The University of Texas at Arlington

Lecture 11 Timers, Capture/Compare/PWM

CSE@UTA

CSE 3442/5442

PIC Timers

- PIC18 family microcontrollers have two to five timers on board.
- Timers can be used to generate time delays or to count (outside) events happening.
- Some timers can also be used to control timing of other peripherals (the designer needs to pay attention to that).
- Every timer needs a clock that will make it to count.
- PIC18 timers have the option to use at most ¼ of the main clock's frequency or use a separate external signal for clocking.
- Timers can overload several pins on the microcontroller

- Timer-0 can be used as an 8-bit or as a 16-bit timer.
- Thus, two SFR are used to contain the count:

- Each timer has a control register: T0CON for timer 0
- Timer SFR-s are read/write registers but do not have immediate access.
- Timer clocks make timers count; the timer clock can be internal or external.

Timer-0 Control Register T0CON

TMROON	T08BIT	TOCS	TOSE	PSA	TOPS2	T0PS1	TOPSO		
TMROON	D7	Timer0 (Timer0 ON and OFF control bit						
		1 = Enak	ole (start) T	imer0					
		0 = Stop	Timer0						
T08BIT	D6	Timer0 8	limerU 8-bit/16-bit selector bit						
		I = Iime	I = limerU is configured as an 8-bit timer/counter.						
TOCS	D5	0 = 1100	tools course	gureu as a . e celect bit	lo-oit ume	ncounter.			
1006		1 = Exte	mal clock i	from RA4/1	FOCKI nin				
		0 = Inter	nal clock ()	Fosc/4 from	n XTAL os	cill ator)			
TOSE	D4	Timer0 s	Timer0 source edge select bit						
		1 = Incre	ement on H	-to-L transi	tion on TO	CKI pin			
		0 = Incre	ement on L	-to -H transi	tion on TO	CKI pin			
PSA	D3	Timer0 p	prescaler as	signment b	it				
		1 = Time	er0 clock in	iput bypass	es prescale	r.			
		0 = Time	er0 clock in	iput comes	from presc	aler output			
TOPS2: TOP	PSO D2D1	D0 ·	Timer0 pres	scaler selec	tor				
	000:	= 1:2	Prescale val	lue (Fosc /	472)				
	001:	= 1:4 .	Prescale val	lue (Fosc /	4/4)				
	010:	= 1:8	Prescale val	lue (Fosc /	4/8)				
	011:	= 1:10 .	Prescale val	lue (Fosc /	4/10)				
	100:	= 1:32	Prescale val	lue (Fosc /	4732)				
	101:	= 1:64	Prescale value (Fosc / 4 / 64)						
	110:	= 1:128	Prescale val	lue (Fosc /	47128)				
	111:	= 1:256	Prescale va	lue (Fosc /	4/256)				

- Note that timer interrupt enable/flag bits are in registers related to interrupts (e.g., INTCON)
- When the timer overflows, TMR0IF is set.
- 16- vs. 8-bit timer
- Prescalers are useful for large time delays

Timer0 Programming

- 1. Select 16-bit mode
- 2. Load TMR0H(!) then TMR0L with initial values
- 3. Start timer
- 4. Monitor TMR0IF (or set interrupt on it)
- 5. When TMR0IF is set, stop the timer, reset the flag (and if needed go to step 2)
- Timer-0 can be also used as an 8-bit timer. In this case TIMR0H is ignored and the interrupt flag is set when TMR0H overflows.

Timer1

- Timer1 is a 16-bit (only) timer (TMR1L, TMR1H)
- T1CON is the control register and TMR1IF is the interrupt flag (PIR1).
- Presacler does not support divisions above 1:8
- Timer1 has two external clock sources
 - Clock fed into T1CK1 pin (RC0)
 - Crystal (typically 32-kHz) connected between the T1CKI and T1OSI PINS (RC0&RC1)— used for saving power during sleep mode. When in sleep mode, Timer1 is not shut down allowing use as real-time clock (RTC) that can be used for waking up

USU2/ULKU/KA6 → 14 RC0/T10S0/T13CKI → 15 RC1/T10SI/CCP2⁽¹⁾ → 16 RC2/CCP1/P1A → 17

Timer1 Block Diagram

Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.

