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History of Extended Static Checking 
  1950  - 1960 

  Focus on Modern Programming Languages (FORTRAN , LISP, COBOL)  

  1967  - 1978 
  Focus on Establishing Fundamental Paradigms (System , OO , Logic ) 

  1980  - 1984 
  Focus on Re-Use, Performance (C++..) 

  1990  - 1997 and …. 
  Internet  Age & Rapid Application Development (Java , PHP, Ruby….) 

  1997 -  Till Date 
  Focus on Security and Reliability Verification to the Languages 
  Birth of Extended Static Checking  
  Pioneering effort in the use of Static Program Analysis & Verification Methods  
  ESC  for Modula in 1995 
  ESC / Java in 1997 from DEC  
  Renaissance of  ESC/ Java 2 in 2002 as an Industrial Strength Tool 
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Classes of Checkers 

 Static Checking 

Ÿ  Type Checking 

Ÿ  Extended Static Checking 

Ÿ  Program Verification 

 Dynamic Checking 

 Coverage vs Effort ? 

Fig. Source: Extended Static Checking: a Ten-Year  Perspective  by K. Rustan M. Leino 
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Theoretical Foundation of  Extended Static Checking 
  Deciding which errors to Check 
Ÿ  Unsoundness – Missing Errors 
Ÿ  Checks 3 Types of Errors 
Ÿ  Runtime Checks (null dereferences, array index bounds errors…) 
Ÿ  Synchronization Errors (race conditions , deadlocks) 
Ÿ  Violation of Program Annotations (meeting invariants, preconditions…) 

  Defining Formal Semantics for Modern Languages 
Ÿ  Guarded Command Languages 

  Using a Theorem Prover 
Ÿ  Should be Automated – Else Learning Curve High 
Ÿ  Produce Counter Examples –Reason for Error 
Ÿ  Should be fast – Checker used many times during Development 

  Producing meaningful Warning Messages 

  Program Annotations  
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User's View 

public class Bag { 

 private /*@non_null*/ int[] a; 
 private int n; 
 //@ invariant 0 <= n && n <= a.length; 

 public Bag(/*@non_null*/ int[] initialElements) { 
  n = initialElements.length; 
  a = new int[n]; 
  System.arraycopy(initialElements, 0, a, 0, n); 
 } 

 ……………. 

 ……………….. 

Bag.java:18:  

Array index possibly too large 
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Tool Architecture 

Translator 

Automatic Theorem Prover 

Post Processor 

Valid 

Resource 
exhausted 
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Tool Architecture Detail 

Automatic Theorem Prover 

Post Processor 
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Tool Architecture, Detail 
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Annotation Language 

Ÿ  Simple 
–  non_null 

Ÿ Method annotations 
–  requires E; 
–  modifies w; 
–  ensures P; 
–  …… 

Ÿ Object invariants 
–  invariant E; 
–  …….. 
–  ………. 
–  ………….. 
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Sugared Commands 

Ÿ  S,T  ::=  assert E 
  |  assume E 
  |  x =  E 
  |  raise 
  |  S ; T 
  |  S ! T 
  |  S [] T 
  |  loop {inv E} S  T end 
  |  call x =  t.m(E) 
  |  … 
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Sugared Commands 
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Primitive Commands 
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Passive Commands 



4/29/10 

8 

University of Texas at Arlington 

Automatic 
theorem prover 

Post processor 

Tr
an

sl
at

or
 

Passive Commands 
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Verification Condition 

Ÿ Universal background predicate (UBP) 

Ÿ  Type-specific background predicate (TSBP) 

Ÿ  Verification  Condition  Generation 
 Uses UBP & TSBP & previous stages 



4/29/10 

9 

University of Texas at Arlington 

(BG_PUSH 
 (AND 
  (<: T_T |T_java.lang.Object|) 
  (EQ T_T (asChild T_T |T_java.lang.Object|)) 
  (DISTINCT arrayType |T_boolean| |T_char| |T_byte| |T_short| |T_int| 
                  |T_long| |T_float| |T_double| |T_.TYPE| 
                  T_T |T_java.lang.Object|))) 
(EXPLIES  
 (LBLNEG |vc.T.abs.2.2| 
  (IMPLIES 
   (AND 
    (EQ |elems@pre| elems) 
    (EQ elems (asElems elems)) 
    (< (eClosedTime elems) alloc) 
    (EQ LS (asLockSet LS)) 
    (EQ |alloc@pre| alloc)) 
   (NOT 
    (AND 
     (EQ |@true| (is |x:2.21| T_int)) 
     (OR 
      (AND 
       (OR 
        (AND 
         (< |x:2.21| 0) 
         (LBLPOS |trace.Then^0,3.15| (EQ |@true| |@true|)) 
         (EQ |x:3.17| (- 0 |x:2.21|)) 

Automatic 
theorem prover 

Post processor 
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Verification Condition 
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Theorem Prover: “Simplify” 
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Counter examples and Warnings 
Ÿ  Counterexample: 

  labels: (|IndexTooBig@26.5| |vc.Bag.add.20.2| |trace.Then^0,21.23|) 
  context: 
    (AND 
      (NEQ |tmp1!a:23.23| null) 
      (NEQ this null) 
      (EQ |alloc@pre| alloc) 
      (EQ |tmp4!n:26.6| 0) 
      … 
      (<= alloc (vAllocTime |tmp3!a:26.4|)) 
    ) 

Ÿ  Bag: add(int) ... 
------------------------------------------------------------------------ 
Bag.java:26: Warning: Array index possibly too large (IndexTooBig) 
    a[n] = x; 
     ^ 
Execution trace information: 
    Executed then branch in "Bag.java", line 21, col 23. 
------------------------------------------------------------------------ 
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Some Errors that ESC / Java 2 discovers 

   Index Negative 

  Index Too Big 

  Null 

  …. 

