The University of Texas at Arlington

Lecture 11
Timers, Capture/Compare/PWM

A
~

<

J

~

~N

R

<

~N

)

™

CSE@UTA

CSE 3442/5442

PIC Timers

« PIC18 family microcontrollers have two to five timers on
board.

* Timers can be used to generate time delays or to count
(outside) events happening.

« Some timers can also be used to control timing of other
peripherals (the designer needs to pay attention to that).

* Every timer needs a clock that will make it to count.

« PIC18 timers have the option to use at most % of the
main clock’ s frequency or use a separate external signal
for clocking.

« Timers can overload several pins on the microcontroller

COE@UTA

Timer0

Timer-0 can be used as an 8-bit or as a 16-bit timer.
Thus, two SFR are used to contain the count:

ThMROH TMROL
N N
' Y I
015 |D14 (D13 (D12 |D11|D1O (DS | DB | D7 (Db (D5 | D4 (D3 [D2 | D1 | DO

Each timer has a control register: TOCON for timer O

Timer SFR-s are read/write registers but do not have
Immediate access.

Timer clocks make timers count; the timer clock can be
internal or external.

HAIIANIVREF+ -—=
RALTICKICIOUT -—»

MACTARLA FO O AL YAk /™l 1T <

—

Timer-0 Control Register

TOCON

TMROON| TOSBIT

TOCS TOSE PSA TOPS2 TOPS1

TOPSO

TMROON D7

TOSBIT Db
TOCS D5
TOSE D4
PSA D3

Timer0 ON and OFF control bit

1 = Enable (start) Timer()

0 = Stop Timer0

Timer(8-bit/16-bit selector bit

1 = Timet) 15 configured as an 8-bit timer/counter.
0 = Timer(15 configured as a 16-bit timer/counter.
Timer(clock source select bit

1 = External clock from RA4/TOCKI pin

0 = Internal clock (Fosc/4 from XTAL osall ator)
Timer(source edge select bit

1 = Increment on H-to-L transition on TOCKI pin
0 = Increment on L-to-H transition on TOCKI pin
Timer(prescaler assignment bit

1 = Timer(clock input bypasses prescaler.

0 = TimetD clock input comes from prescaler output.
TOPS2: TOPSO D2D1D0

Timer0 prescaler selector

0o0=1:2 Prescale value (Fosc /41 2)
001=14 Prescale value (Fosc /4 / 4)
010=18 Prescale value (Fosc /4 / 8)
011=1:16 Prescale value (Fosc /4 / 16)
100=1:32 Prescale value (Fosc /4 / 32)
101=1:64 Prescale value (Fosc /4 / 64)
110=1:128 Prescale value (Fosc/4/ 128)
111=1:256 Prescale value (Fosc/4/ 256)

Note that timer
interrupt enable/flag
bits are in registers
related to interrupts
(e.g., INTCON)

When the timer
overflows, TMROIF
IS set.

16- vs. 8-bit timer

Prescalers are
useful for large time
delays

TimerQ Programming

CSE@UTA

1. Select 16-bit mode

2. Load TMROH(!) then TMROL with initial values
3. Starttimer

4. Monitor TMROIF (or set interrupt on it)

S,

step 2)

When TMROIF is set, stop the timer, reset the flag (and if needed go to

Timer-0 can be also used as an 8-bit timer. In this case TIMROH is ignored
and the interrupt flag is set when TMROH overflows.

Zelinkmupl

FOSC/4 o
—ij >—i g
T Figin ,_‘ —_— chock
TUCE Prezcaler 2TCY dely)
3 SA
Port RA4 mr+£opm d N
TS
Stop/start
Prescaler

Note 1: TOCS, TOSE, PTA TOPSZTOPTOD (TOCO NS0,

2: Uponresel, Timer Olz enabled InSHlimode , wih clock pul tom TOC KL max . prescale .,

—a- 13 bl TOIF

on overtow

=3
Red! TMROL
Wik TRROL

TITRD
TMROL High By ke
N AN
1
lﬂ-).
g \\\
\\8 8
T ROH
ﬁs
=7

Daky Bl <7 X

Timer1

Timer1 is a 16-bit (only) timer (TMR1L, TMR1H)

T1CON is the control register and TMR1IF is the
interrupt flag (PIR1).

