement ();

 // show figures for this rental
 result += each.getMovie.getTitle() + “: ”
 + String.valueOf(each.getCharge()) + “
\n”;
 }
 // add footer lines
 result += “<P>You owe “ + String.valueOf(getTotalCharge())
 + “<P>\n”;
 result += “On this rental you earned “
 + String.valueOf(getTotalFrequentRenterPoints())
 + “ frequent renter points <P>”;
 return result;
}

13

Software Testing and Maintenance 25

Move getCharge() (1)
class Rental …
 double getCharge () {
 double result = 0;
 switch (getMovie().getPriceCode ()) {
 case Movie.REGULAR:
 result += 2;
 if (getDaysRented () > 2)
 result += (getDaysRented() – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += getDaysRented() * 3; break;
 case Movie.CHILDREN:
 result += 1.5;
 if (getDaysRented() > 3)
 result += (getDaysRented() – 3) * 1.5;
 break;
 }
 return result;
}

Software Testing and Maintenance 26

Move getCharge() (2)
class Movie …
 double getCharge (int daysRented) {
 double result = 0;
 switch (getPriceCode ()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented () > 2)
 result += (daysRented – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3; break;
 case Movie.CHILDREN:
 result += 1.5;
 if (daysRented > 3)
 result += (daysRented – 3) * 1.5;
 break;
 }
 return result;
}

class Rental …
 double getCharge () {
 return _movie.getCharge (_daysRented).
 }

14

Software Testing and Maintenance 27

Move getFrequentRenterPoints() (1)

Class Rental …
 int getFrequentRenterPoints () {
 if ((each.getMovie().getPriceCode() ==
 Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1)
 return 2;
 else
 return 1;
 }

Software Testing and Maintenance 28

Move getFrequentRenterPoints() (2)

class Movie …
 int getFrequentRenterPoints () {
 if ((getPriceCode() == Movie.NEW_RELEASE)
 && each.getDaysRented() > 1)
 return 2;
 else
 return 1;
 }

class Rental …
 int getFrequentRenterPoints () {
 return _movie.getFrequentRenterPoints (_daysRent);
 }

15

Software Testing and Maintenance 29

Replace Conditional with Polymorphism (1)

Movie

getCharge

Regular Movie

getCharge

Childrens Movie

getCharge

New Release Movie

getCharge

Software Testing and Maintenance 30

Replace Conditional with Polymorphism (2)

Price

getCharge

Regular Price

getCharge

Childrens Price

getCharge

New Release Price

getCharge

Movie

getCharge

16

Software Testing and Maintenance 31

Self Encapsulating Field

class Movie…
 public Movie (String name, int priceCode) {
 _title = name;
 _priceCode = priceCode;
 }

class Movie…
 public Movie (String name, int priceCode) {
 _title = name;
 setPriceCode (priceCode);
 }

Software Testing and Maintenance 32

class Price

abstract class Price {
 abstract int getPriceCode ();
}
class ChildrensPrice extends Price {
 int getPriceCode () {
 return Movie.CHILDRENS;
 }
}
class NewReleasePrice extends Price {
 int getPriceCode () {
 return Movie.NEW_RELEASE;
 }
}
class RegularPrice extends Price {
 int getPriceCode () {
 return Movie.REGULAR;
 }
}

17

Software Testing and Maintenance 33

Change accessors (1)

public int getPriceCode () {
 return _priceCode;
}
public void setPriceCode (int arg) {
 _priceCode = arg;
}
private int _priceCode;

Software Testing and Maintenance 34

Change accessors (2)
class Movie…
 public int getPriceCode () {
 return _price.getPriceCode ();
 }
 public void setPriceCode (int arg) {
 switch (arg) {
 case REGULAR:
 _price = new RegularPrice (); break;
 case CHILDRENS:
 _price = new ChildrensPrice (); break;
 case NEW_RELEASE:
 _price = new NewReleasePrice (); break;
 default:
 throw new IllegalArgumentException(“Incorrect Price Code”);
 }

 private Price = _price;