  ….. 

   Pre Condition 

   Post Condition 

   Invariant 

   Initially 



4/29/10 

11 

University of Texas at Arlington 

Some Runtime Errors Detected by ESC/Java 2   

  Index Negative 
 Issued when an array index < 0 

  Index Too Big 
 Issued when an array index   >= Array Length 

  Null 
 Issued when there is a possibility of  
 NullPointerException 
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 Pre and Post 
          Issued in response to user-written preconditions  

 (requires), post-conditions (ensures….) 

 Invariant 
          Invariant clause generate additional post-conditions 

 for every method. If they do not hold, appropriate 
 warnings are generated 

  Initially 
        Initially clause is a post-condition for every constructor 

Some Annotation Violations  Detected by ESC/Java 2  
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Modular Reasoning 
  ESC/Java2 reasons about every method individually 

 public class ModularReasoning { 
          int[] b; 
          ModularReasoning(){  
          b = new int[20]; } 
          public void m() {  
          b[0] = 2; 
          }} 
Warns that b[0] may be a null dereference here, even 
though you can see that it won’t be. 

University of Texas at Arlington 

D E M O 
( Stack Example ) 
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 ESC / Java2 not Sound and Complete 

  Affects Complexity of Annotation Language 

 Tradeoff to make it Cost effective 

Unsound and Incomplete   (1 / 3)  

  Unsound 

 Misses errors that are actually present in the program 

  Incomplete 

 Warns of Potential Errors when it is impossible for these to occur 
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 Example  1 

int[] array = new int[10]; 

for(int i = 0; i < 20; i++) 

array[i] = i; 

ArrayIndex out of Bound - Error occurs 
but will not be caught by Tool  

Reason : Tool does not consider all 
Possible Iterations 

Example 2 

int i = 32000; 

i= i * i; 

Arithmetic Overflow - Error occurs but 
will not be caught by Tool  

Reason: Assumes that (i) is of 
unlimited magnitude 

Unsound and Incomplete   (2 / 3)  
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Unsound   and    Incomplete   (3 / 3)  

Semantics for String Operations are weak. 
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ESC/Java 2 and Spec#  Systems 

ESC/ Java2  Tool Spec #  Tool 

Programming Language Java C# 

Annotation Language JML Spec # 

Automatic Theorem Prover Simplify Z3 

Verifier ESC/Java2 Boogie 
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  FindBugs  

   Finds Bugs in Java 
   Static Checker  
   Detects Synchronization Problems  
   Plug-ins for Eclipse, NetBeans 

  JLint 

 Static Checker 

 C, C++ , Java 

Competing Technologies & Tools (1/2) 
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Bug Category Examples ESC/ 
Java2 

FindBugs JLint 

General Null dereference * * * 
Concurrency Possible deadlock, race *  * 
Exceptions Possible unexpected exception * 
Array Length may be less than zero  * 
Mathematics Division by zero *  
Conditional, loop Unreachable code  
I/O stream Stream not closed on all paths * 
Unused or duplicate statement Unused local variable  

Competing Technologies & Tools (2/2) 

Source : A  Comparison of Bug Finding Tools for  Java by Nick Rutar, Christian B. Almazan, Jeffrey  S. Foster 

 Bug  Category                                                * Example only 
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Limitations & Future Challenges 
  Limitations 
Ÿ  Iterates through Loops only once 
Ÿ  Limitations on checking Arithmetic Overflow 
Ÿ  Does not check for Non Functional Properties 
Ÿ  Does not check Functional Properties not specified by User 
Ÿ  Feasible only on Small Programs  
Ÿ  Writing Annotations is labor Intensive  

  Future Challenges  
Ÿ  Reduce Annotation Burden 

  Perform Non-Modular Checking 
 Develop Annotation Assistants (Houdini  is for ESC/Java2) 

Ÿ  Teaching JML & ESC/Java2 with Programming Languages 
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How ESC/Java2 is Useful 

  Possible run-time errors can be identified at compile time. 

  Assumptions made by the programmer are made explicit. 

  JML annotations provide documentation. 
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Our Opinion on the Tool 

 Likes 
 Uses JML which is easy to understand 
  Integrated into Eclipse 

 Dislikes 
 Counter example difficult to decode 
 Manuals for Installing & Configuring Tool is not comprehensive 
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Things learnt from the  Tool 

 Thinking in terms of Specifications while programming 

  Improving Quality of Code 

 Thinking from both perspectives 
  Client 
  Supplier 
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Summary 

  Purpose  of  Extended Static Checking  

  ESC/Java2 Tool Architecture 

  Errors detected by ESC/Java2 

  Features of ESC/Java2 
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