
1

Advanced Topics in Software Engineering 1

Semaphore and Locks

  Introduction

  Semaphore Implementation

  Semaphore and Locks in Java

  Semaphore-based Solutions

Advanced Topics in Software Engineering 2

Motivation

Earlier solutions to the critical section problem, like
Peterson’s algorithm, are quite complex, error prone,
and inefficient.
We need to have a better solution so that the
problem can be solved in a more disciplined way.

2

Advanced Topics in Software Engineering 3

Semaphore

A semaphore is a synchronization construct that can
be used to provide mutual exclusion and conditional
synchronization.
From another perspective, a semaphore is a shared
object that can be manipulated only by two atomic
operations, P and V.

Advanced Topics in Software Engineering 4

Counting & Binary Semaphores

There are two types of semaphores: Counting
Semaphore and Binary Semaphore.

Counting Semaphore can be used for mutual
exclusion and conditional synchronization.

Binary Semaphore is specially designed for mutual
exclusion.

3

Advanced Topics in Software Engineering 5

Counting Semaphore

A counting semaphore can be considered as a pool of
permits.

A thread uses P operation to request a permit. If
the pool is empty, the thread waits until a permit
becomes available.
A thread uses V operation to return a permit to the
pool.

Advanced Topics in Software Engineering 6

An OO Definition

A counting semaphore can be defined in an object-
oriented manner as shown below:

class CountingSemaphore {
 private int permits;
 public CoutingSemaphore (int initialPermits) { permits = initialPermits; }
 public void P() { ... }
 public void V() { ... }

}

4

Advanced Topics in Software Engineering 7

An Implementation Sketch

Here is a sketch of one possible implementation of
methods P() and V():

public void P() {
 permits = permits – 1;
 if (permits < 0) {
 wait on a queue of blocked threads;
 }

}
public void V() {

 ++ permits;
 if (permits <= 0) {
 notify one waiting thread;
 }

}

Advanced Topics in Software Engineering 8

Invariant

For a counting semaphore s, at any time, the
following condition holds:

(the initial number of permits) + (the number of completed s.V operations)
≥ (the number of completed s.P operations.

5

Advanced Topics in Software Engineering 9

Binary Semaphore

A binary semaphore must be initialized with 1 or 0,
and the completion of P and V operations must
alternate.
If the semaphore is initialized with 1, then the first
completed operation must be P. If the semaphore is
initialized with 0, then the first completed operation
must be V.

Both P and V operations can be blocked, if they are
attempted in a consecutive manner.

Advanced Topics in Software Engineering 10

Counting vs. Binary Semaphore

Counting Semaphore

•  Can take any initial value

•  V operation never blocks

•  Completed P and V operations
do not have to alternate

•  V could always be the first
completed operation

Binary Semaphore

•  Can only take 0 or 1

•  Both P and V operation may
block

•  Completed P and V operations
must alternate

•  If the initial value is 0, the
first completed operation
must be V; if the initial value
is 1, the first completed
operation must be P.

6

Advanced Topics in Software Engineering 11

Simulating Counting Semaphores
public final class CountingSemaphore {

 private int permits = 0;
 BinarySemaphore mutex (1);
 BinarySemaphore delayQ (0);

 public CoutingSemaphore (int initialPermits) {
 permits = initialPermits;
 }
 public void P () {
 mutex.P (); (1)
 -- permits; (2)
 if (permits < 0) { (3)
 mutex.V (); (4)
 delayQ.P (); (5)
 }
 else
 mutex.V (); (6)
 }
 public void V () {
 mutex.P (); (7)
 ++ permits; (8)
 if (permits <= 0) { (9)
 delayQ.V (); (10)
 }
 mutex.V (); (11)
 }

}

Advanced Topics in Software Engineering 12

A scenario
 T1 T2 T3 T4
(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

(7)
(8)
(9)
(10)

(7)
(8)
(9)

*(10)

(5)
*(10)

(5)

7

Advanced Topics in Software Engineering 13

Lock

Lock is another synchronization construct that can
be used to solve the critical section problem.

A lock defines two types of operations: lock and
unlock.

Advanced Topics in Software Engineering 14

Lock Ownership

A lock can be owned by at most one thread at any
given time.

