The University of Texas at Arlington

Talking Points - 4 Analog Signals

CSE 3323 – Electronics for Computer Engineers
Dr. Gergely Záruba

With images taken from from wikipedia

The dB Scale

- Relative scale to measure anything against anything
- Logarithmic
 - Meaning of zero, 1, 10, 20, infinity
 - Why? (for large dynamic ranges)
- Usually used to measure power amplification or attenuation
 - · Amplification and attenuation is relative
 - $P[dB] = 10*log_{10}(P_{out}/P_{in})$
- As we are usually dealing with signals represented by voltage (not power):
 - $V [dB] = 20*log_{10}(V_{out}/V_{in})$

Signals Represented by Voltages

- · Mostly what we are interested in
- Analog vs. digital
- "virtual" signal source: has an output impedance

Time vs. Frequency Domain

- We think of signals as a changing value in time.
- At any small time window, the signal in the window can be represented as the superposition of many different sine waves with various frequencies and phases.
- For that time window we could show at what amplitude each of the frequencies is represented at (and at what phase on an other).
- This show the momentary (in the window) frequency components present in the signal.
- If the signal is periodic, we can take a window that represents it's base period and thus describe the entire signal (momentarity does not matter) in the same frequency domain graph.

Fourier

- A periodic(!) signal can be "easily" converted into all of its component frequencies (sine waves with phases) mathematically.
- The transformation is called: Fourier transformation. (inverse also exist)
- In general, the steeper of a change there is in the signal, the higher frequencies we are going to need to represent them.

5

Fourier of Sine, Square, Triangle

 Most periodic functions can be looked up in reference materials.

Non-periodic signals

- In many cases, periodic signals are uninteresting.
- In a small time window we can still ask the question: what frequency components (and with what phase) are present.
- This is the temporal spectrum of the signal
- Most signals have an upper limit (of interest), sometimes a lower limit of interest.

7

Filters

- In many cases we do want to make sure that signals do not contain frequencies above, below, or both some threshold frequencies.
 - E.g., Shannon-Nyquist sampling theorem
- · Optimal filters
- · low-pass or high-cut filter
- · High-pass or low-cut filter
- Band-pass filter
- · Band-cut filter

Low-pass Filter

- Only want to let low frequencies through
- Can be realized with a simple RC circuit
 - (Xc is falling with a raised frequency)
- $\tau = R^*C$; $\omega_0 = 1/(R^*C)$; $f_0 = 1/(2^*\pi^*R^*C)$
- Complex representation
 - · Magnitude and phase
 - 20dB/decade fall; -3dB point
- How about RL?

9

High-pass Filter

- We want to cut low frequencies from the signal
- Swapping components of an RC low pass filter
- Similar characteristics (but swapped)

Band-pass and Band-Cut Filters

- Can be built by combining low and high pass filters
- Can be problematic as impedances do not easily add up
- RLC filters

11

Multistage Filters

- As RC filters are far from optimal, we may cascade several RC, (and L) filters after each other
 - Problem is that they interact with each other
 - Complex transfer function can be a pain to obtain and analyze
 - Even that helps little as we want to do synthesis not analysis
 - Doable, but leave it to EE-s.
 - There are programs that can be used

AMPLIFICATION AND "IMPEDANCE LIBERATION"

13

Amplification

- Amplifying analog signals requires negative resistance
 - Cannot be done with passive components
- In order to amplify a signal we need active circuits, i.e., we need external power.
- Signal's D.C. level and domain is important
 - We can always get rid of "all" D.C. with coupling capacitors
- Transistors (including FETs) exhibit linear regions where amplification is possible (LitEE)

Opamps to the Rescue

- Opamps are multi-transistor concoctions, their design is litEE.
- Opamp symbol
- http://en.wikipedia.org/wiki/Operational amplifier applications
- Differential input, single output, works like a comparator due to infinite amplification
- Needs to be powered (not always seen on schematics)
- With no feedback output rests at one of the supply levels
- · Theoretical vs. real
 - · Power, rail-to-rail, amplification, impedance, etc.

15

Voltage Follower

- Simplest Opamp circuit (except comparator)
- Schematic

- · Why use and how does it work?
- $V_{out}=V_{in}$; $Z_{out}=0$; $Z_{in}=\infty$
- Perfect for cutting "impedance domains"
- Use a lot of them in prototyping, in production the analog state redesign is LiTEE
- Pay attention to operational voltages!

Fixed Voltage (Voltage Source)

- Use a resistive divider (Or diode based voltage source) followed by a "follower"
- Creates a fixed voltage source (current drawn will not influence voltage)
- Great to create half voltages if powering opamp from a single power source

17

Inverting Amplifier

- Schematic
- $V_{out} = -V_{in} * R_f / R_{in}$
- IT INVERTS! (180deg)

- Amplification can be anything from 0 to infinity (theoretically)
- · However:
 - $Z_{in} = R_{in}$

Non-inverting Amplifier

- Schematic
- $V_{out} = V_{in} * (1 + R_2/R_1)$
 - (non linear in R₂)
- However:
 - Z_{in} = ∞

19

Difference Amplifier

Summing Amplifier

21

Instrumentation Amplifier

And Many More...

- Integrator
- Differentiator
- Precision rectifier (for instruments)
- Oscillators
- Inductance gyrator (for creating synthetic inductors)
- Logarithmic output
- Exponential output
- A/D, D/A converters
- etc.