18

Software Testing and Maintenance 35

Move getCharge() (1)
class Movie …
 double getCharge (int daysRented) {
 double result = 0;
 switch (getPriceCode ()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented () > 2)
 result += (daysRented – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3; break;
 case Movie.CHILDREN:
 result += 1.5;
 if (daysRented > 3)
 result += (daysRented – 3) * 1.5;
 break;
 }
 return result;
}

Software Testing and Maintenance 36

Move getCharge() (2)
class Movie …
 double getCharge (int daysRented) {
 return _price.getCharge (daysRented);
 }

class Price …
 double getCharge (int daysRented) {
 double result = 0;
 switch (getPriceCode ()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented () > 2)
 result += (daysRented – 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3; break;
 case Movie.CHILDREN:
 result += 1.5;
 if (daysRented > 3)
 result += (daysRented – 3) * 1.5;
 break;
 }
 return result;
}

19

Software Testing and Maintenance 37

Replace Conditional with Polymorphism
class RegularPrice …
 double getCharge (int daysRented) {
 double result = 2;
 if (daysRented > 2)
 result += (daysRented – 2) * 1.5;
 }

class ChildrensPrice …
 double getCharge (int daysRented) {
 double result = 1.5;
 if (daysRented > 3)
 result += (daysRented – 3) * 1.5;
 return result;
 }

class NewReleasePrice …
 double getCharge (int daysRented) {
 return daysRented * 3;
 }

class Price …
 abstract double getCharge (int daysRented);

Software Testing and Maintenance 38

getFrequentRenterPoints (1)

class Movie …
 int getFrequentRenterPoints (int daysRented) {
 if ((getPriceCode() == Movie.NEW_RELEASE) && daysRented > 1)
 return 2;
 else
 return 1;
 }

20

Software Testing and Maintenance 39

getFrequentRenterPoints (2)
class Movie …
 int getFrequentRenterPoints (int daysRented) {
 return _price.getFrequentRenterPoints (daysRented);
 }

class Price …
 int getFrequentRenterPoints (int daysRented) {
 if ((getPriceCode() == Movie.NEW_RELEASE) && daysRented > 1)
 return 2;
 else
 return 1;
 }

class NewReleasePrice
 int getFrequentRenterPoints (int daysRented) {
 return (daysRented > 1) ? 2 : 1;
 }

class Price…
 int getFrequentRenterPoints (int daysRented) {
 return 1;
 }

Software Testing and Maintenance 40

Software Refactoring

  Introduction

  A Motivating Example

  Bad Smells in Code

  Catalog of Refactorings

  Summary

21

Software Testing and Maintenance 41

Duplicated Code

  The same code structure appears in more than one
place

  Two methods of the same class, two sibling subclasses, or
two unrelated classes

  Makes the code unnecessarily long, and also makes
it difficult to maintain consistency
  Extract the common code and then invoke it from
different places

Software Testing and Maintenance 42

Long Method

  The body of a method contains an excessive
number of statements

  The longer a method is, the more difficult it is to
understand and maintain

  Find parts of the method that seem to go nicely
together and make a new method

22

Software Testing and Maintenance 43

Large Class

  Too many instance variables or too much code in
the class

  Difficult to understand and maintain

  Break it up into several smaller classes, e.g., based
on cohesion or how clients use the class

Software Testing and Maintenance 44

Long Parameter List

  A method that takes too many parameters in its
signature

  Difficult to understand and use, and makes the
interface less stable

  Use object to obtain the data, instead of directly
pass them around

23

Software Testing and Maintenance 45

Divergent Change/Shotgun Surgery

  Divergent change: a class is commonly changed in
different ways for different reasons

  Signals a low degree of cohesion

  Shotgun surgery: a change involves too many
classes

  Hard to identify all the classes, and some may get missed

  Ideally, we want to make arrangements so that
there is one-to-one link between common changes
and classes.

