
1

The Critical Section Problem

Concurrent Software Systems 2

Problem Description

Informally, a critical section is a code segment that
accesses shared variables and has to be executed as
an atomic action.
The critical section problem refers to the problem
of how to ensure that at most one process is
executing its critical section at a given time.

Important: Critical sections in different threads are
not necessarily the same code segment!

2

Concurrent Software Systems 3

Problem Description

Formally, the following requirements should be satisfied:

  Mutual exclusion: When a thread is executing in its critical
section, no other threads can be executing in their critical
sections.

  Progress: If no thread is executing in its critical section, and
if there are some threads that wish to enter their critical
sections, then one of these threads will get into the critical
section.

  Bounded waiting: After a thread makes a request to enter its
critical section, there is a bound on the number of times that
other threads are allowed to enter their critical sections,
before the request is granted.

Concurrent Software Systems 4

Problem Description

In discussion of the critical section problem, we often assume
that each thread is executing the following code.

It is also assumed that (1) after a thread enters a critical
section, it will eventually exit the critical section; (2) a thread
may terminate in the non-critical section.

while (true) {
 entry section
 critical section
 exit section
 non-critical section
}

3

Concurrent Software Systems 5

Solution 1

In this solution, lock is a global variable initialized to
false. A thread sets lock to true to indicate that it is
entering the critical section.

T0:
while (true) {
 while (lock) { ; } (1)
 lock = true; (2)
 critical section (3)
 lock = false; (4)
 non-critical section (5)
}

T1:
while (true) {
 while (lock) { ; } (1)
 lock = true; (2)
 critical section (3)
 lock = false; (4)
 non-critical section (5)
}

boolean lock = false;

Concurrent Software Systems 6

Solution 1 is incorrect!

 T0 T1 Comments

context switch

context switch

(1)

(1)
(2)
(3)

(2)
(3)

T0 exits the while loop

T1 exits the while loop
lock is set to true
T1 enters the critical section

lock is set to true
T0 enters the critical section

4

Concurrent Software Systems 7

Solution 2

The threads use a global array intendToEnter to
indicate their intention to enter the critical section.

T0:
while (true) {
 while (intendToEnter[1]) { ; } (1)
 intendToEnter[0] = true; (2)
 critical section (3)
 intendToEnter[0] = false; (4)
 non-critical section (5)
}

T1:
while (true) {
 while (intendToEnter[0]) { ; } (1)
 intendToEnter[1] = true; (2)
 critical section (3)
 intendToEnter[1] = false; (4)
 non-critical section (5)
}

boolean intendToEnter[] = {false, false};

Concurrent Software Systems 8

Solution 2 is incorrect!

 T0 T1 Comments

context switch

context switch

(1)

(1)
(2)
(3)

(2)
(3)

T0 exits the while loop

T1 exits the while loop
intendtoEnter[1] is set to true
T1 enters the critical section

intendToEnter[0] is set to true
T0 enters the critical section

5

Concurrent Software Systems 9

Solution 3

The global variable turn is used to indicate the next
process to enter the critical section. The initial value
of turn can be 0 or 1.

T0:
while (true) {
 while (turn != 0) { ; } (1)
 critical section (2)
 turn = 1; (3)
 non-critical section (4)
}

T1:
while (true) {
 while (turn != 1) { ; } (1)
 critical section (2)
 turn = 0; (3)
 non-critical section (4)
}

int turn = 1;

Concurrent Software Systems 10

Solution 3 is incorrect!

 T0 T1 Comments

context switch

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)
(1)

T1 exits the while loop
T1 enters the critical section
turn is set to 0
T1 terminates in non-critical section

T0 exits the while loop
T0 enters the critical section
turn is set to 1
T0 executes non-critical section
T0 repeats (1) forever

6

Concurrent Software Systems 11

Solution 4

When a thread finds that the other thread also intends to
enter its critical section, it sets its own intendToEnter flag to
false and waits until the other thread exits its critical section.

