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Motivation 

Earlier solutions to the critical section problem, like 
Peterson’s algorithm, are quite complex, error prone, 
and inefficient. 
We need to have a better solution so that the 
problem can be solved in a more disciplined way. 
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Semaphore 

A semaphore is a synchronization construct that can 
be used to provide mutual exclusion and conditional 
synchronization. 
From another perspective, a semaphore is a shared 
object that can be manipulated only by two atomic 
operations, P and V. 
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Counting & Binary Semaphores 

There are two types of semaphores: Counting 
Semaphore and Binary Semaphore. 

Counting Semaphore can be used for mutual 
exclusion and conditional synchronization. 

Binary Semaphore is specially designed for mutual 
exclusion. 
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Counting Semaphore 

A counting semaphore can be considered as a pool of 
permits.  

A thread uses P operation to request a permit. If 
the pool is empty, the thread waits until a permit 
becomes available. 
A thread uses V operation to return a permit to the 
pool. 
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An OO Definition 

A counting semaphore can be defined in an object-
oriented manner as shown below: 

class CountingSemaphore { 
 private int permits; 
 public CoutingSemaphore (int initialPermits) { permits = initialPermits; } 
 public void P() { ... } 
 public void V() { ... } 

} 
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An Implementation Sketch 

Here is a sketch of one possible implementation of 
methods P() and V(): 

public void P() { 
 permits = permits – 1; 
 if (permits < 0) { 
  wait on a queue of blocked threads; 
 } 

} 
public void V() { 

 ++ permits;  
 if (permits <= 0) { 
  notify one waiting thread; 
 } 

} 
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Invariant 

For a counting semaphore s, at any time, the 
following condition holds: 

(the initial number of permits) + (the number of completed s.V operations) 
≥ (the number of completed s.P operations. 
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Binary Semaphore 

A binary semaphore must be initialized with 1 or 0, 
and the completion of P and V operations must 
alternate. 
If the semaphore is initialized with 1, then the first 
completed operation must be P. If the semaphore is 
initialized with 0, then the first completed operation 
must be V. 

Both P and V operations can be blocked, if they are 
attempted in a consecutive manner. 
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Counting vs. Binary Semaphore 

Counting Semaphore 

•  Can take any initial value 

•  V operation never blocks 

•  Completed P and V operations 
do not have to alternate 

•  V could always be the first 
completed operation 

Binary Semaphore 

•  Can only take 0 or 1 

•  Both P and V operation may 
block 

•  Completed P and V operations 
must alternate 

•  If the initial value is 0, the 
first completed operation 
must be V; if the initial value 
is 1, the first completed 
operation must be P. 
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Simulating Counting Semaphores 
public final class CountingSemaphore { 

 private int permits = 0; 
 BinarySemaphore mutex (1); 
 BinarySemaphore delayQ (0); 

 public CoutingSemaphore (int initialPermits) { 
  permits = initialPermits; 
 } 
 public void P () { 
  mutex.P ();  (1) 
  -- permits;  (2) 
  if (permits < 0) {  (3) 
   mutex.V ();  (4) 
   delayQ.P ();  (5) 
  } 
  else 
   mutex.V ();  (6) 
 } 
 public void V () { 
  mutex.P ();  (7) 
  ++ permits;  (8) 
  if (permits <= 0) {  (9) 
   delayQ.V ();  (10) 
  }   
  mutex.V ();  (11) 
 } 

} 
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A scenario 
 T1  T2  T3  T4 
(1) 
(2) 
(3) 
(4) 

(1) 
(2) 
(3) 
(4) 

(7) 
(8) 
(9) 
(10) 

(7) 
(8) 
(9) 

*(10) 

(5) 
*(10) 

(5) 
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Lock 

Lock is another synchronization construct that can 
be used to solve the critical section problem. 

A lock defines two types of operations: lock and 
unlock. 
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Lock Ownership 

A lock can be owned by at most one thread at any 
given time.  

