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Probability vs. Statistics

• Probability and statistics are often blurred together by students. 
They are related but accomplish two completely different tasks. 

• Statistics 

• A field of applied mathematics. Used in other applied fields to draw 
conclusions about data gathered.

• Used for collection, analysis, and interpretation of data.

• Thus, the analysis part of our studies in this class.

• Probability

• A field of theoretical mathematics used in applied fields as a 
modeling tool.

• Predicts the likelihood of events given a set of assumptions (e.g. a 
distribution)

• Thus, the modeling part of our studies in this class.
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Statistics

• Statistics deals with real world data
• Data collection 

• How do we have to collect the data to get valid results?

• Analysis of data
• What properties does the data have?

• How do we ensure our data analysis is valid?

• What distribution does the data come from?

• Interpretation of the data
• Is the data completely different from other data?

• What could cause issues in the data?

3

STATISTICS
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Statistics

• Statistics deal wit interpreting and 
analyzing data collected.

• Statistics attempt to represent the important 
characteristics of a set of data items (or of a 
probability distribution) and the uncertainty 
contained in the set (or the distribution).
• Statistics represent different attributes of the 

probability distribution represented by the data

• Statistics are aimed at making it possible to analyze 
the data based on its important characteristics
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Experiment and Sample Space

• A (random) experiment  is a procedure that has a 
number of possible outcomes and it is not certain 
which one will occur 

• The sample space is the set of all possible 
outcomes of an experiment (often denoted by S). 

• Examples: 
• Coin : S={H, T}

• Two coins: S={HH, HT, TH, TT}

• Lifetime of a system: S={0..∞}
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Mean

• The sample mean represents the average value 
of data set X={x1,x2,…xN}

݉ ൌ
∑ ݔ
ே
ୀଵ

ܰ

• The sample mean is the expected value of a 
statistical random variable, i.e., the expected 
value of a data item drawn at random

݉ ൌ ሾܺሿܧ
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Median and Mode

• The median is the middle element of the sample 
set when ordering them by their magnitude

• If the number of samples is odd this is definite if 
the number of samples is even then it is usually 
defined as the average of the two middle values.

• The mode of a sample set is the most frequently 
obtained (i.e. most likely) value
• Sample sets may not contain a mode (no samples are 

drawn twice), or may contain several modes.
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Variance and Standard 
Deviation

• The variance provides a scalar representing the spread of the 

data set. In a data set X={x1,x2,…xN} an unbiased estimate 
su

2 for the variance can be calculated as

௨ଶݏ ൌ
∑ ሺݔെ݉ሻଶ
ே
ୀଵ

ܰ െ 1

• N-1 is often called the number of degrees of freedom of the data set

• The standard deviation s is the square root of the variance

ݏ ൌ ଶݏ ൌ
∑ ሺݔെ݉ሻଶே
ୀଵ

ܰ െ 1

• In the case of a sample set, s is often referred to as standard error

• Unlike the variance, the standard deviation is measured in the same 
units the original data was measured in. 9

CONFIDENCE INTERVALS
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Percentiles

• To determine the likelihood that a data item 
could come from a distribution we have to be 
able to determine percentiles
• A data item belongs to the nth percentile if the 

likelihood to obtain a value that is equal to the data 
item or even further away from the distribution mean 
is greater or equal to n%

• For certain distributions percentiles can be relatively 
easily calculated for other we usually use tables. 11

Percentiles in Normal 
Distributions

• The percentile in a normal distribution is a function of the 
distance of the data value from the mean and of the 
standard deviation

• E.g. a data value that is more than 1.5 standard deviations larger 
than the mean of the distribution occurs only with probability 
0.0668
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Percentiles of Distributions

• If the distribution of the population is normal, the z-value 
and the z-table allow to compute how likely it would be to 
randomly draw the particular data value (or one even 
further from the mean)
• If the likelihood is not very small, then we should not assume 

that the data value is significant different from the value of the 
distribution

• Percentiles for general, skewed distributions are difficult 
to derive
• So we will need to attempt to formulate our tests on statistics for 

which the distribution is approximately normal
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Sampling Distributions