Put things together that change together!

Software Testing and Maintenance 46

Feature Envy

  A method that seems more interested in a class
other than the one it actually is in

  May not be in sync with the data it operates on

  Move the method to the class which has the most
data needed by the method

24

Software Testing and Maintenance 47

Switch Statements

  The same switch statement scattered about a
program in different places

  Adding a new clause requires changing all these
duplicates

  Use polymorphism to replace the switch
statements

Software Testing and Maintenance 48

Speculative Generality

  Excessive support for generality that is not really
needed

  Make the code unnecessarily complex and hard to
maintain

  Remove those additional support, e.g., remove
unnecessary abstract classes, delegation, and
parameters

25

Software Testing and Maintenance 49

Temporary Field

  Instance variables that are merely used for
passing parameters

  Create unnecessary confusion as they are not an
integral part of the object

  Create a new object to enclose those parameters
and then pass the object around

Software Testing and Maintenance 50

Data Classes

  Classes that are dumb data holders, i.e., they only
have fields and get/set methods

  These classes are often manipulated in far too
much detail by other classes

  Give more responsibility to these classes

26

Software Testing and Maintenance 51

Comments

  Comments are often used as a deodorant: they are
there because the code is bad

  Try to remove the comments by refactoring, e.g.,
extract a block of code as a separate method

Software Testing and Maintenance 52

Software Refactoring

  Introduction

  A Motivating Example

  Bad Smells in Code

  Catalog of Refactorings

  Summary

27

Software Testing and Maintenance 53

Format

  Name: the name of the refactoring

  Summary: a brief description about the
refactoring

  Motivation: why the refactoring should be done
and in what circumstances it shouldn’t be done

  Mechanics: a concise, step-by-step description of
how to carry out the refactoring

  Examples: a very simple use of the refactoring to
illustrate how it works

Software Testing and Maintenance 54

Major Groups of Refactorings

  Composing methods

  Moving features between objects

  Simplifying conditional expressions

  Organizing data

  Making method calls simpler

  Dealing with generalization

28

Software Testing and Maintenance 55

Composing Methods (1)

  Extract Method
  Turn a code fragment into a method with a meaningful name

  Inline Method
  Put a method that is really simple into the body of its callers

and remove the method

  Inline Temp
  Replace a temp that is only assigned once with the actual

expression

  Replace Temp with Query
  Replace a temp with a query method

  Introduce Explaining Variable
  Put intermediate results into a temp with a meaningful name

Software Testing and Maintenance 56

Composing Methods (2)

  Split Temporary Variable
  Split a temp that is assigned more than once into several

temps, one for each assignment

  Remove Assignments to Parameters
  Parameters should not be assigned; use a temp instead.

  Replace Method with Method Object
  Turn a very long method into an object, with all the local

vars becoming fields on the object. If needed, you can
decompose this method into several smaller ones on the
object

  Substitute Algorithm
  Replace the body of a method with a new algorithm

29

Software Testing and Maintenance 57

Extract Method (1)

  Need to consider how to deal with local variables:
  No local variables
  Read-only variables: Simply pass the values of those

variables as parameters to the new method
  Variables that may be changed

•  Only one variable is changed – return the new value from
the new method

•  Multiple variables are changed – try to extract multiple
methods, one for each variable

Software Testing and Maintenance 58

Extract Method (2)

void printOwing () {
 Enumeration e = _orders.elements();
 double outstanding = 0.0;
 print Banner ();

 // calculate outstanding
 while (e.hasMoreElements ()) {
 Order each = (Order) e.nextElement ();
 outstanding += each.getAmount ();
 }

 printDetails (outstanding);
}

30

Software Testing and Maintenance 59

Extract Method (3)

void printOwing () {
 print Banner ();
 double outstanding = getOutstanding ();
 printDetails (outstanding);
}

