
The University of Texas at Arlington

Lecture 11
Timers, Capture/Compare/PWM

CSE 3442/5442

2 2

PIC Timers

•  PIC18 family microcontrollers have two to five timers on
board.

•  Timers can be used to generate time delays or to count
(outside) events happening.

•  Some timers can also be used to control timing of other
peripherals (the designer needs to pay attention to that).

•  Every timer needs a clock that will make it to count.
•  PIC18 timers have the option to use at most ¼ of the

main clock’s frequency or use a separate external signal
for clocking.

•  Timers can overload several pins on the microcontroller

3 3

Timer0

•  Timer-0 can be used as an 8-bit or as a 16-bit timer.
•  Thus, two SFR are used to contain the count:

•  Each timer has a control register: T0CON for timer 0
•  Timer SFR-s are read/write registers but do not have

immediate access.
•  Timer clocks make timers count; the timer clock can be

internal or external.

4 4

Timer-0 Control Register
T0CON

•  Note that timer
interrupt enable/flag
bits are in registers
related to interrupts
(e.g., INTCON)

•  When the timer
overflows, TMR0IF
is set.

•  16- vs. 8-bit timer
•  Prescalers are

useful for large time
delays

5 5

Timer0 Programming

1.  Select 16-bit mode
2.  Load TMR0H(!) then TMR0L with initial values
3.  Start timer
4.  Monitor TMR0IF (or set interrupt on it)
5.  When TMR0IF is set, stop the timer, reset the flag (and if needed go to

step 2)
•  Timer-0 can be also used as an 8-bit timer. In this case TIMR0H is ignored

and the interrupt flag is set when TMR0H overflows.

Prescaler
Stop/start

Port RA4

6 6

Timer1

•  Timer1 is a 16-bit (only) timer (TMR1L, TMR1H)
•  T1CON is the control register and TMR1IF is the

interrupt flag (PIR1).
•  Presacler does not support divisions above 1:8
•  Timer1 has two external clock sources

–  Clock fed into T1CK1 pin (RC0)
–  Crystal (typically 32-kHz) connected between the

T1CKI and T1OSI PINS (RC0&RC1)– used for saving
power during sleep mode. When in sleep mode,
Timer1 is not shut down allowing use as real-time
clock (RTC) that can be used for waking up

7 7

Timer1 Block Diagram

Used with
CCP option

External
Clock
Signal In

Timer 1 crystal, e.g.,
32KHz for sleep mode

8 8

Timer 1 Control Register
 T1CON

•  RD16=1 is the only
option in Timer0 (to
avoid changes in
Timer1H while Timer1L
is read/write a
temporary register is
used)

•  Timer-1 can be used as
i) timer, ii) as
synchronous counter
(T1SYNC), iii)
asynchronous counter

9 9

Timer2

•  Timer2 is an 8-bit (only) timer (TMR2)
•  Timer2 has a period register PR2; Timer2 can be set to

count only to PR2 and set TMR2IF then.
•  Clock source is only Fosc/4 (thus, Timer2 cannot be

used as a counter) ; prescalers and postscalers (count
on interrupt) are available.

more about
these shortly

10 10

Timer2 Control Register
 T2CON

11 11

Timer3

•  Timer3 is a 16-bit (only) timer (TMR3L, TMR3H)
•  Can work with CCP peripheral (later)
•  Can use same external source as timer1
•  Can be used as timer, ascynchronous, or synchronous counter

12 12

Timer3 Control Register
 T3CON

See soon

13 13

Using PIC18 Timers for
Capture, Compare, and PWM

14

PWM Basics

•  PWM = Pulse width modulation
•  Digital signals have two distinct levels: high and low
•  Each of these levels is usually represented by a voltage,

e.g., in PIC low is 0V and high is VCC (e.g., 5V).
•  A temporal digital signal changes with time from low to

high and back.
•  Thus we can describe temporal digital signals with a

series of values representing the time for which they stay
in one state.

•  Periodic temporal digital signals have a distinct
frequency (the inverse of the time between two
consecutive rising edges)

15

PWM Basics (cont’d)

•  If t1+t2 remain constant → frequency remains constant.

•  Such periodic signals can still have varying times they
spend in high vs. low state. PWM Duty Cycle is the
portion of the pulse that stays HIGH relative to the entire
period. DC[%] = 100*t1/(t1+t2)

16

PWM Basics (cont’d)

•  There are various sensors that provide their output as
PWM signals, where the DC corresponds to the reading.

•  There are various actuators that work well with a PWM
input.

•  Actually, an appropriate RC filter (Integrator) can make
an analog signal out of a PWM digital signal

R

C
PWM Analog

17

Capture, Compare, PWM Modules

•  PIC18 microcontrollers can have up to 5 CCP modules.
•  Compare enables the counter value of timers to be

compared to a 16bit register, and if equal perform an
action.

•  Capture can use an external input to copy timer values
into a 16-bit register. Thus, Capture provides the
capability of measuring the period of a pulse.

•  PWM – pulse width modulation, can be used as a quasi
analog output (a timed digital output with duty cycle
setting).