• Sample Distribution: The probability distribution 
underlying the random variable X from which individual 
data items come from  (μX, σX)

• Sampling Distribution: The probability distribution of a 
statistic calculated from a set of randomly drawn actual 
data items (samples) (μS, σS)

• Sampling Distribution of the mean: The distribution of the means 
of random data samples of size N. For a sample distribution with 
mean μX and standard deviation σX the mean μS and standard 
deviation σS of the sampling distribution of the mean over N
samples is:

ௌߤ ൌ ߤ and  ߪௌ ൌ
ఙ
ே 14
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Central Limit Theorem

• For any sample distribution with mean μX and 
standard deviation σX , the sampling distribution 
of the mean approaches a normal distribution 

with mean μX and standard deviation 
ఙ
ே

as N

becomes large.
• This means that percentiles

for the sampling distribution of 
the mean are easier to compute 
than for the sample distribution.
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Confidence Interval for the Mean

• If we have a large (N≥30) set of samples {Xi} coming 
from a distribution with finite (but unknown) mean X and 
finite variance sX, can we say how close the sample 
average ̅ݔ is to x?

• We can have probabilistic guarantees on this 
(probabilistic bounds):

ܲ ݔ̅ െ ݁  ߤ  ݔ̅  ݁ ൌ 1 െ ߙ
• Where a is our significance level, 1-a is called the confidence 

level, and the interval ̅ݔ െ ݁, ݔ̅ െ ݁ is called the confidence 
interval.

• For the same set of samples, if the interval (i.e., e) is 
increased, our confidence level goes up, and vice-versa.
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Confidence Interval for the Mean (2)

• ܲ ܿଵ  ߤ  ܿଶ ൌ 1 െ ߙ ,  ܿଵ ൌ ݔ̅ െ ݁ , ܿଶ ൌ ݔ̅  ݁

• What is the exact relationship between e and ?

• We know that the distribution of the sample average for 

large N-s is ܰ ,ߤ
ఙ
మ

ே
 

•
ఙ
ே

is called the standard error.

• If N is large, we can estimate ߪ by ݏ ݏ) ൎ (ߪ

• I.e., what is the probability that ̅ݔ falls within a dense part 

of ܰ ,ߤ
௦
మ

ே
 (thus integrating ܰ ,ߤ

௦
మ

ே
 between c1

and c2 ?

• Using a z-table thus: e ൌ ݖ 1 െ ఈ

ଶ
∗ ௦ೣ

ே
where z(p) is 

the pth percentile of the standard normal.
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Confidence Interval for Fixed Samples

• If we have a fixed sample set (i.e., we cannot obtain more samples), 
then we have a choice:
• Have a target confidence level and calculate the confidence interval for 

that. Target confidence levels in engineering start from 95%.

• Have a target confidence interval (or e error) and calculate the 
significance (confidence) level for that. 

• Sometimes we define the relative error as ݁ ൌ ݔ̅/݁ . Target relative error 
levels of 5% or less are acceptable.

• If we have both a target confidence level and confidence interval, 
then the only thing we can do is to test if our samples abide that.

• When plotting our data, we can show our confidence intervals on 
each data (lazy people show the sample standard deviation), and 
we need to disclose N.
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If More Samples Can Be Obtained

• If both e and  have target values (eT and ) and we 
have the liberty to obtain an arbitrary number of 
samples, how many samples Nt should we get?
1. We need to estimate NT based on an initial sample set. Thus 

we need to obtain an initial j=0 set of samples { ܺ
ሺሻሽ with 

N0=30.

2. Calculate of ̅ݔሺሻ and	ݏ
ሺሻ,	Evaluate e(j) for (j) on { ܺ

ሺሻሽ. If test 
succeeds (if (j)<  when e(j)=eT) then we are done.