Double getOutstanding () {
 Enumeration e = _orders.elements ();
 double result = 0.0;

 while (e.hasMoreElements ()) {
 Order each = (Order) e.nextElement ();
 result += each.getAmount ();
 }
 return result;
}

Software Testing and Maintenance 60

Replace Temp with Query

double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

if (basePrice > 1000)
 return basePrice () * 0.95;
else
 return basePrice () * 0.98;
…
double basePrice () {
 return _quantity * _itemPrice;
}

31

Software Testing and Maintenance 61

Split Temporary Variable

double temp = 2 * (_height + _width);
System.out.println (temp);
temp = _height * _width;
System.out.println (temp);

final double perimeter = 2 * (_height + _width);
System.out.println (perimeter);
final double area = _height * _width;
System.out.println (are);

Software Testing and Maintenance 62

Replace Method with Method Object (1)

class Order …
 double price () {
 double primaryBasePrice;
 double secondaryBasePrice;
 double tertiaryBasePrice;
 // long computation
 }

32

Software Testing and Maintenance 63

Replace Method with Method Object (2)

Order

price()

PriceCalculator

primaryBasePrice
secondaryBasePrice
tertiaryBasePrice

compute

return new PriceCalculator(this).compute()

Software Testing and Maintenance 64

Moving Features Between Objects (1)

  Move Method
  Move a method from one class to another

  Move Field
  Move a field from one class to another

  Extract Class
  Extract a new class, with the relevant fields and

methods, from a class that is doing too much work,

  Inline Class
  Make a class that isn’t doing much a part of another class

33

Software Testing and Maintenance 65

Moving Features Between Objects (2)

  Hide Delegate
  Create methods on a server class to hide its delegate(s)

from its client

  Remove Middle Man
  Remove a class that is doing too much simple delegation

  Introduce Foreign Method
  Create a method in a client class to implement what is

needed from a server class but is not provided

  Introduce Local Extension
  Create a wrapper or subclass of a server class to provide

additional methods that are needed by a client class

Software Testing and Maintenance 66

Extract Class (1)
class Person …
 public String getName () {
 return _name;
 }
 public String getTelephoneNumber () {
 return (“(“ + _officeAreaCode + “) “ + _officeNumber);
 }
 String getOfficeAreaCode () {
 return _officeAreaCode;
 }
 void setOfficeAreaCode (String arg) {
 _officeAreaCode = arg;
 }
 String getOfficeNumber () {
 return _officeNumber;
 }
 void setOfficeNumber (String arg) {
 _officeNumber = arg;
 }

 private String _name;
 private String _officeAreaCode;
 private String _officeNumber;

34

Software Testing and Maintenance 67

Extract Class (2)
class Person …
 public String getName () {
 return _name;
 }
 public String getTelephoneNumber () {
 return (“(“ + getOfficeAreaCode () + “) ” + _officeNumber);
 }
 String getOfficeAreaCode () {
 return _officeTelephone.getAreaCode ();
 }
 void setOfficeAreaCode (String arg) {
 _officeTelephone.setAreaCode (arg);
 }
 String getOfficeNumber () {
 return _officeTelephone.getNumber ();
 }
 void setOfficeNumber (String arg) {
 _officeTelephone.setNumber (arg);
 }

 private String _name;
 private TelephoneNumber _officeTelephone = new TelephoneNumber();

Software Testing and Maintenance 68

Extract Class (3)

class TelephoneNumber {
 String getAreaCode () {
 return _areaCode;
 }
 void setAreaCode (String arg) {
 _areaCode = arg;
 }
 String getNumber () {
 return _number;
 }
 void setNumber (String arg) {
 _number = arg;
 }

 private String _number;
 private String _areaCode;
}

35

Software Testing and Maintenance 69

Hide Delegate (1)
class Person {
 Department _department;

 public Department getDepartment () {
 return _department;
 }
 public void setDepartment (Department arg) {
 _department = arg;
 }
 …
}

class Department {
 private String _chargeCode;
 private Person _manager;

 public Department (Person manager) {
 _manager = manager;
 }
 public Person getManager () {
 return _manager;
 }
 …
}

