
4/29/10

1

University of Texas at Arlington

Melissa J Fernandes

Charan Cherukuri

Srikanth Vadada

CSE 6323 , Spring 2010 , 29th April 2010

ESC /Java 2

Extended Static Checking / Java 2

University of Texas at Arlington

Agenda

  Introduction

  Tool Architecture

  Discovering Errors with ESC/Java 2

  Tool Demo – Stack Example

  ESC/Java 2 Features

  Conclusion

  Question & Answers

4/29/10

2

University of Texas at Arlington

History of Extended Static Checking
  1950 - 1960

  Focus on Modern Programming Languages (FORTRAN , LISP, COBOL)

  1967 - 1978
  Focus on Establishing Fundamental Paradigms (System , OO , Logic)

  1980 - 1984
  Focus on Re-Use, Performance (C++..)

  1990 - 1997 and ….
  Internet Age & Rapid Application Development (Java , PHP, Ruby….)

  1997 - Till Date
  Focus on Security and Reliability Verification to the Languages
  Birth of Extended Static Checking
  Pioneering effort in the use of Static Program Analysis & Verification Methods
  ESC for Modula in 1995
  ESC / Java in 1997 from DEC
  Renaissance of ESC/ Java 2 in 2002 as an Industrial Strength Tool

University of Texas at Arlington

Classes of Checkers

 Static Checking

Ÿ  Type Checking

Ÿ  Extended Static Checking

Ÿ  Program Verification

 Dynamic Checking

 Coverage vs Effort ?

Fig. Source: Extended Static Checking: a Ten-Year Perspective by K. Rustan M. Leino

4/29/10

3

University of Texas at Arlington

Theoretical Foundation of Extended Static Checking
  Deciding which errors to Check
Ÿ  Unsoundness – Missing Errors
Ÿ  Checks 3 Types of Errors
Ÿ  Runtime Checks (null dereferences, array index bounds errors…)
Ÿ  Synchronization Errors (race conditions , deadlocks)
Ÿ  Violation of Program Annotations (meeting invariants, preconditions…)

  Defining Formal Semantics for Modern Languages
Ÿ  Guarded Command Languages

  Using a Theorem Prover
Ÿ  Should be Automated – Else Learning Curve High
Ÿ  Produce Counter Examples –Reason for Error
Ÿ  Should be fast – Checker used many times during Development

  Producing meaningful Warning Messages

  Program Annotations

University of Texas at Arlington

User's View

public class Bag {

 private /*@non_null*/ int[] a;
 private int n;
 //@ invariant 0 <= n && n <= a.length;

 public Bag(/*@non_null*/ int[] initialElements) {
 n = initialElements.length;
 a = new int[n];
 System.arraycopy(initialElements, 0, a, 0, n);
 }

 …………….

 ………………..

Bag.java:18:

Array index possibly too large

4/29/10

4

University of Texas at Arlington

Tool Architecture

Translator

Automatic Theorem Prover

Post Processor

Valid

Resource
exhausted

University of Texas at Arlington

Tool Architecture Detail

Automatic Theorem Prover

Post Processor

Tr
an

sl
at

or

4/29/10

5

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Tool Architecture, Detail

Automatic theorem prover

Post processor

Tr
an

sl
at

or

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Annotation Language

Ÿ  Simple
–  non_null

Ÿ Method annotations
–  requires E;
–  modifies w;
–  ensures P;
–  ……

Ÿ Object invariants
–  invariant E;
–  ……..
–  ……….
–  …………..

4/29/10

6

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Sugared Commands

Ÿ  S,T ::= assert E
 | assume E
 | x = E
 | raise
 | S ; T
 | S ! T
 | S [] T
 | loop {inv E} S  T end
 | call x = t.m(E)
 | …

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Sugared Commands

4/29/10

7

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Primitive Commands

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Passive Commands

4/29/10

8

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Passive Commands

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Verification Condition

Ÿ Universal background predicate (UBP)

Ÿ  Type-specific background predicate (TSBP)