3. If test fails, then estimate Nj+1.  ܰାଵ ൌ ݖ 1 െ
ఈ

ଶ
∗
௦
ሺೕሻ 


ଶ

4. Throw away(!) { ܺ
ሺሻሽ and obtain a new set of Nj+1 samples 

{ ܺ
ሺାଵሻሽ;  and  j:=j+1. Go back to the second step.
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Confidence Intervals – Remember!

• Confidence intervals based on “Z” are completely 
scientific to use when:
• The distribution from which the samples come from is normal, the 

population variance is known, for any number of samples.

• The distribution from which the samples come from is well behaved, the 
population variance is known, the number of samples is sufficiently 
large.

• Confidence intervals based on “Z” are completely 
accepted to use when:
• The distribution from which the samples come from is well behaved, the 

population variance is unknown but is estimated by an unbiased 
estimator, the number of samples is sufficiently large. 

• Confidence intervals based on “Z” are unaccepted:
• In all other cases!
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Student’s t

• Confidence intervals can be also calculated in the case when:
– The distribution from which the samples come is normal, the 

population variance is unknown, and the number of samples is 
less than sufficiently large. 

• The question becomes, how can we introduce the error in our 
calculations that comes from not knowing the population 
variance but only the sample variance?
• With the Z-based confidence intervals, we were able to use the 

CLT and say, that: 
௫̅ିఓ
௦ೣ/ ே

ൌ ܼ ൎ ܰሺ0,1ሻ for the distribution.

• Is there a distribution that can model 
௫̅ିఓ
௦ೣ/ ே

when N is not 

sufficiently large? There is a distribution, called the Student’s t 
distribution. Student’s t is “flatter than a normal”. It actually is a 
set of distributions (or a distribution with an additional parameter) 
differing in the degrees of freedom (N-1). 21

Confidence Intervals – using “t”

• Use the Student’s t distribution instead of z 
for confidence intervals if:
• The distribution from which the samples come is normal, the 

population variance is unknown, and the number of samples is 
less than sufficiently large. 

• Pay attention to look at the right degrees 
of freedom (always one less than the 
sample size N).
• Using a t-table thus: e ൌ ݐ 1 െ

ఈ

ଶ
, ܰ െ 1 ∗

௦ೣ
ே

where t(p,m) is 

the pth percentile of the m-th degree of freedom Student’s t.
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HYPOTHESIS TESTING

23

Hypothesis Testing

• Hypothesis testing is a statistical method 
used to evaluate if a particular hypothesis 
about data resulting from an experiment is 
reasonable.

• Uses statistics to represent the data
• Value of the data

• Distribution of the data

• Determine how likely it is that a given 
hypothesis about the data is correct 

24
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Hypothesis Testing (2)

• Hypothesis testing can be used to determine if a 
particular hypothesis about a set of observations 
(data) could be trusted

• In general hypothesis testing can be:
• One-sample set

• We are trying to establish the relationship (“sameness” or a 
difference) between a sample set and a random variable.

• Two-sample sets
• We are trying to establish the relationship (“sameness” or a 

difference) between two sample sets.

25

One-sample set Hypothesis Testing

• We are trying to establish the relationship (“sameness” 
or a difference) between a sample set and a random 
variable.

• Example:
• The average and standard deviation of the processing delay in a 

router manufactured by Riporouter are:

R=170ms       R=1.2ms

• The competitors, Suprouter product was measured at ten data 
packets  (with an average mS=171.3):

xi {167,174,168,180,173,182,160,170,174,165}

• Can we conclude that the delay of this second router is on the 
average higher than the delay of Riporouter’s product?

26
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Two-sample set Hypothesis Testing

• We are trying to establish the relationship (“sameness” 
or a difference) between two sample sets.

• Example:
• We measure the processing delay in a router manufactured by 

Riporouter as: yi {168,169, 173,170,173,182,160,170,174,165}

(with an average mR=170ms)

• The competitors, Suprouter product was measured at ten data 
packets: xi {167,174,168,180,173,182,160,170,174,165} (with 
an average mS=171.3)

• Can we conclude that the delay of this second router is on the 
average higher than the delay of Riporouter’s product?