Presacler does not support divisions above 1:8

Timer1 has two external clock sources
— Clock fed into T1CK1 pin (RCO)

— Crystal (typically 32-kHz) connected between the
T1CKl and T10SI PINS (RCO&RC1)- used for saving
power during sleep mode. When in sleep mode,
Timer1 is not shut down allowing use as real-time
clock (RTC) that can be used for waking up

ISLAUGLKRILUTHAD - - 14
RCO/T1OS50/T13CK] Ha 15 6

RCUT10SICCP2Y e 15
i 2airD1ibi1a o - AT

Timer1 Block Diagram

External
Clock
Signal In&

T10SOM13CKI

T1051

Timer 1 crystal, e.g.,
32KHz for sleep mode

Used with
CCP option
Timer1 Oscillator Timer1 Clotk Input
rCoTToTe On/Off - 1
1 1 r‘“"_\
1 .
: : £ g Prescaler Synchronize .
| ! osc/ ; Detect
! . Internal .2.4.8 4 Detec ol
I 1 Clock —
. 2
- - - - - - | Sleep Input o
[OSCEN TMRICS Timer
T1CKPS<1:0> onfon
T1SYNC
TMR1ON
+ Set
Clear TMR1 = TMRIL High Byte [TNRIIF
(CCP Special Event Trigger) on Overflow

Note 1: When enable bit, TIOSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.

Timer 1 Control Register
T1CON

R/W-0

R-0 RAW-0 RAW-0 R/W-0 RAW-0 RAW-0 R/W-0

RD16

| TIRUN | Tickesi | TickPso | T10SCEN | TISYNC | TMRICS | TMRION

bit 7

bit 0

bit 7

bit 6

bit 5-4

bit 3

hit 2

bit 1

hit 0

RD16: 16-Bit Read/Write Mode Enable bit

1 = Enables register read/write of TImer1 in one 16-bit operation
0 = Enables register read/write of Timer1 in two 8-bit operations
T1RUN: Timer1 System Clock Status bit

1 = Device clock is derived from Timer1 oscillator

0 = Device clock is derived from another source

T1CKPS<1:0=: Timer1 Input Clock Prescale Select bits

11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

T10SCEN: Timer1 Oscillator Enable bit

1 = Timer1 oscillator is enabled
0 = Timer1 oscillator is shut off

The oscillator inverter and feedback resistor are turned off to eliminate power drain.

T1SYNC: Timer1 External Clock Input Synchronization Select bit

When TMR1CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input

When TMR1CS = 0;
This bitis ignored. Timer1 uses the internal clock when TMR1CS = 0.
TMR1CS: Timer1 Clock Source Select bit

1 = External clock from pin RCO/T10SO/T13CKI (on the rising edge)
0 = Internal clock (Fosc/4)

TMR1ON: Timer1 On bit

1 = Enables Timer1
0 = Stops Timer1

« RD16=1 is the only

option in TimerO (to
avoid changes in
Timer1H while Timer1L
Is read/write a
temporary register is
used)

Timer-1 can be used as
) timer, ii) as
synchronous counter
(T1SYNC), iii)
asynchronous counter

COE@UTA

Timer2

« Timer2 is an 8-bit (only) timer (TMR2)

« Timer2 has a period register PR2; Timer2 can be set to
count only to PR2 and set TMR2IF then.

Clock source is only Fosc/4 (thus, Timer2 cannot be

used as a counter) ; prescalers and postscalers (count
on interrupt) are available.

T20UTPS<3:0>

4

T2CKP5<1:0= —j

Fosc/4

= Set TMR2ZIF

w | MRZ Output

(to PWM or MSSP)

- 1:1 10 1:16
Postscaler
2
TMR2/PR2
Reset Match
1:1,1:4 1186
Lo TMR2 ——> Comparator K—— PR2
FPrescaler

@a

8

£

%a

!

more about

these shortly

Internal Data Bus <

>

7

Timer2 Control Register

CSE@UTA I 2 C O N

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— T20UTPS3 | T20UTPS2 | T20UTPS1 | T20UTPSO | TMR20ON T2CKPS'1 T2CKPS0
bit 7 bit 0
bit 7 Unimplemented: Read as "0’
bit 6-23 T20UTPS<3:0=: Timer2 Output Postscale Select bits

0000 = 1:1 Postscale
0001 = 1:2 Postscale

1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 On bit
1 = TimerZ is on
0 = TimerZ2 is off
bit 1-0 T2CKPS<1:0>: TimerZ Clock Prescale Select bits