A thread that calls lock becomes the owner of a lock 
if the lock is not owned by any other thread; 
otherwise, the thread is blocked. 
The owner of a lock can release the ownership by 
calling unlock.   
Important: The owner of a lock is not blocked if it 
calls lock again. However, the owner must call unlock 
the same number of times to release the ownership. 
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Lock vs. Binary Semaphore 

For a binary semaphore, consecutive P operations will 
be blocked. But a thread that owns a lock can invoke 
lock operations again without being blocked. 
The owner for calls to lock and unlock must be the 
same thread. But calls to P and V can be made by 
different threads. 
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Lock vs. Binary Semaphore 

Lock l = new Lock (); 
BinarySemaphore s = new BinarySemaphore (1); 

T1: 

l.lock(); 
l.lock(); 
... 

T1: 

s.P(); 
s.P(); 
... 

T1: 

l.lock(); 

T2: 

l.unlock(); 

T1: 

s.P(); 

T2: 

s.V(); 
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synchronized method 

public synchronized void foo () { 
 this.lock (); 
 ... 
 bar (); 
 ... 
 this.unlock (); 

} 

public synchronized void bar () { 
 this.lock (); 
 ... 
 ... 
 this.unlock (); 

} 

public synchronized void foo () { 
 this.P (); 
 ... 
 bar (); 
 ... 
 this.V (); 

} 

public synchronized void bar () { 
 this.P (); 
 ... 
 ... 
 this.V (); 

} 

Each object has a lock. Each object has a BinarySemaphore. 
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Binary Semaphore vs. Lock 

Binary Semaphore 

•  Has no concept of ownership 

•  Any thread can invoke P or V 
operations 

•  Consecutive P (or V) 
operations will be blocked 

•  Need to specify an initial 
value 

Lock 

•  A lock can be owned by at 
most one thread at any given 
time 

•  Only the owner can invoke 
unlock operations 

•  The owner can invoke lock (or 
unlock) operations in a row. 

•  Does not have to be 
initialized 
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  Introduction 
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Implementation 1 
public void P() { 

 while (permits == 0) { 
  sleep (interval);  
 } 
 permits = permits – 1; 

} 
public void V() { 

 permits = permits + 1;  
} 
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Implementation 2 
public void P() { 

 permits = permits – 1; 
 if (permits < 0) { 
  wait on a queue of blocked threads; 
 } 

} 
public void V() { 

 permits = permits + 1;  
 if (permits <= 0) { 
  notify one waiting thread; 
 } 

} 
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Implementation 3 
public void P() { 

 if (permits == 0) { 
  wait on a queue of blocked threads; 
 } 
 permits = 0; 
 if (queue of threads blocked in V() is not empty) { 
  awaken one waiting thread in V(); 
 } 

} 

public void V() { 
 if (permits == 1) { 
  wait on a queue of blocked threads; 
 } 
 permits = 1;  
 if (queue of threads blocked in P() is not empty) { 
  awaken one waiting thread in P(); 
 } 

} 



12 

Advanced Topics in Software Engineering  23 

Mutual exclusion for permits 
public void P() { 

 entry-section; 
 permits = permits – 1; 
 if (permits < 0) { 
  exit-section; 
  wait on a queue of blocked threads; 
  entry-section; 
 } 
 exit-section; 

} 
public void V() { 

 entry-section; 
 permits = permits + 1;  
 if (permits <= 0) { 
  notify one waiting thread; 
 } 
 exit-section; 

} 
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VP Operation 

Let s and t be two semaphores.  

An execution of t.VP(s) is equivalent to s.V(); t.P(); 
except that during the execution of t.VP(s), no 
intervening P(), V() or VP() operations are allowed to 
be completed on s and t. 
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VP Operation (Cont’d) 

Thread 1       Thread 2 
s.V()              t.P() 
t.P() 

Thread 1       Thread 2 
t.VP(s)              t.P() 

Consider the following two program fragments: 
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Semaphore 

  Introduction 
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  Semaphore in Java 
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Abstract Definition 

Java does not provide any semaphore classes. We can 
however simulate semaphores in Java. 

public abstract class Semaphore { 
 protected int permits; 
 protected abstract void P(); 
 protected abstract void V(); 
 protected Semaphore (int initialPermits) { permits = initialPermits; } 

} 
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CountingSemaphore 
public final class CountingSemaphore extends Semaphore { 

 public CoutingSemaphore (int initialPermits) { 
  super(initialPermits;) 
 } 
 synchronized public void P () { 
  permits --; 
  if (permits < 0) { 
   try { wait (); } catch (InterruptedException ex) {}; 
  } 
 } 
 synchronized public void V () { 
  ++ permits; 
  if (permits <= 0) { 
   notify (); 
  } 
 } 

