
1

Software Testing and Maintenance 1

Regression Testing

  Introduction

  Test Selection

  Test Minimization

  Test Prioritization

  Summary

Software Testing and Maintenance 2

What is it?

  Regression testing refers to the portion of the
test cycle in which a program is tested to ensure
that changes do not affect features that are not
supposed to be affected.

  Corrective regression testing is triggered by
corrections made to the previous version;
progressive regression testing is triggered by new
features added to the previous version.

2

Software Testing and Maintenance 3

Develop-Test-Release Cycle

Version 1 Version 2

1. Develop P 1. Modify P to P’
2. Test P 2. Test P’ for new functionality
3. Release P 3. Perform regression testing

on P’ to ensure that the code
carried over from P behaves
correctly
4. Release P’

Software Testing and Maintenance 4

Regression-Test Process

1. Test revalidation/selection/
minimization/prioitization

2. Test setup

3. Test execution

4. Output comparison

5. Fault Mitigation

3

Software Testing and Maintenance 5

A Simple Approach

  Can we simply re-execute all the tests that are
developed for the previous version?

Software Testing and Maintenance 6

Major Tasks

  Test revalidation refers to the task of checking
which tests for P remain valid for P’.

  Test selection refers to the identification of
tests that traverse the modified portions in P’.

  Test minimization refers to the removal of tests
that are seemingly redundant with respect to some
criteria.
  Test prioritization refers to the task of
prioritizing tests based on certain criteria.

4

Software Testing and Maintenance 7

Example (1)

  Consider a web service ZipCode that provides two
services:

  ZtoC: returns a list of cities and the state for a given zip
code

  ZtoA: returns the area code for a given zip code

  Assume that ZipCode only serves the US initially,
and then is modified as follows:

  ZtoC is modified so that a user must provide a given
country, as well as a zip code.

  ZtoT, a new service, is added that inputs a country and a
zip code and return the time-zone.

Software Testing and Maintenance 8

Example (2)

  Consider the following two tests used for the
original version:

  t1: <service = ZtoC, zip = 47906>
  t2: <service = ZtoA, zip = 47906>

  Can the above two tests be applied to the new
version?

5

Software Testing and Maintenance 9

The RTS Problem (1)

P

P’

obsolete
To

redundant

Tu

regression subset

Tr

regression
tests

Tr Td
new tests

T

T’

Functionality retained
across P and P’

Modified and newly
added code

Software Testing and Maintenance 10

The RTS Problem (2)

  The RTS problem is to find a minimal subset Tr of
non-obsolete tests from T such that if P’ passes
tests in Tr then it will also pass tests in Tu.
  Formally, Tr shall satisfy the following property:
∀t ∈ Tr and ∀t’ ∈Tu ∪ Tr, P(t) = P’(t) ⇒ P(t’) = P’(t’).

6

Software Testing and Maintenance 11

Regression Testing

  Introduction

  Test Selection

  Test Minimization

  Test Prioritization

  Summary

Software Testing and Maintenance 12

Main Idea

  The goal is to identify test cases that traverse
the modified portions.

  Phase 1: P is executed and the trace is recorded
for each test case in Tno = Tu ∪ Tr.

  Phase 2: Tr is isolated from Tno by a comparison
of P and P’ and an analysis of the execution traces

  Step 2.1: Construct CFG and syntax trees
  Step 2.2: Compare CFGs and select tests

7

Software Testing and Maintenance 13

Obtain Execution Traces

1. main () {
2. int x, y, p;
3. input (x, y);
4. if (x < y)
5. p = g1(x, y);
6. else
7. p = g2(x, y);
8. endif
9. output (p);
10. end
11. }

1. int g1 (int a, b) {
2. int a, b;
3. if (a + 1 == b)
4. return (a*a);
5. else
6. return (b*b);

1. int g2 (int a, b) {
2. int a, b;
3. if (a == (b + 1))
4. return (b*b);
5. else
6. return (a*a);

Consider the following test set:
t1: <x=1, y=3>
t2: <x=2, y=1>
t3: <x=1, y=2>

Software Testing and Maintenance 14

CFG

Start

1

2

3

End

Start

1

2

3

End

Start

1

2

3

End

4

1,2

3,4

5

7

9

1,2

3

4

6

1,2

3

4

6

f
t t

f

main g1 g2

8

Software Testing and Maintenance 15

Execution Trace

Test (t) Execution Trace (trace(t))

t1 main.Start, main.1, main.2, g1.Start, g1.1, g1.3, g1.End,
main.2, main.4, main.End

t2 main.Start, main.1, main.3, g2.Start, g2.1, g2.2,
g2.End, main.3, main.4, main.End

t3 main.Start, main.1, main.2, g1.Start, g1.1, g1.2, g1.End,
main.2, main.4, main.End