Timer 1 Control Register T1CON

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
bit 7	1						bit 0			
bit 7	RD16: 16-Bit Read/Write Mode Enable bit									
	1 = Enables register read/write of TImer1 in one 16-bit operation									
	0 = Ena	0 = Enables register read/write of Timer1 in two 8-bit operations								
bit 6	T1RUN:	Timer1 Sys	tem Clock S	tatus bit						
	1 = Dev	rice clock is	derived from	Timer1 osci	llator					
	0 = Dev	ice clock is	derived from	another sou	irce					
bit 5-4	T1CKPS	8<1:0>: Time	er1 Input Clo	ock Prescale	Select bits					
	11 = 1:8	Prescale va	alue							
	10 = 1:4	Prescale va	lue							
	01 = 1:2 Prescale value									
L:1.0	T1080EN. Timer1 Oppillator Englis hit									
DIT 3	ITOSCEN: Timer1 Oscillator Enable bit									
	1 = Timer1 oscillator is enabled									
	The oscillator inverter and feedback resistor are turned off to eliminate power dra									
bit 2	TISYNC: Timer1 External Clock Input Synchronization Select bit									
	When $TMR1CS = 1$:									
	1 = Do not synchronize external clock input									
	0 = Synchronize external clock input									
	When TMR1CS = 0:									
	This bit i	s ignored. T	imer1 uses t	he internal c	lock when T	MR1CS = 0				
bit 1	TMR1CS: Timer1 Clock Source Select bit									
	1 = Exte	ernal clock fr	om pin RC0	/T10S0/T13	CKI (on the	rising edge)			
	o = Inte	rnal clock (F	osc/4)							
bit 0	TMR10	N: Timer1 O	n bit							
	1 = Ena	bles Timer1								
	0 = Stoj	os Timer1								

GSE@UT

- RD16=1 is the only option in Timer0 (to avoid changes in Timer1H while Timer1L is read/write a temporary register is used)
- Timer-1 can be used as

 timer, ii) as
 synchronous counter
 (T1SYNC), iii)
 asynchronous counter

- Timer2 is an 8-bit (only) timer (TMR2)
- Timer2 has a period register PR2; Timer2 can be set to count only to PR2 and set TMR2IF then.
- Clock source is only Fosc/4 (thus, Timer2 cannot be used as a counter); prescalers and postscalers (count on interrupt) are available.

Timer2 Control Register T2CON

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7		•					bit 0
	bit 7	Unimpler	nented: Re	ad as '0'			
	bit 6-3	T2OUTPS	S<3:0>: Tim	ner2 Output	Postscale S	Select bits	
		0000 = 1: 0001 = 1: • • • 1111 = 1:	1 Postscale 2 Postscale 16 Postsca	e le			
	bit 2	TMR2ON 1 = Timer 0 = Timer	: Timer2 Or 2 is on 2 is off	n bit			
	bit 1-0	T2CKPS< 00 = Pres 01 = Pres 1x = Pres	<1:0>: Time caler is 1 caler is 4 caler is 16	r2 Clock Pr	escale Sele	ect bits	

- Timer3 is a 16-bit (only) timer (TMR3L, TMR3H)
- Can work with CCP peripheral (later)
- Can use same external source as timer1
- Can be used as timer, ascynchronous, or synchronous counter