Ÿ  Verification Condition Generation
 Uses UBP & TSBP & previous stages

4/29/10

9

University of Texas at Arlington

(BG_PUSH
 (AND
 (<: T_T |T_java.lang.Object|)
 (EQ T_T (asChild T_T |T_java.lang.Object|))
 (DISTINCT arrayType |T_boolean| |T_char| |T_byte| |T_short| |T_int|
 |T_long| |T_float| |T_double| |T_.TYPE|
 T_T |T_java.lang.Object|)))
(EXPLIES
 (LBLNEG |vc.T.abs.2.2|
 (IMPLIES
 (AND
 (EQ |elems@pre| elems)
 (EQ elems (asElems elems))
 (< (eClosedTime elems) alloc)
 (EQ LS (asLockSet LS))
 (EQ |alloc@pre| alloc))
 (NOT
 (AND
 (EQ |@true| (is |x:2.21| T_int))
 (OR
 (AND
 (OR
 (AND
 (< |x:2.21| 0)
 (LBLPOS |trace.Then^0,3.15| (EQ |@true| |@true|))
 (EQ |x:3.17| (- 0 |x:2.21|))

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Verification Condition

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Theorem Prover: “Simplify”

4/29/10

10

University of Texas at Arlington

Automatic
theorem prover

Post processor

Tr
an

sl
at

or

Counter examples and Warnings
Ÿ  Counterexample:

 labels: (|IndexTooBig@26.5| |vc.Bag.add.20.2| |trace.Then^0,21.23|)
 context:
 (AND
 (NEQ |tmp1!a:23.23| null)
 (NEQ this null)
 (EQ |alloc@pre| alloc)
 (EQ |tmp4!n:26.6| 0)
 …
 (<= alloc (vAllocTime |tmp3!a:26.4|))
)

Ÿ  Bag: add(int) ...
--
Bag.java:26: Warning: Array index possibly too large (IndexTooBig)
 a[n] = x;
 ^
Execution trace information:
 Executed then branch in "Bag.java", line 21, col 23.
--

University of Texas at Arlington

Some Errors that ESC / Java 2 discovers

  Index Negative

  Index Too Big

  Null

  ….

  …..

  Pre Condition

  Post Condition

  Invariant

  Initially

4/29/10

11

University of Texas at Arlington

Some Runtime Errors Detected by ESC/Java 2

  Index Negative
 Issued when an array index < 0

  Index Too Big
 Issued when an array index >= Array Length

  Null
 Issued when there is a possibility of
 NullPointerException

University of Texas at Arlington

 Pre and Post
 Issued in response to user-written preconditions

 (requires), post-conditions (ensures….)

 Invariant
 Invariant clause generate additional post-conditions

 for every method. If they do not hold, appropriate
 warnings are generated

  Initially
 Initially clause is a post-condition for every constructor

Some Annotation Violations Detected by ESC/Java 2

4/29/10

12

University of Texas at Arlington

Modular Reasoning
  ESC/Java2 reasons about every method individually

 public class ModularReasoning {
 int[] b;
 ModularReasoning(){
 b = new int[20]; }
 public void m() {
 b[0] = 2;
 }}
Warns that b[0] may be a null dereference here, even
though you can see that it won’t be.

University of Texas at Arlington

D E M O
(Stack Example)

4/29/10

13

University of Texas at Arlington

 ESC / Java2 not Sound and Complete

  Affects Complexity of Annotation Language

 Tradeoff to make it Cost effective

Unsound and Incomplete (1 / 3)

  Unsound

 Misses errors that are actually present in the program

  Incomplete

 Warns of Potential Errors when it is impossible for these to occur

University of Texas at Arlington

 Example 1

int[] array = new int[10];

for(int i = 0; i < 20; i++)

array[i] = i;

ArrayIndex out of Bound - Error occurs
but will not be caught by Tool

Reason : Tool does not consider all
Possible Iterations

Example 2

int i = 32000;

i= i * i;

Arithmetic Overflow - Error occurs but
will not be caught by Tool

Reason: Assumes that (i) is of
unlimited magnitude

Unsound and Incomplete (2 / 3)

4/29/10

14

University of Texas at Arlington

Unsound and Incomplete (3 / 3)

Semantics for String Operations are weak.