00 = Prescaleris 1
01 = Prescaler is 4
1x = Prescaleris 16

Timer3

COE@UTA

« Timer3 is a 16-bit (only) timer (TMR3L, TMR3H)

« Can work with CCP peripheral (later)
« Can use same external source as timer1
« Can be used as timer, ascynchronous, or synchronous counter

Timer1 Oscillator = Timerl Clock Input
1
: : Prescaler Synchronize
\ \ | a
! : e 1,2, 4,8 4 Detect
1 1
! 2
Sleep Input X
T10SCENM) TMR3CS Timer3
T3ICKPS<1:0> OO ff
T3SYNC
TMRIOM
CCP1/fCCP2 Special Event Trigger Clear TMR2 * TTAES Seat
CCP1/CCP2 Select from T3CON<6,3> :D ""| TMR3L | High Byte I—"‘ TMR3IF
N ~1 5 an Owverflow
! Read TMR1L
"]
Wirite TMR1L
~l s
T8

. ﬁ 11

< :> Intermal Data Bus

Timer3 Control Register
T3CON

R/W-0 /W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RD16 T3CCP2 T3CKPS1 T3CKPSO T3CCP1 T3SYNC TMR3CS TMR3ON
bit 7 bit 0
bit 7 RD16: 16-Bit Read/Write Mode Enable bit
1 = Enables reqgister read/write of Timer3 in one 16-bit operation
0 = Enables register read/write of Timer3 in two 8-bit operations
bit 6,3 T3CCP<2:1>: Timer3 and Timer1 to CCPx Enable bits
1x = Timer3 is the capture/compare clock source for the CCP modules
01 = Timer3 is the capture/compare clock source for CCP2; — See Soon
Timer1 is the capture/compare clock source for CCP1
00 = Timer1 is the capture/compare clock source for the CCP modules
bit 5-4 T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value
bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the device clock comes from Timer1/Timer3.)
When TMR3CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR3CS = o:
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
bit 1 TMR3CS: Timer3 Clock Source Select bit
1 = External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first falling edge)
0 = Internal clock (FOsC/4)
bit 0 TMR3ON: Timer3 On bit
1 = Enables Timer3 1 2

0 = Stops Timer3

Using PIC18 Timers for
Capture, Compare, and PWM

13

PWM Basics

PWM = Pulse width modulation
Digital signals have two distinct levels: high and low

Each of these levels is usually represented by a voltage,
e.g., in PIC low is OV and high is VCC (e.g., 5V).

A temporal digital signal changes with time from low to
high and back.

Thus we can describe temporal digital signals with a
series of values representing the time for which they stay
In one state.

Periodic temporal digital signals have a distinct
frequency (the inverse of the time between two
consecutive rising edges)

14

PWM Basics (cont’ d)

« If t1+t2 remain constant — frequency remains constant.

-t -

P S——

« Such periodic signals can still have varying times they
spend in high vs. low state. PWM Duty Cycle is the
portion of the pulse that stays HIGH relative to the entire
period. DC[%] = 100*t1/(t1+t2)

25%DC J1_J_In_Mn_n_nmnJ
50%DC LI LI LI LI LIy
swoc I U U U U Uy
100% DC J

15

PWM Basics (cont’ d)

* There are various sensors that provide their output as
PWM signals, where the DC corresponds to the reading.

 There are various actuators that work well with a PWM
iInput.

25%DC J1 111 _1n_nJ
50%DC LI LI LrLriLriud
swoc I U U U U U
100% DC J

« Actually, an appropriate RC filter (Integrator) can make
an analog signal out of a PWM digital signal

o— |—e—o0

PWM Analog
C —/—— 16

»\ Capture, Compare, PWM Modules

PIC18 microcontrollers can have up to 5 CCP modules.

Compare enables the counter value of timers to be
compared to a 16bit register, and if equal perform an
action.

Capture can use an external input to copy timer values
iInto a 16-bit register. Thus, Capture provides the
capability of measuring the period of a pulse.

PWM — pulse width modulation, can be used as a quasi
analog output (a timed digital output with duty cycle
setting).

These modules are great for driving motors, or reading
encoders.