Timer3 Control Register T3CON

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7	•	•	•	•		•	bit 0
bit 7	RD16: 16-Bit Read/Writ 1 = Enables register rea 0 = Enables register rea	e Mode Enable bit ad/write of Timer3 in a ad/write of Timer3 in t	one 16-bit operation wo 8-bit operations				
bit 6,3	T3CCP<2:1>: Timer3 at 1x = Timer3 is the capt 01 = Timer3 is the capt Timer1 is the capt 00 = Timer1 is the capt	nd Timer1 to CCPx E ure/compare clock so ure/compare clock so ure/compare clock so ure/compare clock so	nable bits ource for the CCP mo ource for CCP2; ource for CCP1 ource for the CCP mo	odules	See s	soon	
bit 5-4	T3CKPS<1:0> : Timer3 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value	Input Clock Prescale	Select bits				
bit 2	T3SYNC: Timer3 Extern(Not usable if the deviceWhen TMR3CS = 1:1 = Do not synchronize0 = Synchronize externaWhen TMR3CS = 0:This bit is ignored. Time	nal Clock Input Synch clock comes from T external clock input al clock input r3 uses the internal o	nronization Control bi imer1/Timer3.) clock when TMR3CS	t = 0.			
bit 1	TMR3CS: Timer3 Clock 1 = External clock input 0 = Internal clock (Fost	Source Select bit from Timer1 oscillate C/4)	or or T13CKI (on the i	rising edge after the fi	rst falling edge)		
bit 0	TMR3ON: Timer3 On bi 1 = Enables Timer3 0 = Stops Timer3	t					12

Using PIC18 Timers for Capture, Compare, and PWM

PWM Basics

- PWM = Pulse width modulation
- Digital signals have two distinct levels: high and low
- Each of these levels is usually represented by a voltage, e.g., in PIC low is 0V and high is VCC (e.g., 5V).
- A temporal digital signal changes with time from low to high and back.
- Thus we can describe temporal digital signals with a series of values representing the time for which they stay in one state.
- Periodic temporal digital signals have a distinct frequency (the inverse of the time between two consecutive rising edges)

PWM Basics (cont'd)

• If t1+t2 remain constant \rightarrow frequency remains constant.

 Such periodic signals can still have varying times they spend in high vs. low state. PWM Duty Cycle is the portion of the pulse that stays HIGH relative to the entire period. DC[%] = 100*t1/(t1+t2)

75% DC	
100% DC J	

PWM Basics (cont'd)

- There are various sensors that provide their output as PWM signals, where the DC corresponds to the reading.
- There are various actuators that work well with a PWM input.

• Actually, an appropriate RC filter (Integrator) can make an analog signal out of a PWM digital signal

- PIC18 microcontrollers can have up to 5 CCP modules.
- Compare enables the counter value of timers to be compared to a 16bit register, and if equal perform an action.
- Capture can use an external input to copy timer values into a 16-bit register. Thus, *Capture* provides the capability of measuring the period of a pulse.
- PWM pulse width modulation, can be used as a quasi analog output (a timed digital output with duty cycle setting).
- These modules are great for driving motors, or reading encoders.
- For DC motor control some of the CCPs have been enhanced and are called ECCP

- Timers 1 and 3 can be used for capture and compare features
- Timer 2 is used for PWM
- As shown before, T3CON is used to chose the timer for C/C

These rules do not always apply – have to check the specific PIC18 datasheet

CCP Module Basics

- Each CCP module has three registers associated with it:
 - CCPxCON controlling the modes
 - CCPxL and CCPxH as a 16-bit compare/ capture/PWM duty cycle register
- Each CCP module has a pin associated with it (input or output)

CCP Module Control CCPxCON

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7	·				•		bit 0
oit 7-6	Unimplemented	: Read as '0'					
oit 5-4	DCxB<1:0>: PW	M Duty Cycle bit	t 1 and bit 0 for	CCPx Module			
	<u>Capture mode:</u> Unused.						
	Compare mode: Unused.						
	<u>PWM mode:</u> These bits are the of the duty cycle a	e two LSbs (bit 1 are found in CCI	and bit 0) of the PRxL.	e 10-bit PWM du	ty cycle. The eig	ht MSbs (DCxB	<9:2>)
oit 3-0	CCPxM<3:0>: C	CPx Module Mo	de Select bits				
	0000 = Capture/	Compare/PWM	disabled (reset	s CCPx module)			
	0001 = Reserve	d					
	0010 = Compare	e mode, toggle o	utput on match	(CCPxIF bit is s	iet)		
	0011 = Reserve	d 					
	0100 = Capture	mode, every fall	ing edge				
	0101 = Capture	mode, every risi	rising edge	1			
	0110 = Capture	mode, every 401 mode every 16t	h rising edge	mescal	ers		
	1000 = Compare	mode, initialize (CCPx pin low: o	n compare match	n. force CCPx pin	high (CCPxIF b	it is set)
	1001 = Compare	mode, initialize (CCPx pin high;	on compare matc	h, force CCPx pi	n low (CCPxIF b	it is set)
	1010 = Compare reflects l/	e mode, generat ′O state)	e software inte	errupt on compar	e match (CCPx	IF bit is set, CC	Px pin
	1011 = Compare	e mode, trigger s	pecial event; re	eset timer; CCP2	2 match starts A/	D conversion (0	CCPxIF
	bit is set)					
	11xx = PWM mo	ode					