• Does it matter if  the measurement values are paired?
27

Hypothesis Testing (3)

• To be able to trust in a hypothesis on statistical 
data we have to make sure that the data set 
could not be the result of random chance 
• In the first example the hypothesis would be:

H:  s>R

• To determine if the hypothesis has a base we have to 
make sure that we do not accept it if the data could be 
the result of random chance

• What is the likelihood that the data set could be obtained by 
randomly sampling 10 items from the Riporouter?

28
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The Logic of Hypothesis Testing

• The goal of hypothesis testing is to establish the viability of a 
hypothesis about a parameter of the population (very often the 
mean)

• Recall our example: Is the Suprouter delay on the average higher than Riporouter’s?

• Riporouter characteristics are: R=170ms       R=1.2ms

• Suprouter was measured: {167,174,168,180,173,182,160,170,174,165}

• Define hypothesis (also called alternative hypothesis):   HA: S > R

• Set up null hypothesis (i.e. the “opposite” of H) H0: S = R

• Compute the percentile and thus the likelihood H0

• If H0 has more than a small likelihood then the data does not 
significantly support HA (since the data could also represent H0)

• What are small likelihoods? Usually thresholds (significance 
levels) of 5% or smaller are used.

29

Rejecting the Null Hypothesis

• If the null hypothesis’ likelihood is smaller than the significance level 
then the null hypothesis can be rejected.

• Rejection implies that the null hypothesis is discarded in favor of the 
alternative hypothesis and the result is considered significant

• Note, that a p-value less than 5% for the Null hypothesis does NOT imply a 
likelihood of 95% for the alternative hypothesis.

• Note that it is NOT possible to show that the Null hypothesis is correct. Failure to 
reject the Null hypothesis does NOT imply acceptance of the Null hypothesis but 
rather that no significant conclusion could be drawn from the test 

• There are four different situations, two resulting in correct decisions 
(when we accept or reject the null hypothesis correctly). However:

• Type-I error: () When we reject the null hypothesis when it is actually true.

• Type-II error: () When we do not reject (i.e., we accept) the null hypothesis 
when it actually is false. 

• The power of a test: is the probability that we reject H0 when we HA is true, 
which is 1-P(Type-II). 30
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The Number of Tails

• Depending on the hypotheses we might be interested to know how 
the likelihood to generate data that is more extreme than the test 
data in a particular direction (e.g. the likelihood of it being larger than 
or equal to the given data) or in any direction (i.e. that it is further 
from the mean than the given data)

• If we are only interested in data on one end of 

the distribution we perform a one-tailed test, 

i.e. we only count the percentile at one end of 

the distribution

• If we are interested in both sides, we perform a 

two-tailed test which computes the percentile at 

both ends

• If we are not sure we should choose a two-tailed
test (which is more stringent) 31

Critical region

Critical regions

Which Tail Then?

• If you are looking for a decrease, i.e., HA:  
…<... Then use one-tail, lower tail

• If you are looking for an increase, i.e., HA:  
…>... Then use one-tail, upper tail

• If you are looking for a change i.e., HA:  …... 
Then use two tails.

• Always decide on the significance 
level first!

32
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One-Sample set Z-test

• The Z Test is the most basic hypothesis test to evaluate a hypothesis 
related to a set of randomly drawn samples from an unknown distribution X 
({Xi} of size N with an average of: ̅ݔ) and a probability distribution Y for 
which both the mean μY and the standard deviation Y are known. N needs 
to be sufficiently large. The question is: is X related to Y?