} 
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BinarySemaphore 
public final class BinarySemaphore extends Semaphore { 

 public BinarySemaphore (int initialPermits) { 
  super(initialPermits); 
  if (initialPermits != 0 || initialPermits != 1) { 
   throw new IllegalArgumentException(“initial value must be 0 or 1.”); 
  } 
 } 
 synchronized public void P () { 
  while (permits == 0) { 
   try { wait (); } catch (InterruptedException ex) {}; 
  } 
  permits = 0; 
  notifyAll (); 
 } 
 synchronized public void V () { 
  while (permits == 1) { 
   try { wait (); } catch (InterruptedException ex) {}; 
  } 
  permits = 1; 
  notifyAll (); 
 } 

} 
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BinarySemaphore (cont’d)  

If we replace “while” … “notifyAll” with “if” … 
“notify”, does it still implement BinarySemaphore 
correctly? 
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MutexLock 
public final class MutexLock { 

 private Thread owner = null; 
 private int waiting = 0; 
 public int count = 0; 
 public boolean free = true; 

 public synchronized void lock () { 
  if (free) { 
   count = 1; free = false; owner = Thread.currentThread (); 
  } 
  else if (owner == Thread.currentThread()) { ++ count;  } 
  else { 
   ++ waiting; 
   try { wait(); } catch (InterruptedException ex) {} 

                   free = false; 
   count = 1; owner = Thread.currentThread () 
  } 
 } 

 public synchronized void unlock () { 
  if (owner != null) { 
   if(owner == Thread.currentThread ()) { 
    -- count; 
    if(count == 0) { 
     owner = null; 
     if (waiting > 0) { 
      -- waiting; 

                                   free = true; 
      notify(); 
     } 
     else { free = true; return; } 
    } 
    else return; 
   } 
  } 
  throw new OwnerException (); 
 } 

} 
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Semaphore 

  Introduction 

  Semaphore Implementation 

  Semaphore in Java 

  Semaphore-based Solutions 
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The CS Problem 

The following simple solution applies to the general 
n-process CS problem. 

BinarySemaphore mutex = new BinarySemaphore (1); 
while (true) { 
     mutex.P(); 
     critical section 
     mutex.V(); 
     non-critical section 
} 
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Resource Allocation (1) 

Consider there are three threads that contend for 
two resources: 

CountingSemaphore resources = new CoutingSemaphore (2); 

Thread 1  Thread 2  Thread 3 
resources.P ();  resources.P ()  resources.P () 
/* use the resource */  /* use the resource */  /*use the resource*/ 
resources.V ();  resources.V ()  resources.V () 
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Resource Allocation (2) 

Many problems require bookkeeping to be done 
outside of P and V methods. 
int count = 2; 
int waiting = 0; 
CountingSemaphore mutex = new CountingSemaphore (1); 
CountingSemaphore resAvail = new CoutingSemaphore (0); 

/* before using a resource */ 
mutex.P (); 
if (count > 0) { 

 count --; 
 mutex.V (); 

} 
else { 

 waiting ++; 
 mutex.V (); 
 resAvail.P (); 

} 

/* after using a resource */ 
mutex.P (); 
if (waiting > 0) { 

 -- waiting; 
 resAvail.V (); 

} 
else { 

 count ++; 
} 
mutex.V (); 
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Semaphore Patterns 

  Mutex: A binary semaphore or a counting 
semaphore initialized as 1. 

  Enter-and-Test: A thread needs to enter a critical 
section before testing a condition that involves 
shared variables. 
  Exit-before-Wait: A thread inside a critical 
section needs to release its mutual exclusion before 
it waits on a condition. 

  Condition queue: A semaphore can be used as a 
queue of blocked threads that are waiting for a 
condition to become true. 
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The Bounded Buffer Problem 

There is a single producer and a single consumer; and 
there is a n-slot communication buffer. 

The producer deposits items into the buffer; the 
consumer fetches items from the buffer. 

A solution to this problem should not overwrite any 
item and/or fetch any item more than once. 