Compare Mode

- The CCPRxH:CCPRxL is loaded by the user
- If Timer1 TMR1H:TMR1L (or Timer3 T3CON) count becomes equal to the above set value then the Compare module can:
 - Drive the CCPx pin high (CCPx config'd as out)
 - Drive the CCPx pin low (CCPx config'd as out)
 - Toggle the CCPx pin (CCPx config'd as out)
 - Trigger a CCPxIF interrupt and clear the timer
 - CCP2 can be used to kick off the A/D converter

- 0. Set up CCP interrupt if needed
- 1. Initialize CCPxCON for compare
- 2. Set timer source (T3CON)
- 3. Initialize CCPRxH:CCPRxL
- 4. Make sure CCPx pin is output if used (setting appropriate bits TRISB or TRISC)
- 5. Initialize Timer1 (or Timer3)
- 6. Start Timer1 (or Timer3)
- 7. Monitor CCPxIF or make sure interrupt is handled

Capture Mode

- The CCPx pin is set as input (with the appropriate TRIS)
- When an external event triggers the CCPx pin, then the TMR1H:TMR1L (or Timer3) values will be loaded into CCPRxH:CCPRxL
- Four options for CCPx pin triggering:
 - Every falling edge
 - Every rising edge
 - Every fourth rising edge
 - Every fourth falling edge
- Typical applications are measuring frequency or pulsewidth.

Capture Mode Programming for Frequency Measurement

- 1. Initialize CCPxCON for capture
- 2. Make CCPx pin an input pin (TRISB/TRISC)
- 3. On the first rising edge, Timer1 is loaded into CCPRxH:CCPRxL ; remember values.
- 4. On the next rising edge, Timer1 is loaded again into CCPRxH:CCPRxL ; subtract previous values from current values.
- 5. You have now the period of the signal captured by timer ticks. Some basic math will give you frequency

Capture Mode Programming for Measuring PWM Duty Cycle

- 1. Initialize CCPxCON for capture
- 2. Make CCPx pin an input pin (TRISB/TRISC)
- 3. Reset Timer1
- 4. On the rising edge, Timer1 is started and mode is set to falling edge detction
- 5. On the falling edge the CCPRxH:CCPRxL should be saved, CCP should be set to rising edge detection
- 6. On the rising edge CCPRxH:CCPRxL is saved. Now we have measurements for t1 and t2.
- 7. DC cycle can be calculated while new measurement is prepared (if continuous measuring is needed)
- Hint: interrupts can help

PWM Mode

- PWM output can be created without tedious programming of the compare mode
- The ECCP's PWM mode enables generating temporal digital signals of varying frequencies and varying DC (recall: the width of the pulse indicates some measured quantity).
- Recall, that the PWM Duty Cycle is the portion of the pulse at HIGH relative to the entire period.
- For PWM, Timer2 is used. Recall, that Timer 2 has a period register PR2.
- The period of the PWM signal is then:

 $T_{PWM}=4*N*(PR2+1)/F_{osc}$ where N is the prescaler

PWM Mode - Frequency

 Since most of the time we know what frequency we want to set it we need to set PR2:

$$PR2=F_{osc}/(4*N*F_{PWM})-1$$

• We see thus that the maximum PWM frequency is about a quarter of the clock while the minimum is about $F_{osc}/16382$