University of Texas at Arlington

ESC/Java 2 and Spec# Systems

ESC/ Java2 Tool Spec # Tool

Programming Language Java C#

Annotation Language JML Spec #

Automatic Theorem Prover Simplify Z3

Verifier ESC/Java2 Boogie

4/29/10

15

University of Texas at Arlington

  FindBugs

  Finds Bugs in Java
  Static Checker
  Detects Synchronization Problems
  Plug-ins for Eclipse, NetBeans

  JLint

 Static Checker

 C, C++ , Java

Competing Technologies & Tools (1/2)

University of Texas at Arlington

Bug Category Examples ESC/
Java2

FindBugs JLint

General Null dereference * * *
Concurrency Possible deadlock, race *  *
Exceptions Possible unexpected exception *
Array Length may be less than zero  *
Mathematics Division by zero * 
Conditional, loop Unreachable code 
I/O stream Stream not closed on all paths *
Unused or duplicate statement Unused local variable 

Competing Technologies & Tools (2/2)

Source : A Comparison of Bug Finding Tools for Java by Nick Rutar, Christian B. Almazan, Jeffrey S. Foster

 Bug Category * Example only

4/29/10

16

University of Texas at Arlington

Limitations & Future Challenges
  Limitations
Ÿ  Iterates through Loops only once
Ÿ  Limitations on checking Arithmetic Overflow
Ÿ  Does not check for Non Functional Properties
Ÿ  Does not check Functional Properties not specified by User
Ÿ  Feasible only on Small Programs
Ÿ  Writing Annotations is labor Intensive

  Future Challenges
Ÿ  Reduce Annotation Burden

  Perform Non-Modular Checking
 Develop Annotation Assistants (Houdini is for ESC/Java2)

Ÿ  Teaching JML & ESC/Java2 with Programming Languages

University of Texas at Arlington

How ESC/Java2 is Useful

  Possible run-time errors can be identified at compile time.

  Assumptions made by the programmer are made explicit.

  JML annotations provide documentation.

4/29/10

17

University of Texas at Arlington

Our Opinion on the Tool

 Likes
 Uses JML which is easy to understand
  Integrated into Eclipse

 Dislikes
 Counter example difficult to decode
 Manuals for Installing & Configuring Tool is not comprehensive

University of Texas at Arlington

Things learnt from the Tool

 Thinking in terms of Specifications while programming

  Improving Quality of Code

 Thinking from both perspectives
  Client
  Supplier

4/29/10

18

University of Texas at Arlington

Summary

  Purpose of Extended Static Checking

  ESC/Java2 Tool Architecture

  Errors detected by ESC/Java2

  Features of ESC/Java2

University of Texas at Arlington

References (1 / 2)
1.  http://secure.ucd.ie/products/opensource/ESCJava2/

2.  http://en.wikipedia.org/wiki/History_of_programming_languages

3.  Extended Static Checking for Java by Cormac Flanagan,K.Rustan M.Leino,Mark
Lillibridge,Greg Nelson,James B.Saxe,Raymie Stata

4.  ESC/Java2:Uniting ESC/Java and JML by David R.Cok,Joseph R.Kiniry

5.  An overview of JML tools and applications by Lilian Burdy, Yoonsik Cheon, David R. Cok,
Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, Erik Poll

6.  Extended Static Checking: a Ten-Year Perspective by K.Rustan M Leino

7.  http://www.cs.ru.nl/~erikpoll/talks/jml_tutorial/3_warnings4up.pdf

8.  Soundness and completeness warnings in ESC/Java2 by Joseph R.Kiniry, Alan E
Morkan,Barry Denby

9.  Improving the Quality of Web-based Enterprise Applications with Extended Static
Checking:A Case Study by Fredric Rioux, Patrice Chalin

10.  ESC/Java2 as a Tool to Ensure Security in the Source Code of Java Applications by Aleksy
Schubert and Jacek Chrzaszcz

4/29/10

19

University of Texas at Arlington

References (2 / 2)
11. A Comparison of Bug Finding Tools for Java by Nick Rutar, Christian B. Almazan, Jeffrey S.

Foster

12. ESC/Java User's Manual by K. Rustan M. Leino, Greg Nelson, and James B. Saxe

13. ESC/Java2 Implementation Notes by David R. Cok,Joseph R. Kiniry,Dermot Cochran

14. http://santos.cis.ksu.edu/771/node/8

University of Texas at Arlington

A

Q
&