In addition, the solution should allow maximum 
concurrency. 
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Solution 1 
Item buf [] = new Item [n]; 
CountingSemaphore full = new CoutingSemaphore (0); 
CountingSemaphore empty = new CountingSemaphore (n); 

Producer 
{ 

 int in = 0; 
 Item item; 
 ... 
 empty.P ();  (1) 
 buf[in] = item;  (2) 
 in = (in + 1) % n;  (3) 
 full.V ();  (4) 
 ... 

} 

Consumer  
{ 

 int out = 0; 
 Item item; 
 ... 
 full.P ();  (5) 
 item = buf[out];  (6) 
 out = (out + 1) % n;  (7) 
 empty.V ();  (8) 
 ... 

} 
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The Bounded Buffer Problem (Cont’d) 

Does solution 1 work if we have multiple producers 
and consumers? 
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Solution 2 
Item buf [] = new Item [n]; 
CountingSemaphore full = new CoutingSemaphore (0); 
CountingSemaphore empty = new CountingSemaphore (n); 
BinarySemaphore pMutex = new BinarySemaphore (1); 
BinarySemaphore cMutex = new BinarySemaphore (1); 

Producer 
{ 

  int in = 0; 
  Item item; 
  ... 
  empty.P(); 
  pMutex.P(); 
  buf[in] = item; 
  in = (in + 1) % n; 
  pMutex.V() 
  full.V(); 
  ... 

} 

Consumer  
{ 

  int out = 0; 
  Item item; 
  ... 
  full.P(); 
  cMutex.P(); 
  item = buf[out]; 
  out = (out + 1) % n; 
  cMutex.V(); 
  full.V(); 
  ... 

} 
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Dining Philosophers 

Requirements: 

•  Absence of deadlock 

•  Absence of starvation 

•  Maximal Parallelism 

chopsticks[1] 

philosophers[1] chopsticks[0] 

chopsticks[2] 

chopsticks[3] 

chopsticks[4] 

philosophers[0] 

philosophers[4] 

philosophers[2] 

philosophers[3] 

rice 
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Solution 1 
BinarySemaphore chopsticks = new BinarySemaphore [n]; 
// initialization 
for (int j = 0; j < n; j ++) { 

 chopsticks[j] = new BinarySemaphore (1); 
} 

philosopher i 

while (true) {    
 /* think */ 
 chopsticks[i].P();   (1) 
 chopsticks[(i + 1) % n].P();  (2) 
 /* eat */ 
 chopsticks[i].V();   (3) 
 chopsticks[(i + 1) % n].V();  (4)   

} 
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Solution 2 

This solution is the same as solution 1 except that 
only (n – 1) philosophers are allowed to sit at a table 
that has n seats. 
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Solution 3 

This solution is the same as solution 1 except that 
one philosopher is designated as the “odd” 
philosopher and this odd philosopher picks up her 
right fork, instead of her left fork, first. 
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Solution 4 
const int thinking = 0; const int hungry = 1; const int eating = 2; 
BinarySemaphore mutex(1); 
int state[] = new int [n]; 
BinarySemaphore self[] = new BinarySemaphore [n ]; 
for (int j = 0; j < n; j ++) { 

 state[j] = thinking; self[j] = new BinarySemaphore (0); 
} 

philosopher i  

while (true) { 
 /* think */ 
 mutex.P(); 
 state[i] = hungry; 
 test(i); 
 mutex.V(); 
 self[i].P(); 
 /* eat */ 
 mutex.P(); 
 state[i] = thinking; 
 test((i – 1) % n); 
 test((i + 1) % n); 
 mutex.V();   
 } 

} 

void test (int k) { 
 if ((state[k] = hungry) && (state[(k - 1) % n] != eating)  
  && (state[(k + 1) % n] != eating)) { 
  state[k] = eating; 
  self[k].V(); 
 } 

} 
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Readers/Writers Problem 

Readers may access shared data concurrently, but a 
writer always has exclusive access. 

What’s the difference between readers/writers 
problem and producers/consumers problem? 
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Access Strategies 

In general, there are three categories of access 
strategies: 

  R = W: Readers and writers have equal priority. 

  R > W: Readers generally have a higher priority 
than writers. 

  R < W: Readers generally have a lower priority than 
writers 
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Access Strategies (cont’d)  

  R = W.1: One reader or one writer with equal priority. 

  R = W.2: Many readers or one writer with equal priority. 

  R > W.1: Many readers or one writer with readers having a higher 
priority. 