•  These modules are great for driving motors, or reading
encoders.

•  For DC motor control some of the CCPs have been
enhanced and are called ECCP

18 18

Timers and CCP Features

•  Timers 1 and 3 can be used for capture
and compare features

•  Timer 2 is used for PWM
•  As shown before, T3CON is used to chose

the timer for C/C

These rules do not always apply – have to check the specific PIC18 datasheet

19 19

CCP Module Basics

•  Each CCP module has three registers
associated with it:
– CCPxCON controlling the modes
– CCPxL and CCPxH as a 16-bit compare/

capture/PWM duty cycle register
•  Each CCP module has a pin associated

with it (input or output)

20 20

CCP Module Control
CCPxCON

prescalers

21

Compare Mode

•  The CCPRxH:CCPRxL is loaded by the user
•  If Timer1 TMR1H:TMR1L (or Timer3 – T3CON)

count becomes equal to the above set value
then the Compare module can:
–  Drive the CCPx pin high (CCPx config’d as out)
–  Drive the CCPx pin low (CCPx config’d as out)
–  Toggle the CCPx pin (CCPx config’d as out)
–  Trigger a CCPxIF interrupt and clear the timer
–  CCP2 can be used to kick off the A/D converter

21

22

Compare Mode Programming

0. Set up CCP interrupt if needed
1.  Initialize CCPxCON for compare
2.  Set timer source (T3CON)
3.  Initialize CCPRxH:CCPRxL
4.  Make sure CCPx pin is output if used (setting

appropriate bits TRISB or TRISC)
5.  Initialize Timer1 (or Timer3)
6.  Start Timer1 (or Timer3)
7.  Monitor CCPxIF or make sure interrupt is

handled 22

23

Capture Mode

•  The CCPx pin is set as input (with the appropriate TRIS)
•  When an external event triggers the CCPx pin, then the

TMR1H:TMR1L (or Timer3) values will be loaded into
CCPRxH:CCPRxL

•  Four options for CCPx pin triggering:
–  Every falling edge
–  Every rising edge
–  Every fourth rising edge
–  Every fourth falling edge

•  Typical applications are measuring frequency or
pulsewidth.

23

24

Capture Mode Programming for
Frequency Measurement

1.  Initialize CCPxCON for capture
2.  Make CCPx pin an input pin (TRISB/TRISC)
3.  On the first rising edge, Timer1 is loaded into

CCPRxH:CCPRxL ; remember values.
4.  On the next rising edge, Timer1 is loaded again into

CCPRxH:CCPRxL ; subtract previous values from
current values.

5.  You have now the period of the signal captured by
timer ticks. Some basic math will give you frequency

24

25

Capture Mode Programming for
Measuring PWM Duty Cycle

1.  Initialize CCPxCON for capture
2.  Make CCPx pin an input pin (TRISB/TRISC)
3.  Reset Timer1
4.  On the rising edge, Timer1 is started and mode is set

to falling edge detction
5.  On the falling edge the CCPRxH:CCPRxL should be

saved, CCP should be set to rising edge detection
6.  On the rising edge CCPRxH:CCPRxL is saved. Now

we have measurements for t1 and t2.
7.  DC cycle can be calculated while new measurement is

prepared (if continuous measuring is needed)
•  Hint: interrupts can help 25

26 26

PWM Mode

•  PWM output can be created without tedious
programming of the compare mode

•  The ECCP’s PWM mode enables generating temporal
digital signals of varying frequencies and varying DC
(recall: the width of the pulse indicates some measured
quantity).

•  Recall, that the PWM Duty Cycle is the portion of the
pulse at HIGH relative to the entire period.

•  For PWM, Timer2 is used. Recall, that Timer 2 has a
period register PR2.

•  The period of the PWM signal is then:
TPWM=4*N*(PR2+1)/Fosc where N is the prescaler

27 27

PWM Mode - Frequency

•  Since most of the time we know what
frequency we want to set it we need to set
PR2:
PR2=Fosc/(4*N*FPWM) – 1

•  We see thus that the maximum PWM
frequency is about a quarter of the clock
while the minimum is about Fosc/16382

28 28

PWM Mode - Duty Cycle

•  Assuming that we use CCP1, the duty cycle, is specified in 10-bits:
DC1B9:DC1B0 (8 bits of CCPR1L and 2 bits from the CCP1CON
register).

•  If we denote the desired duty cycle by DCR (in [%]), and then:
 DCE:=PR2*DCR/100
 CCPR1L := ⎣DCE⎦ (i.e., the integer part)

 and DC1B1 and DC1B0 will need to be loaded with the remainder
part of DC, where 00 is for 0, 01 is for 0.25, 10 is for 0.5 & 11 is for
0.75

•  This then has an obvious precision influence on the PWM signal’s
duty cycle. Furthermore, the exact value of PR2 also has a strong
influence on such precision.