A thread that calls lock becomes the owner of a lock
if the lock is not owned by any other thread;
otherwise, the thread is blocked.
The owner of a lock can release the ownership by
calling unlock.
Important: The owner of a lock is not blocked if it
calls lock again. However, the owner must call unlock
the same number of times to release the ownership.

8

Advanced Topics in Software Engineering 15

Lock vs. Binary Semaphore

For a binary semaphore, consecutive P operations will
be blocked. But a thread that owns a lock can invoke
lock operations again without being blocked.
The owner for calls to lock and unlock must be the
same thread. But calls to P and V can be made by
different threads.

Advanced Topics in Software Engineering 16

Lock vs. Binary Semaphore

Lock l = new Lock ();
BinarySemaphore s = new BinarySemaphore (1);

T1:

l.lock();
l.lock();
...

T1:

s.P();
s.P();
...

T1:

l.lock();

T2:

l.unlock();

T1:

s.P();

T2:

s.V();

9

Advanced Topics in Software Engineering 17

synchronized method

public synchronized void foo () {
 this.lock ();
 ...
 bar ();
 ...
 this.unlock ();

}

public synchronized void bar () {
 this.lock ();
 ...
 ...
 this.unlock ();

}

public synchronized void foo () {
 this.P ();
 ...
 bar ();
 ...
 this.V ();

}

public synchronized void bar () {
 this.P ();
 ...
 ...
 this.V ();

}

Each object has a lock. Each object has a BinarySemaphore.

Advanced Topics in Software Engineering 18

Binary Semaphore vs. Lock

Binary Semaphore

•  Has no concept of ownership

•  Any thread can invoke P or V
operations

•  Consecutive P (or V)
operations will be blocked

•  Need to specify an initial
value

Lock

•  A lock can be owned by at
most one thread at any given
time

•  Only the owner can invoke
unlock operations

•  The owner can invoke lock (or
unlock) operations in a row.

•  Does not have to be
initialized

10

Advanced Topics in Software Engineering 19

Semaphore

  Introduction

  Semaphore Implementation

  Semaphore in Java

  Semaphore-based Solutions

Advanced Topics in Software Engineering 20

Implementation 1
public void P() {

 while (permits == 0) {
 sleep (interval);
 }
 permits = permits – 1;

}
public void V() {

 permits = permits + 1;
}

11

Advanced Topics in Software Engineering 21

Implementation 2
public void P() {

 permits = permits – 1;
 if (permits < 0) {
 wait on a queue of blocked threads;
 }

}
public void V() {

 permits = permits + 1;
 if (permits <= 0) {
 notify one waiting thread;
 }

}

Advanced Topics in Software Engineering 22

Implementation 3
public void P() {

 if (permits == 0) {
 wait on a queue of blocked threads;
 }
 permits = 0;
 if (queue of threads blocked in V() is not empty) {
 awaken one waiting thread in V();
 }

}

public void V() {
 if (permits == 1) {
 wait on a queue of blocked threads;
 }
 permits = 1;
 if (queue of threads blocked in P() is not empty) {
 awaken one waiting thread in P();
 }

}

12

Advanced Topics in Software Engineering 23

Mutual exclusion for permits
public void P() {

 entry-section;
 permits = permits – 1;
 if (permits < 0) {
 exit-section;
 wait on a queue of blocked threads;
 entry-section;
 }
 exit-section;

}
public void V() {

 entry-section;
 permits = permits + 1;
 if (permits <= 0) {
 notify one waiting thread;
 }
 exit-section;

}

Advanced Topics in Software Engineering 24

VP Operation

Let s and t be two semaphores.

An execution of t.VP(s) is equivalent to s.V(); t.P();
except that during the execution of t.VP(s), no
intervening P(), V() or VP() operations are allowed to
be completed on s and t.

13

Advanced Topics in Software Engineering 25

VP Operation (Cont’d)

Thread 1 Thread 2
s.V() t.P()
t.P()

Thread 1 Thread 2
t.VP(s) t.P()

Consider the following two program fragments:

Advanced Topics in Software Engineering 26

Semaphore

  Introduction

  Semaphore Implementation

  Semaphore in Java

  Semaphore-based Solutions

14

Advanced Topics in Software Engineering 27

Abstract Definition

Java does not provide any semaphore classes. We can
however simulate semaphores in Java.

public abstract class Semaphore {
 protected int permits;
 protected abstract void P();
 protected abstract void V();
 protected Semaphore (int initialPermits) { permits = initialPermits; }