  R > W.2: Same as R > W.1 except that when a reader arrives, if no 
other reader is reading or waiting, it waits until all writers that 
arrived earlier have finished. 

  R < W.1: Many readers or one writer with writers having a higher 
priority. 

  R < W.2: Same as R < W.1 except that when a writer arrives, if no 
other writer is waiting or writing, it waits until all readers that arrived 
earlier have finished. 



25 

Advanced Topics in Software Engineering  49 

R = W vs. R > W vs. R < W 

r1 w1 r2 w2 

Consider the following request queue. Identify the order in 
which the requests will be served according to different access 
strategies. 
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R > W.1 vs. R > W.2 

Writer 1:  

Writer 2:  

Writer 3:  

Reader 1:  

req w1 start w1 end w1 

req w2 

req w3 

req r1 
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R < W.1 vs. R < W.2 

Writer 1:  

Reader 1:  

Reader 2:  

Writer 2:  

req w1 start w1 end w1 

req r1 

req r2 

req w2 
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R > W.1 
int activeReaders = 0, activeWriters = 0, waitingWriters = 0, waitingReaders = 0; 
BinarySemaphore mutex; 
CountingSemaphore readers_que(0), writer_que(0); 

read () { 
 mutex.P ();   (1) 
 if (activeWriters > 0) {   (2) 
  waitingReaders ++;   (3) 
  readers_que.VP(mutex);   (4) 
 } 
 activeReaders ++;   (5) 
 if (waitingReaders > 0) {   (6) 
  waitingReaders --;   (7) 
  readers_que.V();   (8) 
 } 
 else { 
  mutex.V ();   (9) 
 } 
 /* read shared data */ 
 mutex.P ();   (10) 
 activeReaders --;   (11) 
 if (activeReaders == 0  
  && waitingWriters > 0) {   (12) 
  waitingWriters --;   (13) 
  writers_que.V ();   (14) 
 } 
 else { 
  mutex.V ();   (15) 
 } 

} 

write () { 
 mutex.P (); 
 if (activeReaders > 0 || activeWriters > 0) { 
  waitingWriters ++; 
  writers_que.VP(mutex); 
 } 
 activeWriters ++; 
 mutex.V (); 
 /* write shared data */ 
 mutex.P (); 
 activeWriters --; 
 if (waitingReaders > 0) { 
  waitingReaders --; 
  readers_que.V (); 
 } 
 else if (waitingWriters > 0) { 
  waitingWriters --; 
  writers_que.V(); 
 } 
 else { 
  mutex.V(); 
 } 

} 
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R > W.2 
int activeReaders = 0; 
MutexLock mutex; 
BinarySemaphore writers_r_que(1); 

read () { 
 mutex.lock(); 
 ++ activeReaders; 
 if (activeReaders == 1) { 
  writers_r_que.P(); 
 } 
 mutex.unlock (); 

 /* read shared data */ 

 mutex.lock (); 
 -- activeReaders; 
 if (activeReaders == 0) { 
  writers_r_que.V (); 
 } 
 mutex.unlock (); 

} 

write () { 
 writers_r_que.P(); 

 /* write shared data */ 

 writers_r_que.V(); 
} 
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R < W.2 
int activeReaders = 0; 
int waitingOrWritingWriters = 0; 
MutexLock mutex_r, mutex_w; 
BinarySemaphore writers_que(1), readers_w_que(1); 

read () { 
 readers_w_que.P(); 
 mutex_r.lock (); 
 ++ activeReaders; 
 if (activeReaders == 1) { 
  writers_que.P(); 
 } 
 mutex_r.unlock (); 
 readers_w_que.V(); 

 /* read shared data */ 

 mutex_r.lock (); 
 -- activeReaders; 
 if (activeReaders == 0) { 
  writers_que.V (); 
 mutex_r.unlock (); 

} 

write () { 
 mutex_w.lock (); 
 ++ waitingOrWritingWriters; 
 if (waitingOrWritingWriters == 1) { 
  readers_w_que.P (); 
 } 
 mutex_w.unlock (); 
 writers_que.P(); 

 /* write shared data */ 

 writers_que.V(); 
 mutex_w.lock(); 
 -- waitingOrWritingWriters; 
 if (waitingOrWritingWriters == 0) { 
  readers_w_que.V(); 
 } 
 mutex_w.unlock (); 

} 