For DC motor control some of the CCPs have been
enhanced and are called ECCP

17

Timers and CCP Features

 Timers 1 and 3 can be used for capture
and compare features

e Timer 2 is used for PWM

 As shown before, T3CON is used to chose
the timer for C/C

These rules do not always apply — have to check the specific PIC18 datasheet 18

CCP Module Basics

« Each CCP module has three registers
associated with it:
— CCPxCON controlling the modes
— CCPxL and CCPxH as a 16-bit compare/
capture/PWM duty cycle register
« Each CCP module has a pin associated
with it (input or output)

RC1/T10SI/CCP2* «—= [16 s6 0 RB3/CCPY*
RC2/CCP1 <[] 17

19

CCP Module Control
CCPxCON

U-0 u-0 RW-0 RW-0 R/W-0 R/W-0 R/W-0 R/W-0

— — DCxB1 DCxB0 CCPxM3 CCPxM2 CCPxM1 CCPxMO

bit 7 bit 0

hit 7-6 Unimplemented: Read as "0’
hit 5-4 DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module

Capture mode:
Unused.

Compare mode:

Unused.

PWM mode;

These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbhs (DCxBE<9:2>)
of the duty cycle are found in CCPRXxL.

hit 3-0 CCPxM<3:0>: CCPx Module Mode Select bits
0000 = Capture/Compare/PWM disabled (resets CCPx module)
0001 = Reserved
0010 = Compare mode, toggle output on match (CCPxIF bit is set)
0011 = Reserved
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge prescalers
0111 = Capture mode, every 16th rising edge
1000 = Compare mode, initialize CCPx pin low; on compare match, force CCPx pin high {(CCPxIF bit is set)
1001 = Compare mode, initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set)
1010 = Compare mode, generate software interrupt on compare match (CCPxIF hit is set, CCPx pin

reflects |/O state)

1011 = Compare mode, trigger special event; reset timer; CCP2 match starts A/D conversion (CCPxIF
bit is set)

11xx = PWM mode

Compare Mode

« The CCPRxH:CCPRXxL is loaded by the user

e If Timer1 TMR1H: TMR1L (or Timer3 — T3CON)
count becomes equal to the above set value
then the Compare module can:

— Drive the CCPx pin high (CCPx config’ d as out)
— Drive the CCPx pin low (CCPx config' d as out)
— Toggle the CCPx pin (CCPx config’ d as out)

— Trigger a CCPxIF interrupt and clear the timer
— CCP2 can be used to kick off the A/D converter

21

#1 Compare Mode Programming

N

® o

Set up CCP interrupt if needed
Initialize CCPxCON for compare
Set timer source (T3CON)
Initialize CCPRxH:CCPRxL

Make sure CCPx pin is output if used (setting
appropriate bits TRISB or TRISC)

Initialize Timer1 (or Timer3)
Start Timer1 (or Timer3)

Monitor CCPxIF or make sure interrupt is
handled 22

Capture Mode

The CCPx pin is set as input (with the appropriate TRIS)

When an external event triggers the CCPx pin, then the
TMR1H:TMR1L (or Timer3) values will be loaded into
CCPRxH:CCPRxL

Four options for CCPx pin triggering:
— Every falling edge

— Every rising edge

— Every fourth rising edge

— Every fourth falling edge

Typical applications are measuring frequency or
pulsewidth.

23

Capture Mode Programming for
Frequency Measurement

Initialize CCPxCON for capture
Make CCPx pin an input pin (TRISB/TRISC)

On the first rising edge, Timer1 is loaded into
CCPRxH:CCPRXxL : remember values.

On the next rising edge, Timer1 is loaded again into
CCPRxH:CCPRXxL ; subtract previous values from
current values.

You have now the period of the signal captured by
timer ticks. Some basic math will give you frequency

24

Capture Mode Programming for
Measuring PWM Duty Cycle

Initialize CCPxCON for capture
Make CCPx pin an input pin (TRISB/TRISC)
Reset Timer1

On the rising edge, Timer1 is started and mode is set
to falling edge detction

On the falling edge the CCPRxH:CCPRXxL should be
saved, CCP should be set to rising edge detection

On the rising edge CCPRxH:CCPRXxL is saved. Now
we have measurements for t1 and t2.

DC cycle can be calculated while new measurement is
prepared (if continuous measuring is needed)

Hint: interrupts can help 25

PWM Mode

PWM output can be created without tedious
programming of the compare mode

The ECCP’ s PWM mode enables generating temporal
digital signals of varying frequencies and varying DC
(recall: the width of the pulse indicates some measured
quantity).