}

Advanced Topics in Software Engineering 28

CountingSemaphore
public final class CountingSemaphore extends Semaphore {

 public CoutingSemaphore (int initialPermits) {
 super(initialPermits;)
 }
 synchronized public void P () {
 permits --;
 if (permits < 0) {
 try { wait (); } catch (InterruptedException ex) {};
 }
 }
 synchronized public void V () {
 ++ permits;
 if (permits <= 0) {
 notify ();
 }
 }

}

15

Advanced Topics in Software Engineering 29

BinarySemaphore
public final class BinarySemaphore extends Semaphore {

 public BinarySemaphore (int initialPermits) {
 super(initialPermits);
 if (initialPermits != 0 || initialPermits != 1) {
 throw new IllegalArgumentException(“initial value must be 0 or 1.”);
 }
 }
 synchronized public void P () {
 while (permits == 0) {
 try { wait (); } catch (InterruptedException ex) {};
 }
 permits = 0;
 notifyAll ();
 }
 synchronized public void V () {
 while (permits == 1) {
 try { wait (); } catch (InterruptedException ex) {};
 }
 permits = 1;
 notifyAll ();
 }

}

Advanced Topics in Software Engineering 30

BinarySemaphore (cont’d)

If we replace “while” … “notifyAll” with “if” …
“notify”, does it still implement BinarySemaphore
correctly?

16

Advanced Topics in Software Engineering 31

MutexLock
public final class MutexLock {

 private Thread owner = null;
 private int waiting = 0;
 public int count = 0;
 public boolean free = true;

 public synchronized void lock () {
 if (free) {
 count = 1; free = false; owner = Thread.currentThread ();
 }
 else if (owner == Thread.currentThread()) { ++ count; }
 else {
 ++ waiting;
 try { wait(); } catch (InterruptedException ex) {}

 free = false;
 count = 1; owner = Thread.currentThread ()
 }
 }

 public synchronized void unlock () {
 if (owner != null) {
 if(owner == Thread.currentThread ()) {
 -- count;
 if(count == 0) {
 owner = null;
 if (waiting > 0) {
 -- waiting;

 free = true;
 notify();
 }
 else { free = true; return; }
 }
 else return;
 }
 }
 throw new OwnerException ();
 }

}

Advanced Topics in Software Engineering 32

Semaphore

  Introduction

  Semaphore Implementation

  Semaphore in Java

  Semaphore-based Solutions

17

Advanced Topics in Software Engineering 33

The CS Problem

The following simple solution applies to the general
n-process CS problem.

BinarySemaphore mutex = new BinarySemaphore (1);
while (true) {
 mutex.P();
 critical section
 mutex.V();
 non-critical section
}

Advanced Topics in Software Engineering 34

Resource Allocation (1)

Consider there are three threads that contend for
two resources:

CountingSemaphore resources = new CoutingSemaphore (2);

Thread 1 Thread 2 Thread 3
resources.P (); resources.P () resources.P ()
/* use the resource */ /* use the resource */ /*use the resource*/
resources.V (); resources.V () resources.V ()

18

Advanced Topics in Software Engineering 35

Resource Allocation (2)

Many problems require bookkeeping to be done
outside of P and V methods.
int count = 2;
int waiting = 0;
CountingSemaphore mutex = new CountingSemaphore (1);
CountingSemaphore resAvail = new CoutingSemaphore (0);

/* before using a resource */
mutex.P ();
if (count > 0) {

 count --;
 mutex.V ();

}
else {

 waiting ++;
 mutex.V ();
 resAvail.P ();

}

/* after using a resource */
mutex.P ();
if (waiting > 0) {

 -- waiting;
 resAvail.V ();

}
else {

 count ++;
}
mutex.V ();

Advanced Topics in Software Engineering 36

Semaphore Patterns

  Mutex: A binary semaphore or a counting
semaphore initialized as 1.

  Enter-and-Test: A thread needs to enter a critical
section before testing a condition that involves
shared variables.
  Exit-before-Wait: A thread inside a critical
section needs to release its mutual exclusion before
it waits on a condition.

  Condition queue: A semaphore can be used as a
queue of blocked threads that are waiting for a
condition to become true.

19

Advanced Topics in Software Engineering 37

The Bounded Buffer Problem

There is a single producer and a single consumer; and
there is a n-slot communication buffer.