Software Testing and Maintenance 70

Hide Delegate (2)
class Person {
 Department _department;

 public Department getDepartment () {
 return _department;
 }
 public void setDepartment (Department arg) {
 _department = arg;
 }
 public Person getManager () {
 return _department.getManager ();
 }
 …
}

manager = john.getDepartment().getManager()

manager = john.getManager()

36

Software Testing and Maintenance 71

Simplifying Conditional Expression (1)

  Decompose Conditional
  Extract methods from the condition, then part and else

part.

  Consolidate Conditional Expression
  Combine multiple conditional tests with the same result

  Consolidate Duplicate Conditional Fragments
  Move a code fragment that is in all branches of a

conditional outside of the expression

  Remove Control Flag
  Use break or return to remove a variable that is acting as

a control flag

Software Testing and Maintenance 72

Simplifying Conditional Expression (2)

  Replace nested Conditional with Guard Clauses
  Use guard clauses for special cases (or abnormal

behavior)

  Replace Conditional with Polymorphism
  If a conditional chooses different behavior based on the

type of an object, replace it with polymorphism

  Introduce Null Object
  Replace the null value with a null object to avoid repeated

checks for a null value

  Introduce Assertion
  Make assumptions explicit using assertions

37

Software Testing and Maintenance 73

Decompose Conditional
if (date.before(SUMMER_START) || (date.after(SUMMER_END))
 charge = quantity * _winterRate + _winterServiceCharge;
else charge = quantity * summerRate;

if (notSummer(date))
 charge = winterCharge (quantity);
else charge = summerCharge (quantity);

private boolean notSummer (Date date) {
 return date.before (SUMMER_START) || date.after (SUMMER_END);
}
private double summerCharge (int quantity) {
 return quantity * _summerRate;
}
private double winterCharge (int quantity) {
 return quantity * _winterRate + _winterServiceCharge;
}

Software Testing and Maintenance 74

Consolidate Duplicate Conditional Fragments
if (isSpecialDeal ()) {
 total = price * 0.95;
 send();
}
else {
 total = price * 0.98;
 send();
}

if (isSpecialDeal ()) {
 total = price * 0.95;
}
else {
 total = price * 0.98;
}
send ();

38

Software Testing and Maintenance 75

Remove Control Flag (1)

void checkSecurity (String[] people) {
 boolean found = false;
 for (int i = 0; i < people.length; i ++) {
 if (! found) {
 if (people[i].equals(“Don”)) {
 sendAlert ();
 found = true;
 }
 }
}

Software Testing and Maintenance 76

Remove Control Flag (2)

void checkSecurity (String[] people) {
 for (int i = 0; i < people.length; i ++) {
 if (people[i].equals(“Don”)) {
 sendAlert ();
 break;
 }
 }
}

39

Software Testing and Maintenance 77

Replace Nested Conditional with Guard Clauses

double getPayAmount () {
 double result;
 if (_isDead) result = deadAmount ();
 else
 if (_isSeparated) result = separatedAmount ();
 else {
 if (_isRetired) result = retiredAmount ();
 else result = normalPayAmount ();
 }
 return result;
}

double getPayAmount () {
 if (_isDead) return deadAmount ();
 if (_isSeparated) return separatedAmount ();
 if (_isRetired) return retiredAmount ();
 return normalPayAmount ()
}

Software Testing and Maintenance 78

Software Refactoring

  Introduction

  A Motivating Example

  Bad Smells in Code

  Catalog of Refactorings

  Summary

40

Software Testing and Maintenance 79

Summary

  Refactoring does not fix any bug or add any new
feature. Instead, it is aimed to facilitate future
changes.
  Refactoring allows us to do a reasonable, instead
of perfect, design, and then improve the design
later.

  Bad smells help to decide when to refactor; the
catalog of refactoring contains a common list of
refactoring patterns.