Recall, that the PWM Duty Cycle is the portion of the
pulse at HIGH relative to the entire period.

For PWM, Timer2 is used. Recall, that Timer 2 has a
period register PR2.

The period of the PWM signal is then:
Towv=4"N*(PR2+1)/F where N is the prescaler

0sC

26

PWM Mode - Frequency

» Since most of the time we know what
frequency we want to set it we need to set

PR2:
PR2=F_ /(4*N*Fpyp) — 1
 We see thus that the maximum PWM

frequency is about a quarter of the clock
while the minimum is about F_. /16382

27

PWM Mode - Duty Cycle

COE@UTA

Assuming that we use CCP1, the duty cycle, is specified in 10-bits:

DC1B9:DC1BO0 (8 bits of CCPR1L and 2 bits from the CCP1CON

register).

If we denote the desired duty cycle by DCR (in [%]), and then:
DCE:=PR2*DCR/100

CCPR1L := |DCE| (i.e., the integer part)

and DC1B1 and DC1B0 will need to be loaded with the remainder

8art of DC, where 00 is for 0, 01 is for 0.25, 10 is for 0.5 & 11 is for
75

This then has an obvious precision influence on the PWM signal’ s

duty cycle. Furthermore, the exact value of PR2 also has a strong
influence on such precision.

Period
(PR2)

4
-

Y

— I
DUN Cyde ITMR2 = PR2
(CCPRIL) ' 28

PWM Mode - Programming

*o aokww N

Set PWM period by setting PR2 and T2CON
(prescaler)

Set PWM duty cycle by calculating and writing
CCPRXL; (remember the remainder)

Set the CCPx as output
Clear TMR2

Load the remainder from step 2 into CCPxCON and
set CCPx to PWM mode

Start Timer 2.

This will result in a proper periodic temporal digital
signal (no need to use goto-s)

TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency

2.44 kHz

9.77 kHz

39.06 kHz

156.25 kHz

312.50 kHz

416.67 kHz

Timer Prescaler (1, 4, 16)

16

4

1

1

1

PR2 Value

FFh

FFh

FFh

3Fh

1Fh

17h

Maximum Resolution (bits)

10

10

10

8

7

6.58

29

Driving DC Motors

Brushed DC motors are common

DC motors can run in both direction based on polarity on
the two leads.

DC motors run continuously when voltage is applied
(rpm, voltage, torque, and power are all characteristics
that need to be looked up in a catalog).

How could we create circuitry that lets them rotate in
both direction and with controlled speed?

[
|
l'_i‘%

.®
J
i
.®
[,
i
1] (]
wZ %
2 2
b N
X X
.2 o2
2 2

Clockwise Counter- !
Rotation Clockwise
-4 MOTORNOT
Rotaton {1 Mo 30

Enhanced CCP

« Many PIC microcontrollers come with an
enhanced CCP module - ECCP. The enhanced
module is really only enhanced for PWM output.

 |Indeed on PIC18F458 the CCP1is enhanced
and is ECCP1.

 |In the enhanced PWM, active can be set from
nigh to low. In addition, there are four output
nins (great for driving DC motors both directions
at various speeds) 30 E <—» RD7/PSP7/P1D

| 20 [] =— RDG/PSPE/P1C
RC2/CCP1/PIA <[] 17 - A e

31

Enhanced CCP Pins for PWM
in PIC18F458/4580

MCLRAPP —— 1 40— RE7/PGD
RAQ/ANO/CYREF —— 2 39 —— REB/PGC
RAIANT — 3 36 —— RBS/PGM
RA/AN2AVREF- | 4 37| RB4
RAG/ANG/VREF + —— 5 36 | REG/CANRX
RA4TOCKI — 6 35 —— RB2/CANTXANT2
RAS/ANA/SSAVDIN —— 7 34 —— RB1/INT1
REDANSRD —— 8 oo 33 —— REDINTO
RE1/ANBAMR/CTOUT —— 9 32 —— VDD
RE2/ANT/CS/C20UT ——{10 31— vsS
vDD — 11 30 —» RD7/PSP7/P1D
V8 —12 29— RDB/PSPEPIC
0scticLk —13 28 —» RD5/PSPS/P1B
R L 27 — RD4/PSPA/ECCPP1A
RCO/T10SO/TICKI —= 15 26 —— RC7RXDT
RC1/T108] —{ 18 25 | RCB/TX/CK
RC2/CCP1 -—{17 24 —— RCH/SDO
RC3/3CK/SCL —{18 23 | RC4/SDI/SDA
RDO/PSPO/CIING — |19 22— RDIPSF3/C2IN-
RD1PSP1/CIIN- — {20 21— RD2/PSP2/C2IN+