The producer deposits items into the buffer; the
consumer fetches items from the buffer.

A solution to this problem should not overwrite any
item and/or fetch any item more than once.

In addition, the solution should allow maximum
concurrency.

Advanced Topics in Software Engineering 38

Solution 1
Item buf [] = new Item [n];
CountingSemaphore full = new CoutingSemaphore (0);
CountingSemaphore empty = new CountingSemaphore (n);

Producer
{

 int in = 0;
 Item item;
 ...
 empty.P (); (1)
 buf[in] = item; (2)
 in = (in + 1) % n; (3)
 full.V (); (4)
 ...

}

Consumer
{

 int out = 0;
 Item item;
 ...
 full.P (); (5)
 item = buf[out]; (6)
 out = (out + 1) % n; (7)
 empty.V (); (8)
 ...

}

20

Advanced Topics in Software Engineering 39

The Bounded Buffer Problem (Cont’d)

Does solution 1 work if we have multiple producers
and consumers?

Advanced Topics in Software Engineering 40

Solution 2
Item buf [] = new Item [n];
CountingSemaphore full = new CoutingSemaphore (0);
CountingSemaphore empty = new CountingSemaphore (n);
BinarySemaphore pMutex = new BinarySemaphore (1);
BinarySemaphore cMutex = new BinarySemaphore (1);

Producer
{

 int in = 0;
 Item item;
 ...
 empty.P();
 pMutex.P();
 buf[in] = item;
 in = (in + 1) % n;
 pMutex.V()
 full.V();
 ...

}

Consumer
{

 int out = 0;
 Item item;
 ...
 full.P();
 cMutex.P();
 item = buf[out];
 out = (out + 1) % n;
 cMutex.V();
 full.V();
 ...

}

21

Advanced Topics in Software Engineering 41

Dining Philosophers

Requirements:

•  Absence of deadlock

•  Absence of starvation

•  Maximal Parallelism

chopsticks[1]

philosophers[1] chopsticks[0]

chopsticks[2]

chopsticks[3]

chopsticks[4]

philosophers[0]

philosophers[4]

philosophers[2]

philosophers[3]

rice

Advanced Topics in Software Engineering 42

Solution 1
BinarySemaphore chopsticks = new BinarySemaphore [n];
// initialization
for (int j = 0; j < n; j ++) {

 chopsticks[j] = new BinarySemaphore (1);
}

philosopher i

while (true) {
 /* think */
 chopsticks[i].P(); (1)
 chopsticks[(i + 1) % n].P(); (2)
 /* eat */
 chopsticks[i].V(); (3)
 chopsticks[(i + 1) % n].V(); (4)

}

22

Advanced Topics in Software Engineering 43

Solution 2

This solution is the same as solution 1 except that
only (n – 1) philosophers are allowed to sit at a table
that has n seats.

Advanced Topics in Software Engineering 44

Solution 3

This solution is the same as solution 1 except that
one philosopher is designated as the “odd”
philosopher and this odd philosopher picks up her
right fork, instead of her left fork, first.

23

Advanced Topics in Software Engineering 45

Solution 4
const int thinking = 0; const int hungry = 1; const int eating = 2;
BinarySemaphore mutex(1);
int state[] = new int [n];
BinarySemaphore self[] = new BinarySemaphore [n];
for (int j = 0; j < n; j ++) {

 state[j] = thinking; self[j] = new BinarySemaphore (0);
}

philosopher i

while (true) {
 /* think */
 mutex.P();
 state[i] = hungry;
 test(i);
 mutex.V();
 self[i].P();
 /* eat */
 mutex.P();
 state[i] = thinking;
 test((i – 1) % n);
 test((i + 1) % n);
 mutex.V();
 }

}

void test (int k) {
 if ((state[k] = hungry) && (state[(k - 1) % n] != eating)
 && (state[(k + 1) % n] != eating)) {
 state[k] = eating;
 self[k].V();
 }

}

Advanced Topics in Software Engineering 46

Readers/Writers Problem

Readers may access shared data concurrently, but a
writer always has exclusive access.

What’s the difference between readers/writers
problem and producers/consumers problem?

24

Advanced Topics in Software Engineering 47

Access Strategies

In general, there are three categories of access
strategies:

  R = W: Readers and writers have equal priority.

  R > W: Readers generally have a higher priority
than writers.