PWM Mode - Duty Cycle

- Assuming that we use CCP1, the duty cycle, is specified in 10-bits: DC1B9:DC1B0 (8 bits of CCPR1L and 2 bits from the CCP1CON register).
- If we denote the desired duty cycle by DCR (in [%]), and then:

DCE:=PR2*DCR/100

CCPR1L := [DCE] (i.e., the integer part)

- and DC1B1 and DC1B0 will need to be loaded with the remainder part of DC, where 00 is for 0, 01 is for 0.25, 10 is for 0.5 & 11 is for 0.75
- This then has an obvious precision influence on the PWM signal's duty cycle. Furthermore, the exact value of PR2 also has a strong influence on such precision.

- 1. Set PWM period by setting PR2 and T2CON (prescaler)
- 2. Set PWM duty cycle by calculating and writing CCPRxL; (remember the remainder)
- 3. Set the CCPx as output
- 4. Clear TMR2
- 5. Load the remainder from step 2 into CCPxCON and set CCPx to PWM mode
- 6. Start Timer 2.
- This will result in a proper periodic temporal digital signal (no need to use goto-s)

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 15-4:	EXAMPLE PWM FREQUENCIES	AND RESOLUTIONS AT 4	0 MHz

Driving DC Motors

- Brushed DC motors are common
- DC motors can run in both direction based on polarity on the two leads.
- DC motors run continuously when voltage is applied (rpm, voltage, torque, and power are all characteristics that need to be looked up in a catalog).
- How could we create circuitry that lets them rotate in both direction and with controlled speed?

Enhanced CCP

- Many PIC microcontrollers come with an enhanced CCP module - ECCP. The enhanced module is really only enhanced for PWM output.
- Indeed on PIC18F458 the CCP1 is enhanced and is ECCP1.
- In the enhanced PWM, active can be set from high to low. In addition, there are four output pins (great for driving DC motors both directions at various speeds)
 30 - RD7/PSP7/P1D

RC2/CCP1/P1A → 17

Enhanced CCP Control

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7	1		1	1	1	1	bit 0
t	bit 7-6 P1 <u>If C</u> xx <u>If C</u> 00 01 10 11	 M<1:0>: Enhanced P CP1M3:CCP1M2 = 0 P1A assigned as CP1M3:CCP1M2 = 1 Single output, P1/ Full-bridge output Half-bridge output Full-bridge output 	WM Output Config 00, 01, 10: capture/compare 1: A modulated; P1B forward, P1D modul ; P1A, P1B modul reverse, P1B modul	guration bits input/output; P1B, , P1C, P1D assign dulated; P1A activ lated with dead-ba dulated; P1C activ	P1C, P1D assign led as port pins e; P1B, P1C inacti nd control; P1C, F e; P1A, P1D inacti	ed as port pins ive 21D assigned as p ive	port pins
t	oit 5-4 DC <u>Ca</u> Uni <u>Cor</u> Uni <u>PW</u> The CC	IB<1:0>: PWM Duty <u>sture mode:</u> used. <u>npare mode</u> : used. <u>M mode:</u> se bits are the two LS PR1L.	Cycle bit 1 and bi Sbs of the 10-bit P	it 0 WM duty cycle. Th	ne eight MSbs of th	ne duty cycle are f	ound in
t	bit 3-0 CC 000 000 000 000 000 000 000 000 000	P1M<3:0>: Enhance 0 = Capture/Compa 1 = Reserved 0 = Compare mode 1 = Capture mode 1 = Capture mode, 1 = Capture mode, 1 = Capture mode, 1 = Capture mode, 0 = Compare mode, 1 = Compare mode 1 = PWM mode, P1 1 = PWM m	d CCP Mode Sele re/PWM off (reset , toggle output on every falling edge every rising edge every 4th rising ed every 16th rising ed every 16th rising ed every 16th rising ed initialize CCP1 pir initialize CCP1 pir , generate software, trigger special ev A, P1C active-hig A, P1C active-low A P1C active-low	ect bits s ECCP module) match dge edge n low; set output on n high; clear output e interrupt only; CC vent (ECCP resets h; P1B, P1D active r; P1B, P1D active r; P1B, P1D active	compare match (s on compare match CP1 pin reverts to I TMR1 or TMR3, s e-high e-low -high	set CCP1IF) n (set CCP1IF) /O state sets CCP1IF bit)	

Note: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit time base.