Software Testing and Maintenance 16

Test Vector

Test vector (test(n)) for node n

Function 1 2 3 4
main t1, t2, t3 t1, t3 t2 t1, t2, t3
g1 t1, t3 t3 t1 -
g2 t2 t2 None -

9

Software Testing and Maintenance 17

Syntax Tree

;

input <

x y x y

main.1

=

p call

param param function

x y z
main.2

==

+ b

a 1

g1.1

return

a a

*

g1.2 and g2.3

return

b b

*

g1.3 and g2.2

Software Testing and Maintenance 18

Selection Strategy

  The CFGs for P and P’ are compared to identify
nodes that differ in P and P’.

  Two nodes are considered equivalent if the corresponding
syntax trees are identical.

  Two syntax trees are considered identical when their
roots have the same labels and the same corresponding
descendants.

  Tests that traverse those nodes are selected.

10

Software Testing and Maintenance 19

Procedure SelectTestsMain
Input: (1) G and G’, including syntax trees; (2) Test vector test(n) for each node n in G and

G’; and (3) Set T of non-obsolete tests
Output: A subset T’ of T

Procedure SelectTestsMain
 Step 1: Set T’ = ∅. Unmark all nodes in G and in its child CFGs
 Step 2: Call procedure SelectTests (G.Start, G’.Start’)
 Step 3: Return T’ as the desired test set

Procedure SelectTests (N, N’)
 Step 1: Mark node N
 Step 2: If N and N’ are not equivalent, T’ = T’ ∪ test(N) and return, otherwise go to the

next step.
 Step 3: Let S be the set of successor nodes of N
 Step 4: Repeat the next step for each n ∈ S.
 4.1 If n is marked then return else repeat the following steps:
 4.1.1 Let l = label(N, n). The value of l could be t, f or ε
 4.1.2 n’ = getNode(l, N’).
 4.1.3 SelectTests(n, n’)
 Step 5: Return from SelectTests

Software Testing and Maintenance 20

Example

Consider the previous example. Suppose that
function g1 is modified as follows:

1. int g1 (int a, b) {
2. int a, b;
3. if (a - 1 == b) Predicate modified
4. return (a*a);
5. else
6. return (b*b);

11

Software Testing and Maintenance 21

Regression Testing

  Introduction

  Test Selection

  Test Minimization

  Test Prioritization

  Summary

Software Testing and Maintenance 22

Motivation

  The adequacy of a test set is usually measured by
the coverage of some testable entities, such as basic
blocks, branches, and du-paths.
  Given a test set T, is it possible to reduce T to T’
such that T’ ⊆ T and T’ still covers all the testable
entities that are covered by T?

12

Software Testing and Maintenance 23

Example (1)

1. main () {
2. int x, y, z;
3. input (x, y);
4. z = f1(x);
5. if (z > 0)
6. z = f2(x);
7. output (z);
8. end
9. }

1. int f1(int x) {
2. int p;
3. if (x > 0)
4. p = f3(x, y);
5. return (p);
6. }

Software Testing and Maintenance 24

Example (2)

Start

1

2

3

End

1,2

3,4,5

6

7

t f

main

Start

1

2

3

End

1,2

3

4

5

t f

f1

Consider the following test set:
t1: main: 1, 2, 3; f1 : 1, 3
t2: main: 1, 3; f1: 1, 3
t3: main: 1, 3; f1: 1, 2, 3

13

Software Testing and Maintenance 25

The Set-Cover Problem

  Let E be a set of entities and TE a set of subsets
of E.

  A set cover is a collection of sets C ⊆ TE such
that the union of all entities of C is E. The set-cover
problem is to find a minimal C.

Software Testing and Maintenance 26

Example

  Consider the previous example:
  E = {main.1, main.2, main.3, f1.1, f1.2, f1.3}
  TE = {{main.1, main.2, main.3, f1.1, f1.3}, {main.1, main.3,

f1.1, f1.2, f1.3}, {main.1, main.3, f1.1, f1.2, f1.3}}

  The solution to the set cover problem is:
  C = {{main.1, main.2, main.3, f1.1, f1.3}, {main.1, main.3,

f1.1, f1.2, f1.3}}

14

Software Testing and Maintenance 27

A Greedy Algorithm

  Find a test t in T that covers the maximum number
of entities in E.