T0:
while (true) {
 intendToEnter[0] = true; (1)
 while (intendToEnter[1]) { (2)
 intendToEnter[0] = false; (3)
 while (intendToEnter[1]) {;} (4)
 intendToEnter[0] = true; (5)
 }
 critical section (6)
 intendToEnter[0] = false; (7)
 non-critical section (8)

}

boolean intendToEnter[] = {false, false};

T1:
while (true) {
 intendToEnter[1] = true; (1)
 while (intendToEnter[0]) { (2)
 intendToEnter[1] = false; (3)
 while (intendToEnter[0]) {;} (4)
 intendToEnter[1] = true; (5)
 }
 critical section (6)
 intendToEnter[1] = false; (7)
 non-critical section (8)

}

Concurrent Software Systems 12

Solution 4 is incorrect!

 T0 T1 Comments

context switch

(1)
(2)
(3)
(4)

(7)
(8)
(1)
(2)
(6)

intendToEnter[0] is set to true
T0 exits while loop
T0 enters critical section; intendToEnter[0] is true

(1)
(2)
(6) context switch

context switch

context switch

(7)
(8)
(1)
(2)
(6) context switch

context switch

(4)

(4)

repeat infinitely

intendToEnter[1] is set to true
T1 enters while (intendToEnter[0]) loop
intendToEnter[1] is set to false
T1 enters second while(intendToEnter[0]) loop

intendToEnter[0] is set to false
T0 executes the non-critical section
intendToEnter[0] is set to true
T0 exits while loop
T0 enters critical section; intendToEnter[0] is true

intendToEnter[0] is set to false
T0 executes the non-critical section
intendToEnter[0] is set to true
T0 exits while loop
T0 enters critical section; intendToEnter[0] is true

T1 is still waiting for intendToEnter[0] to be false

T1 is still waiting for intendToEnter[0] to be false

7

Concurrent Software Systems 13

How to check a solution

Informally, we should consider three important
cases:

1.  One thread intends to enter its critical section,
and the other thread is not in its critical section or
in its entry section.
2.  One thread intends to enter its critical section,
and the other thread is in its critical section.
3.  Both threads intend to enter their critical
sections.

Concurrent Software Systems 14

Peterson’s algorithm

Peterson’s algorithm is a combination of solutions (3)
and (4).

T0:
while (true) {
 intendToEnter[0] = true; (1)
 turn = 1; (2)
 while (intendToEnter[1]
 && turn == 1) { ; } (3)
 critical section (4)
 intendToEnter[0] = false; (5)
 non-critical section (6)

}

boolean intendToEnter[]= {false, false};
int turn; // no initial value for turn is needed.

T1:
while (true) {
 intendToEnter[1] = true; (1)
 turn = 0; (2)
 while (intendToEnter[0]
 && turn == 0) { ; } (3)
 critical section (4)
 intendToEnter[1] = false; (5)
 non-critical section (6)

}

8

Concurrent Software Systems 15

Peterson’s algorithm

Informally, we consider the following cases:

1.  Assume that one thread, say T0, intends to enter
its critical section and T1 is not in its critical
section or its entry-section. Then
intendToEnter[0] is true and intendToEnter[1] is
false and T0 will enter the critical section
immediately.

Concurrent Software Systems 16

Peterson’s algorithm

2.  Assume that thread T0 intends to enter its
critical section and T1 is in its critical section.
Since turn = 1, T0 loops at statement (3). After
the execution of (5) by T1, if T0 resumes
execution before T1 intends to enter again, T0
enters its critical section immediately; otherwise,
see case (3).

9

Concurrent Software Systems 17

Peterson’s algorithm

3.  Assume both threads intend to enter the critical
section, i.e. both threads have set their
intendToEnter flags to true. The thread that
first executes “turn = ...;” waits until the other
thread executes “turn = ...;” and then enters its
critical section. The other thread will be the next
thread to enter the critical section.