  R < W: Readers generally have a lower priority than
writers

Advanced Topics in Software Engineering 48

Access Strategies (cont’d)

  R = W.1: One reader or one writer with equal priority.

  R = W.2: Many readers or one writer with equal priority.

  R > W.1: Many readers or one writer with readers having a higher
priority.

  R > W.2: Same as R > W.1 except that when a reader arrives, if no
other reader is reading or waiting, it waits until all writers that
arrived earlier have finished.

  R < W.1: Many readers or one writer with writers having a higher
priority.

  R < W.2: Same as R < W.1 except that when a writer arrives, if no
other writer is waiting or writing, it waits until all readers that arrived
earlier have finished.

25

Advanced Topics in Software Engineering 49

R = W vs. R > W vs. R < W

r1 w1 r2 w2

Consider the following request queue. Identify the order in
which the requests will be served according to different access
strategies.

Advanced Topics in Software Engineering 50

R > W.1 vs. R > W.2

Writer 1:

Writer 2:

Writer 3:

Reader 1:

req w1 start w1 end w1

req w2

req w3

req r1

26

Advanced Topics in Software Engineering 51

R < W.1 vs. R < W.2

Writer 1:

Reader 1:

Reader 2:

Writer 2:

req w1 start w1 end w1

req r1

req r2

req w2

Advanced Topics in Software Engineering 52

R > W.1
int activeReaders = 0, activeWriters = 0, waitingWriters = 0, waitingReaders = 0;
BinarySemaphore mutex;
CountingSemaphore readers_que(0), writer_que(0);

read () {
 mutex.P (); (1)
 if (activeWriters > 0) { (2)
 waitingReaders ++; (3)
 readers_que.VP(mutex); (4)
 }
 activeReaders ++; (5)
 if (waitingReaders > 0) { (6)
 waitingReaders --; (7)
 readers_que.V(); (8)
 }
 else {
 mutex.V (); (9)
 }
 /* read shared data */
 mutex.P (); (10)
 activeReaders --; (11)
 if (activeReaders == 0
 && waitingWriters > 0) { (12)
 waitingWriters --; (13)
 writers_que.V (); (14)
 }
 else {
 mutex.V (); (15)
 }

}

write () {
 mutex.P ();
 if (activeReaders > 0 || activeWriters > 0) {
 waitingWriters ++;
 writers_que.VP(mutex);
 }
 activeWriters ++;
 mutex.V ();
 /* write shared data */
 mutex.P ();
 activeWriters --;
 if (waitingReaders > 0) {
 waitingReaders --;
 readers_que.V ();
 }
 else if (waitingWriters > 0) {
 waitingWriters --;
 writers_que.V();
 }
 else {
 mutex.V();
 }

}

27

Advanced Topics in Software Engineering 53

R > W.2
int activeReaders = 0;
MutexLock mutex;
BinarySemaphore writers_r_que(1);

read () {
 mutex.lock();
 ++ activeReaders;
 if (activeReaders == 1) {
 writers_r_que.P();
 }
 mutex.unlock ();

 /* read shared data */

 mutex.lock ();
 -- activeReaders;
 if (activeReaders == 0) {
 writers_r_que.V ();
 }
 mutex.unlock ();

}

write () {
 writers_r_que.P();

 /* write shared data */

 writers_r_que.V();
}

Advanced Topics in Software Engineering 54

R < W.2
int activeReaders = 0;
int waitingOrWritingWriters = 0;
MutexLock mutex_r, mutex_w;
BinarySemaphore writers_que(1), readers_w_que(1);

read () {
 readers_w_que.P();
 mutex_r.lock ();
 ++ activeReaders;
 if (activeReaders == 1) {
 writers_que.P();
 }
 mutex_r.unlock ();
 readers_w_que.V();

 /* read shared data */

 mutex_r.lock ();
 -- activeReaders;
 if (activeReaders == 0) {
 writers_que.V ();
 mutex_r.unlock ();

}

write () {
 mutex_w.lock ();
 ++ waitingOrWritingWriters;
 if (waitingOrWritingWriters == 1) {
 readers_w_que.P ();
 }
 mutex_w.unlock ();
 writers_que.P();

 /* write shared data */

 writers_que.V();
 mutex_w.lock();
 -- waitingOrWritingWriters;
 if (waitingOrWritingWriters == 0) {
 readers_w_que.V();
 }
 mutex_w.unlock ();

}