  Add t to the return set, and remove it from T and
the entities it covers from E

  Repeat the same procedure until all entities in E
have been covered.

Software Testing and Maintenance 28

Procedure CMIMX
Input: An n × m matrix C, where each column corresponds to an entity to be covered, and
each row to a distinct test. C(i,j) is 1 if test ti covers entity j.

Output: Minimal cover minCov = {i1, i2, …, ik) such that for each column in C, there is at least
one nonzero entry in at least one row with index in minCov.

Step 1: Set minCov = φ, yetToCover = m.

Step 2: Unmark each of the n tests and m entities.

Step 3: Repeat the following steps while yetToCover > 0

 3.1. Among the unmarked entities (columns) in C find those containing the least
 number of 1s. Let LC be the set of indices of all such columns.

 3.2. Among all the unmarked tests (rows) in C that also cover entities in LC, find
 those that have the max number of nonzero entries that correspond to
 unmarked columns. Let s be any one of those rows.

 3.3. Mark test s and add it to minCov. Mark all entities covered by test s. Reduce

 yetToCover by the number of entities covered by s.

15

Software Testing and Maintenance 29

Example

  Consider the previous example:

1 2 3 4 5 6
t1 1 1 1 0 0 0
t2 1 0 0 1 0 0
t3 0 1 0 0 1 0
t4 0 0 1 0 0 1
t5 0 0 0 0 1 0

Software Testing and Maintenance 30

Regression Testing

  Introduction

  Test Selection

  Test Minimization

  Test Prioritization

  Summary

16

Software Testing and Maintenance 31

Motivation

  In practice, sufficient resources may not be
available to execute all the tests.

  One way to solve this problem is to prioritize tests
and only execute those high-priority tests that are
allowed by the budget.
  Typically, test prioritization is applied to a
reduced test set that are obtained, e.g., by the test
selection and/or minimization process.

Software Testing and Maintenance 32

Residual Coverage

  Residual coverage refers to the number of
elements that remain to be covered w.r.t. a given
coverage criterion.
  One way to prioritize tests is to give higher
priority to tests that lead to a smaller residual
coverage.

17

Software Testing and Maintenance 33

Procedure PrTest
Input: (1) T’: a regression test set to be prioritized; (2) entitiesCov: set of entities

covered by tests in T’; (2) cov: Coverage vector such that for each test t ∈ T’,
cov(t) is the set of entities covered by t.

Output: PrT: A prioritized sequence of tests in T’

Step 1: X’ = T’. Find t ∈ X’ such that |cov(t)| ≥ |cov(u)| for all u ∈ X’.

Step 2: PrT = <t>, X’ = x’ \ {t}, entitiesCov = entitiesCov \ cov(t)

Step 3: Repeat the following steps while X’ ≠ φ and entitiesCov ≠ φ.

 3.1. resCov(t) = |entitiesCov \ (cov(t) ∩ entitiesCov)|

 3.2. Find test t ∈ X’ such that resCov(t) ≤ resCov(u) for all u ∈ X’, u ≠ t.

 3.3. Append t to Prt, X’ = X’ \ {t}, and entitiesCov = entitiesCov \ cov(t)

Step 4: Append to PrT any remaining tests in X’ in an arbitrary order.

Software Testing and Maintenance 34

Example

  Consider a program P consisting of four classes C1,
C2, C3, and C4. Each of these classes has one or
more methods as follows: C1 = {m1, m12, m16}, C2 = {m2,
m3, m4}, C3 = {m5, m6, m10, m11}, and C4 = {m7, m8, m9,
m13, m14, m15}.

Test(t) Methods covered (cov(t)) |cov(t)|

t1 1,2,3,4,5,10,11,12,13,14,16 11
t2 1,2,4,5,12,13,15,16 8
t3 1,2,3,4,5,12,13,14,16 9
t4 1,2,4,5,12,13,14,16 8
t5 1,2,4,5,6,7,8,10,11,12,13,15,16 13

18

Software Testing and Maintenance 35

Regression Testing

  Introduction

  Test Selection

  Test Minimization

  Test Prioritization

  Summary

Software Testing and Maintenance 36

Summary

  Regression testing is about ensuring new changes
do not adversely affect existing functionalities.

  Three techniques can be used to reduce the
number of regression tests: modification-traversing
selection, minimization, and prioritization.
  Modification-traversing selection and minimization
do not reduce coverage, but prioritization does. The
latter is however a practical choice when resources
are limited.