Concurrent Software Systems 18

Peterson’s algorithm
 T0 T1 Comments

context switch

(1)
(2)
(3)

(2)
(3)

intendToEnter[0] is set to true (1) context switch

context switch

context switch

(3)
(4)
(5)
(6)

context switch

(3)
(4)
(5)
(6)
(1)
(2)
(3)

(3)
(4)

intendToEnter[1] is set to true
turn is set to 0
T1 enters the while loop

turn is set to 1
T0 enters the while loop

T1 exits while loop
T1 enters the critical section
intendToEnter[1] is set to false
T1 executes the non-critical section
intendToEnter[1] is set to true
turn is set to 0
T1 enters while loop

T0 exits while loop
T0 enters critical section
intendToEnter[0] is set to false
T0 executes the non-critical section

T1 exits the while loop
T1 enters critical section

10

Concurrent Software Systems 19

Bakery algorithm

Bakery algorithm is used to solve the n-process
critical section problem. The main idea is the
following:
  When a thread wants to enter a critical section, it
gets a ticket. Each ticket has a number.
  Threads are allowed to enter the critical section in
ascending order of their ticket numbers.

Concurrent Software Systems 20

Version 1
int number[n]; // array of ticket numbers, initially all elements of number is 0

while (true) {
 number[i] = max(number) + 1; (1)
 for (int j = 0; j < n; j ++) { (2)
 while (j != i && number[j] != 0 &&
 (number[j], j) < (number[i], i)) { ;} (3)
 }
 critical section (4)
 number[i] = 0; (5)
 non-critical section (6)

}

•  (a, b) < (c, d) if a < c or (a == c and b < d)

•  max(number) is the max value of all the elements in number

11

Concurrent Software Systems 21

Version 1 is incorrect!

 T0 T1 Comments

context switch

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

T1 sets number[1] to 1
T1 starts for loop
T1 exits while and for loop
T1 enters critical section

T0 assigns 1 (not 2) to number[0]
T0 starts for loop
To exits the while and for loops
T0 enters critical section

(1)
T0 executes max(number) + 1, switch
occur before 1 is assigned to number[0]

Concurrent Software Systems 22

Bakery algorithm
int number[n]; // array of ticket numbers, initially all elements of number is 0

boolean choosing[n]; // initially all elements of choosing is false

while (true) {
 choosing[i] = true; (1)
 number[i] = max(number) + 1; (2)
 choosing[i] = false; (3)
 for (int j = 0; j < n; j ++) { (4)
 while (choosing[j]) { ; } (5)
 while (j != i && number[j] != 0 &&
 (number[j], j) < (number[i], i)) { ;} (6)
 }
 critical section (7)
 number[i] = 0; (8)
 non-critical section (9)

}

•  (a, b) < (c, d) if a < c or (a == c and b < d)

•  max(number) is the max value of all the elements in number

12

Concurrent Software Systems 23

Bakery algorithm

Let us consider the following cases:

1.  One thread, say Ti, intends to enter its critical
section and no other thread is in its critical
section or entry section. Then number[i] = 1 and
number[j], where j ≠ i, is 0. Thus, Ti enters its
critical section immediately.

2.  One thread, say Ti, intends to enter its critical
section and Tk, k ≠ i, is in its critical section.
Then at (6), when j = k, number[j] < number[i].
Thus, Ti is delayed at (6) until Tk executes (8).

Concurrent Software Systems 24

Bakery algorithm

3.  Two or more threads intend to enter their
critical sections and no other threads is in its
critical section. Assume that Tk and Tm, where k
< m, intend to enter. Consider the possible
relationships between number[k] and number[m]:
  number[k] < number[m]. Tk enters its critical section

since (number[m], m) > (number[k], k).
  number[k] == number[m]. Tk enters its critical section

since (number[m], m) > (number[k], k).
  number[k] > number[m]. Tm enters its critical section

since (number[k], k) > (number[m], m).