Half-Bridge Output Driving a Full-Bridge Circuit

Bridge Timing Diagrams

с	CCP1CON<7:6> SIGNAL			0 Duty		PR2 + 1
-				Cycle	–► Period –––––	
00	(Single Output)	P1A Modulated				
		P1A Modulated				
10	(Half-Bridge)	P1B Modulated				
		P1A Active	·	 		
01	(Full-Bridge,	P1B Inactive			1 1 1	
	Forward)	P1C Inactive				
		P1D Modulated				
		P1A Inactive				
11	(Full-Bridge,	P1B Modulated				
	Reverse)	P1C Active				
		P1D Inactive			 	

- Common other types of motors that we would like to control are: stepper motors (steppers) and servo motors (servos).
- Steppers are usually used when precise rpms are needed or when precise angles need to be turned to.
- Servos are usually used to make motors turn precisely to an angle with loads on them that could try to move the motor away.

Stepper Motors

- Stepper motors are called that way as the user can turn them in small little precise steps.
- For example a 24 step/revolution (spr) motor has a 15° step angle, while a 48spr motor has a 7.5° angle.
- Maximum speed is usually given in steps per second.
- Holding torque determines how much torque is required to move the motor away from its position when control is applied to it.

- One of the most common stepper is a unipolar, permanent magnet stepper.
- A permanent magnet rotor is surrounded by four stators whose polarity can be changed by applying voltage to them.
- Thus, making a stepper turn, requires a precise sequence of control voltage applied to the four pins.

• Steps per revolution is controlled by having rotors with multiple N/S poles

Making Steppers Turn

• Normal stepper sequence:

clockwise

	Step#	Α	В	С	D	
	1	1	0	0	1	
	2	1	1	0	0	
	3	0	1	1	0	
↓	4	0	0	1	1	

• Half-step sequence:

	Step#	Α	В	С	D
I	1	1	0	0	1
0	2	1	0	0	0
vise	3	1	1	0	0
ckv	4	0	1	0	0
clo	5	0	1	1	0
•	6	0	0	1	0
	7	0	0	1	1
	8	0	0	0	1

cntr-clockwise

42

Why use one vs. the other? What's wave drive? (40% more torque, twice the power)

Making Steppers Turn

• Connecting steppers to a microcontroller requires back-EMF protection.

Servo Motors

- Servo motors are usually more expensive than DC motors or steppers.
- Servo motors have a precise control for position and are usually not used for complete rotations (although with a little mod they can be – why?).
- Servo motors have a built in mechanism (close control loop) to keep the position they are set to.
- Servo's usually have three input pins: two for power and one for controlling the angle.
- The control is usually using PWM for position.
- Internally, there is an encoder that measures the location of the shaft, an error signal is produced from the control and current location, and a P, PD, or PID controller is used to reduce this error.
- Length of the pulse dictates location (e.g., 0.6ms = -45°, 1.5ms = 0°, 2.4ms = 45°)

Rotary Encoders

- Rotary encoders are rotational sensors (one component of servos), they can provide precise readings of shafts turning.
- Internally they can be mechanical, magnetic (induction) based or optical.
- Optical encoders are usually of high precision, contain encoder wheels.
- Encoders can be absolute or incremental
- They usually have four to five wires (power+, power-, A, B, 0)
- They can be read using timers but will tie up microcontroller; there are special purpose circuitry to read them, which have parallel or serial interfaces to microcontrollers.

Summary

- Timer peripherals can be used to create longer timeouts, to count external events (and act upon), or to create temporal digital signals.
- PWM signals can be used to drive several transducers, some other transducers will output PWM.
- Motor control, and encoder reading are probably two of the most used timer peripheral scenarios.