• Z assumes that the sampling distribution of the means is normal
• Either the sample distribution is normal or the sample size is very large (N≥30)

• The alternate hypothesis could be:

HA:   X>Y

• Thus the null hypothesis is:

H0:   X=Y

• Compute z-value (the distance between ̅ݔ and Y in standard error units)

ݖ ൌ
௫̅ିఓ
ఙೊ / ே

(the value on the domain of the standard normal)

• Translate z-value to p-value and evaluate significance
• We use a Z-table to determine the weight of the tail from z, i.e., (one half or the full) significance level 

p. If p is smaller than our significance goal a, then we reject the null hypothesis..  (e.g. p = 2.5% -> 
z=1.96)

33

What if I Know I am sampling a Normal?

• The previous procedure can be used for 
any number of samples (N does not need 
to be large) if we know the standard 
deviation of the random variable we are 
comparing the samples to.

34
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What If Y is Unknown?

• If the sample size is sufficiently large, it is 
generally accepted to estimate Y with the 
standard deviation of the sample set sX.

Y ≈ sX.

• Thus estimating the standard error by:
ݏ
ܰ

• This is accepted as the second order statistics 
are expected to converge faster than the mean 
and as ݏ is an overestimate of X.

35

What If Y is Unknown and N is 
Not Sufficiently Large?

• If we know that we are sampling from a 
normal, then instead of using z, we need 
to be using the proper degree of freedom 
Student’s t when determining significance.

• Otherwise, these statistical methods 
cannot be used.

36
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Two-sample Set Tests

• In some cases we need to test if two sets of samples {Xi} and {Yi}
come from the same distribution (or two distributions with the same 
mean). Here we need to know the two distributions’ standard 
deviations. The sample sizes need to be sufficiently large.

• The null hypothesis is then:
H0:  X = Y which is: X-Y = 0

Recall:  ܧ തܺ െ തܻ ൌ ܧ തܺ െ ܧ തܻ ݎܸܽ		݀݊ܽ		 തܺ െ തܻ ൌ ݎܸܽ തܺ  ݎܸܽ തܻ ൌ
ఙ
మ 
ே


ఙೊ
మ 
ேೊ

• The alternate hypothesis can be one-sided or two-sided. 

• z can be determined then as:

ݖ ൌ
ݔ̅ െ തݕ െ ௫ߤ െ ௬ߤ

ߪ
ଶ

ܰ

ߪ
ଶ

ܰ
 

• It gets simpler if the two variances are the same and even simpler 
if the two sample sizes are the same.

37

Unknown Variance, Two-Sample Sets

• a.k.a. two-sample pooled test

• If we can assume that X and Y are the same 
(although unknown), then:

ݖ ൌ
ݔ̅ െ തݕ െ ௫ߤ െ ௬ߤ

ݏ
1
ܰ


1
ܰ

 

where							ݏ
ଶ ൌ

௦
మ ேିଵ ା௦ೊ

మ ேೊିଵ

ேାேೊିଶ

• If sample sizes are not large enough (but we 
assume that we sample from normal 
distributions) we need to use t statistics instead 
of z with the degrees of freedom of: ܰ  ܰ െ 2

38
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Unknown Variances, Two-Sample Sets

• If we do not assume that X and Y are the same 
(although unknown), then:

ݖ ൌ
ݔ̅ െ തݕ െ ௫ߤ െ ௬ߤ

ݏ
ଶ

ܰ

ݏ
ଶ

ܰ
 

• If sample sizes are not large enough (but we assume 
that we are sampling from normal distributions) we need 
to use t statistics instead of z with the degrees of 
freedom of:

߭ ൌ

ೞ
మ

ಿ
ା
ೞೊ
మ

ಿೊ

మ

ሺ௦
మ/ேሻమ/ሺேିଵሻ ା ሺ௦ೊ

మ/ேೊሻమ/ሺேೊିଵሻ
39

Paired Tests

• Paired observations: we have two equal size sample sets, where 
samples were obtained under the same circumstances. Thus the 
pairing of the samples matters as they are not independent.
• E.g.: Does algorithm 1 perform better than algorithm 2 based on their 

performance on a specific set of problems (the same problems for both)