Enhanced CCP Control

RAV-0 R/W-0 RAV-0 RAMV-0 RAW-0 R/W-0 R/W-0 R/W-0
P1MA P1MO DC1B1 DC1B0O CCP1M3 CCP1M2 CCP1M1 CCP1MO
bit 7 bit 0

hit 7-6 P1M<1:0>: Enhanced PWM Output Configuration bits

If CCP1M3:CCP1M2 = 00, 01, 10:

xx = P1A assigned as capture/compare input/output; P1B, P1C, P1D assigned as port pins

If CCP1M3.:CCP1M2 = 11:

00 = Single output, P1A modulated; P1B, P1C, P1D assigned as port pins

01 = Full-bridge output forward, P1D modulated; P1A active; P1B, P11C inactive

10 Half-bridge output, P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins
11 Full-bridge output reverse, P1B modulated; P1C active; P1A, P1D inactive

bit 5-4 DC1B<1:0>: PWM Duty Cycle bit 1 and bit 0

Capture mode:
Unused.

Compare mode:

Unused.

PWM mode:

These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in
CCPRIL.

hit 3-0 CCP1M<3:0>: Enhanced CCP Mode Select bits

0000 = Capture/Compare/PWM off (resets ECCP module)

0001 = Reserved

0010 = Compare mode, toggle output on match

0011 = Capture mode

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, initialize CCP1 pin low; set output on compare match (set CCP1IF)
1001 = Compare mode, initialize CCP1 pin high; clear output on compare match (set CCP1IF)
1010 = Compare mode, generate software interrupt only; CCP1 pin reverts to /O state

1011 = Compare mode, trigger special event (ECCP resets TMR1 or TMR3, sets CCP1IF bit)
1100 = PWM mode, P1A, P1C active-high; P1B, P1D active-high

1101 = PWM mode, P1A, P11C active-high; P1B, P1D active-low

1110 = PWM mode, P1A, P1C active-low; P1B, P1D active-high

1111 = PWM mode, P1A, P1C active-low; P1B, P1D active-low

Enhanced CCP Block Diagram

_ CCP1CON<5:4=
Duty Cycle Registers rf"
CCPRIL i
CCPR1H (Slave)
Comparator R
TMR2 (Note 1)
L =
Comparator
Clear Timer,
4} ISE{I E%F‘C“l pin and
PR2 aren =

fime base.

Yy

P1M1=<1:0= . CCP1M<=3:0=
f'j2 4"4
CCP1/P1A
TRISx=x=
FP1B
a Output TRISX<x>
Controller
F1C
TRISx=x=
P1D
4} TRISx=x=
PWM1CON

CCP1/P1A

F1B

P1C

P1D

Note: The 8-bit TMRZ2 reqister is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit

34

™

DC Motor Drive Half bridge

Standard Half-Bridge Circuit (“Push-Pull”)

PIC18F4X2X FET
Driver +
[~ [t _
PIA L 14 — V
Load
FET
Driver +
™~ [t —
P18 L~ ks — Y

Half-Bridge Output Driving a Full-Bridge Circuit

PIC18F4X2X

P1A

P1B

FET
Dnver

FET
Dniver

T

T_ﬁ
Ly

FET
Driver
| 1
| S~ 7
Load FET
Driver

35

PICT8F

PLARDS)

PLERDS)

PLC(RDE)

PLORDT)

OUTPUT ' P
|
ouTrUT'®
™
|
ouTrUT'®

36

PIC18F4X2X

P1A

P1B

P1C

P10

FET
Driver

™~

|

FET
DCriver

FET
Driver

gl

/\

FET
Diriver

gl

o el

L

CCP1CON<T:6> SIGNAL
oo (Single Output) F1A Modulated
P1A Modulated
1o (Half-Bridge) P1B Modulated
P1A Active
(Full-Bridge, FP1B Inactive
01 Forward)
P1C Inactive
P10 Modulated
P1A Inactive
i F1B Modulated
11 (Full-Bridge, odulate
Reverse)

F1C Active

P1D Inactive

NN

0 +
Duty | F'R2I 1
- Cycle ™ |
' ' Period -
1 ! :
 Delay(!) ' Delay!" ,
_ [~ :
_ | l
_ f

38

How About Other Types of Motors?