29 29

PWM Mode - Programming

1.  Set PWM period by setting PR2 and T2CON
(prescaler)

2.  Set PWM duty cycle by calculating and writing
CCPRxL; (remember the remainder)

3.  Set the CCPx as output
4.  Clear TMR2
5.  Load the remainder from step 2 into CCPxCON and

set CCPx to PWM mode
6.  Start Timer 2.
•  This will result in a proper periodic temporal digital

signal (no need to use goto-s)

30

Driving DC Motors

•  Brushed DC motors are common
•  DC motors can run in both direction based on polarity on

the two leads.
•  DC motors run continuously when voltage is applied

(rpm, voltage, torque, and power are all characteristics
that need to be looked up in a catalog).

•  How could we create circuitry that lets them rotate in
both direction and with controlled speed?

31 31

Enhanced CCP

•  Many PIC microcontrollers come with an
enhanced CCP module - ECCP. The enhanced
module is really only enhanced for PWM output.

•  Indeed on PIC18F458 the CCP1is enhanced
and is ECCP1.

•  In the enhanced PWM, active can be set from
high to low. In addition, there are four output
pins (great for driving DC motors both directions
at various speeds)

32

Enhanced CCP Pins for PWM
in PIC18F458/4580

33 33

Enhanced CCP Control

34 34

Enhanced CCP Block Diagram

35 35

DC Motor Drive Half bridge

36 36

DC Motor Drive Full H-bridge

37 37

DC Motor Drive Full H Bridge

38 38

Bridge Timing Diagrams

39

How About Other Types of Motors?

•  Common other types of motors that we would
like to control are: stepper motors (steppers) and
servo motors (servos).

•  Steppers are usually used when precise rpms
are needed or when precise angles need to be
turned to.

•  Servos are usually used to make motors turn
precisely to an angle with loads on them that
could try to move the motor away.

40

Stepper Motors

•  Stepper motors are called that way as the user
can turn them in small little precise steps.

•  For example a 24 step/revolution (spr) motor has
a 15° step angle, while a 48spr motor has a 7.5°
angle.

•  Maximum speed is usually given in steps per
second.

•  Holding torque determines how much torque is
required to move the motor away from its
position when control is applied to it.

41

Common Stepper Motors

•  One of the most common stepper is a
unipolar, permanent magnet stepper.

•  A permanent magnet rotor is
surrounded by four stators whose
polarity can be changed by applying
voltage to them.

•  Thus, making a
stepper turn,
requires a precise
sequence of control
voltage applied to
the four pins.

•  Steps per revolution is controlled by
having rotors with multiple N/S poles

rotor

stators

42

Making Steppers Turn

•  Normal stepper sequence:

•  Half-step sequence:

Step# A B C D

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1

cl
oc

kw
is

e

cn
tr-

cl
oc

kw
is

e

Step# A B C D

1 1 0 0 1

2 1 0 0 0

3 1 1 0 0

4 0 1 0 0

5 0 1 1 0

6 0 0 1 0

7 0 0 1 1

8 0 0 0 1

cl
oc

kw
is

e

cn
tr-

cl
oc

kw
is

e

Why use one vs. the other? What’s wave drive? (40% more torque, twice the power)

43

Making Steppers Turn

•  Connecting steppers to a microcontroller
requires back-EMF protection.

Optoisolator provides
protection from back-EMF

The motor/2803 should have
 a separate power source from

the microcontroller

#include <p18F458.h>
void main()
{

 TRISB = 0;
 while(1)
 {
 PORTB=0x06; //0110
 MSDelay(100);
 PORTB=0x0C; //1100
 MSDelay(100);
 PORTB=0x09; //1001
 MSDelay(100);
 PORTB=0x03; //0011
 MSDelay(100);
 }

}

44

Servo Motors

•  Servo motors are usually more expensive than DC motors or
steppers.

•  Servo motors have a precise control for position and are
usually not used for complete rotations (although with a little
mod they can be – why?).

•  Servo motors have a built in mechanism (close control loop)
to keep the position they are set to.

•  Servo’s usually have three input pins: two for power and one
for controlling the angle.

•  The control is usually using PWM for position.
•  Internally, there is an encoder that measures the location of

the shaft, an error signal is produced from the control and
current location, and a P, PD, or PID controller is used to
reduce this error.

•  Length of the pulse dictates location (e.g., 0.6ms = -45 °,
1.5ms = 0 °, 2.4ms = 45 °)

45

Rotary Encoders

•  Rotary encoders are rotational sensors (one component of servos), they
can provide precise readings of shafts turning.

•  Internally they can be mechanical, magnetic (induction) based or
optical.

•  Optical encoders are usually of high precision, contain encoder wheels.
•  Encoders can be absolute or incremental
•  They usually have four to five wires (power+, power-, A, B, 0)
•  They can be read using timers but will tie up microcontroller; there are

special purpose circuitry to read them, which have parallel or serial
interfaces to microcontrollers.

46

Summary

•  Timer peripherals can be used to create
longer timeouts, to count external events
(and act upon), or to create temporal
digital signals.

•  PWM signals can be used to drive several
transducers, some other transducers will
output PWM.

•  Motor control, and encoder reading are
probably two of the most used timer
peripheral scenarios.