• A paired sample test avoids the variance caused by the controlled 
variable (e.g. the specific problem the algorithm is applied to) by 
establishing the sampling distribution over the differences in the value 
between paired data items from both sets:

ሼܦൌ ܺെ ܻሽ
• Example Hypotheses:

ߤ	:ܪ  0				thus:		ܪ:	ߤൌ 0

• Compute t-value (or z-value):

ିଵݐ ൌ
ഥିఓವ
௦ವ/ ே

ൌ
ഥ

௦ವ/ ே
(under the null hypothesis)

• Translate t-value to the corresponding p-value (as usual)
40
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Two-Sample vs. Paired Samples

• The paired sample test is preferable whenever 
an additional variable is known which produces 
variations in the data items
• Intuitively: a paired sample test often has smaller 

standard deviations because of the avoided variance 
in the conditional variables, thus should offer better 
confidences.

• If no conditional variable that would pair 
individual samples together is known to be 
relevant, the two-sample test is most of the time 
better because it uses more samples 41

TESTING OTHER STATISTICS

42
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Statistics of “Other” Properties

• We have looked at setting a statistical 
relationship between the sample average and 
the mean of the underlying random variable.

• We could do this as we knew the distribution of 
the average (based on CLT for z or based on 
normals adding to normal for t).

• If we knew the sampling distribution of other 
statistics we could do the same for them as 
well…

• Variance (arguably the second most important 
value of a sample set) comes to mind… 43

Testing Variance

• Variance indicates the spread of the values drawn

• Can correspond to “reliability”, “noisiness”, etc.

• To allow significance tests about hypotheses related to the variance we 
need to know what the sampling distribution of the variance of a sample 
distribution is and be able to compute its percentiles

• If we know this distribution, significance tests can be performed in the same way 
as for the mean

• The variance of a random variable can be interpreted itself as a random 
variable (x-μ)2

• While we have shown that the mean and variance of the product of two 
independent random variables are μXμY and σX

2σY
2+μX

2σY
2+μY

2σX
2, respectively, 

independent of the distribution of the variables, this does not apply to the 
variance (dependent variables)

• The distribution of the variance is specific to the distribution of the variable. Only 
for some cases are general distributions of the variance easily known and usable

44
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The Chi-Squared Distribution

• The k
2 distribution is a family of distributions of the sum 

of squares of k variates independently drawn from a 
standard normal distribution
• For k=1 this corresponds to the distribution of the variance of a 

standard normal distribution. For larger k it corresponds to the 
distribution of the variance of a sample set of size k+1 taken 
from the standard normal distribution. K (sometimes ) is the 
degrees of freedom.

ఞమ ;ݔ ݇ ൌ
ݔ

ଶൗ ିଵ݁

ି௫
ଶൗ

2Γሺ݇ 2ൗ ሻ
where (n) is the gamma function, a real valued extension of the factorial function whit ist
argument decremented by one:

If n is an integer, then: Γ ݊ ൌ ݊ െ 1 !

otherwise: Γ ݊ ൌ  ݁ି௧ݔିଵ݀ݔ
ஶ
 45

Chi-Squared Tests

• The k
2 distribution can be used (in a similar fashion to z and t tests) in 

tests related to the variance of a distribution if the compared to distribution 
has a known variance.

• If the distribution is known to be normal the 2 value for the correct number of 
degrees of freedom can be used

• For distributions of unknown shape, the distribution of the mean of samples of 
sufficient size is normal with mean μ and standard deviation σ/√n.  2 thus 
models the variance of sample means of sufficiently large samples (after scaling)

• Example Hypotheses (one sample):
ߪ	:ܪ  :ܪ		:thus				ߪ ߪ ൌ ߪ

• Compute χ2-value:

߯ିଵ
ଶ ൌ

ሺܰ െ 1ሻݏ
ଶ

ߪ
ଶ

• Then the usual “stuff”: translate 2-value to the corresponding p-value according 
to the  2 distribution with n-1 DoF, and evaluate significance

• Translation usually uses 2-table. E.g. p = 2.5% -> 9
2=19.02

46
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Chi-Square, Really?