« Common other types of motors that we would
like to control are: stepper motors (steppers) and
servo motors (servos).

« Steppers are usually used when precise rpms
are needed or when precise angles need to be
turned to.

« Servos are usually used to make motors turn
precisely to an angle with loads on them that
could try to move the motor away.

39

Stepper Motors

Stepper motors are called that way as the user
can turn them in small little precise steps.

For example a 24 step/revolution (spr) motor has
a 15" step angle, while a 48spr motor has a 7.5
angle.

Maximum speed is usually given in steps per
second.

Holding torque determines how much torque is
required to move the motor away from its
position when control is applied to it.

40

Common Stepper Motors

* One of the most common stepper is a
unipolar, permanent magnet stepper.

* A permanent magnet rotor is
surrounded by four stators whose
polarity can be changed by applying
voltage to them.

* Thus, making a

stepper turn, A

. . B — COM
requires a precise |
sequence of control wON

voltage applied to
the four pins.

« Steps per revolution is controlled by

having rotors with multiple N/S poles 11

Making Steppers Turn

Normal stepper sequence:

QO a
Step# A B c D RZ
Q =
§ 1 1 0 0 1 iY
Q
& 2 1 1 0 0 ke
QO O
2 3 0 1 1 0 L
© =
v |4 0 0 1 1 5
» Half-step sequence:
Step# A B C D
1 1 0 0 1
QO a

2 1 0 0 0 N7
2 =
= 3 1 1 0 0 <
4 4 0 1 0 0 %
< 5 0 1 1 0 o
© =
v |6 0 0 1 0)

7 0 0 1 1

8 0 0 0 1

42

Why use one vs. the other? What” s wave drive? (40% more torque, twice the power)

COE@UTA

Making Steppers Turn

« Connecting steppers to a microcontroller

requires back-EMF protection.

+4

PICISF

+
+12
403470 S 4705 40 ILOT4

—_—
>

S

10| ULN2303

RE0 l
REI (
RBZ (
RE3

u

+

l | Opto
(

Il

-

l'—3

1 K

Unipoler
Stepper Motor

I—Ia s
-
—
=

AIAAA

Y ¥YY Y

]

Optoisolator provides
protection from back-EMF

L

The motor/2803 should have
a separate power source from

A

the microcontroller

#include <p18F458.h>

void main()

{

TRISB = 0;
while(1)

{

PORTB=0x06; //0110
MSDelay(100);
PORTB=0x0C; //1100
MSDelay(100);
PORTB=0x09; //1001
MSDelay(100);
PORTB=0x03; //0011
MSDelay(100);

43

Servo Motors

COE@UTA

Servo motors are usually more expensive than DC motors or
steppers.

Servo motors have a precise control for position and are
usually not used for complete rotations (although with a little
mod they can be — why?).

Servo motors have a built in mechanism (close control loop)
to keep the position they are set to.

Servo’ s usually have three input pins: two for power and one
for controlling the angle.

The control is usually using PWM for position.

Internally, there is an encoder that measures the location of
the shaft, an error signal is produced from the control and
current location, and a P, PD, or PID controller is used to
reduce this error.

Length of the pulse dictates location (e.g., 0.6ms = -45 ",
1.5ms=0",24ms =45")

44

Rotary Encoders

COE@UTA

* Rotary encoders are rotational sensors (one component of servos), they
can provide precise readings of shafts turning.

* Internally they can be mechanical, magnetic (induction) based or
optical.

« Optical encoders are usually of high precision, contain encoder wheels.
* Encoders can be absolute or incremental
« They usually have four to five wires (power+, power-, A, B, 0)

« They can be read using timers but will tie up microcontroller; there are
special purpose circuitry to read them, which have parallel or serial
interfaces to microcontrollers.

A
B

Phase 1:2:3:14:1:12:13:14:11:12:3:14.:11

45

Two sguare waves in guadrature (clockwise rotation). &

Summary

* Timer peripherals can be used to create
longer timeouts, to count external events
(and act upon), or to create temporal
digital signals.

 PWM signals can be used to drive several
transducers, some other transducers will
output PWM.

* Motor control, and encoder reading are
probably two of the most used timer
peripheral scenarios.

46