• So, really, what can Chi-square be used for?

• It measures the squared difference between a sample 
and a known random variable.

• Thus, we can check how well a sample fits an assumed 
distribution. Pearson’s Chi-Squared:
• Goodness of fit: whether or not an observed frequency 

distribution differs from a theoretical distribution.

• Test of independence: assesses whether paired observations 
are independent of each other

• Recommended “recipes” book: J. Crawshaw and J. 
Chambers, “A Concise Course in Advanced Level 
Statistics”. 47

The F-Distribution

• If the shape of the sample distribution is not known and there are not 
enough samples to perform a variance test on a normal sampling 
distribution then we need a different distribution for the variance

• The F-distribution models the distribution of the ratio of two random 
variables each having a chi-square distribution, with the one in the 
nominator having a DoF k1 while the one in the denominator that of 
k2,  scaled by their perspective DoF

I.e., 


ೖభൗ
ೊ
ೖమൗ
,ݔሺܨ~ ݇ଵ, ݇ଶሻ if  ܺ~߯భ

ଶ and Y~߯మ
ଶ

ி ;ݔ ݇ଵ, ݇ଶ ൌ
ሺ݇ݔଵሻభ	∗ 	݇ଶ

మ

ଵ݇ݔ  ݇ଶ ሺభାమሻ
	∗ 	

Γሺሺ݇ଵ݇ଶሻ 2ൗ ሻ	

ݔ ∗ Γ ݇ଵ
2ൗ  Γሺ݇ଶ 2ൗ ሻ

• For k1=1 and k2=n-1, the F-distribution models the distribution of the variance of 
samples drawn from a student-t distribution for sample size n (n-1 degrees of 
freedom)

48
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F-Tests

• There are multiple scenarios under which we can use the F-distribution to 
evaluate hypotheses about the variance of a random distribution

• F-Distribuiton F(k1,k2) models the ratio of the variances of sample sets drawn 
from two normal distributions. 

• F-test can evaluate how likely it is to obtain a given value for the ratio between a known 
normal distribution and a sample set taken from that distribution 

• F-test can evaluate the likelihood to obtain a given value for the ratio between two 
sample sets taken from a normal distribution.

• F-Distribution F(1,k) models the variance of a set of samples taken from a t-
distribution with k degrees of freedom

• The F-test operates in a similar way as the other tests
• Example Hypotheses:  ܪ:	ߪ  :ܪ		:thus				ߪ ߪ ൌ ߪ

• Compute F-value:ܨேିଵ,ேೊିଵ ൌ
௦
మ

ௌೊ
మ

• Translate F-value to the corresponding p-value (percentile) according to the F-distribution for 
sample sizes n,m and evaluate significance

• Translation usually uses F-table. E.g. p = 5% -> F9,9=3.18
49

Other Test Distributions

• F-tests and χ2-tests can also be used in paired scenarios and 
with and without one of the test distributions being known.

• If the variance does not fit the χ2 or the F-distribution, there are a 
large range of related test statistics (and distributions) that can 
be used

• Many variations of the F-test 

• Yates corrections

• Cochran-Mantel-Haenszel chi-square tests

• McNemar’s test

• Likelihood ratio test

• Other “ANOVA” (analysis of variance) tests

• Pearson’s r

• And many mooooreee 50
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SUMMARY OF TESTS
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Summary

• To be able to make statements comparing performance derived 
from experiments it is necessary to show that the differences are not 
the result of chance

• Benefits

• Significance tests are a flexible way to evaluate if a hypothesis about 
the sampling mean (or some similar statistics) has significant support

• Significance tests can be applied without complete knowledge of the 
distributions underlying the problem

• Problems:

• Significance tests only reject the Null hypothesis

• No direct proof of the hypothesis

• Significance tests are difficult when trying to evaluate hypotheses that 
are not involving the mean
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