
Differentiated Priority Scheduling and Adaptive Segmentation for Bluetooth
Piconets

Jyothsna Kalvala, Gergely Záruba
The University of Texas at Arlington

k_jyothsna@yahoo.com, zaruba@uta.edu

Abstract
Bluetooth is a wireless communication technology,

aimed at supporting connectivity among close proximity
mobile devices. Bluetooth enables the design of
low-power, low-cost, and small-size radios. Bluetooth’s
MAC is a polling based protocol, where a central
Bluetooth unit (master) determines channel access to all
other nodes (slaves) in the network (piconet). One of the
open research problems in Bluetooth is the design of
efficient scheduling protocols. This paper proposes a
polling policy that aims to achieve increased system
throughput and reduced packet delays while providing
reasonable fairness among all traffic flows, even in the
presence of asymmetric traffic rates and unpredictable
channel error conditions. Simulation results confirm that
our proposed policy achieves higher throughput, lower
packet delays with reasonable fairness among all the
connections, compared to previous work in the literature.

1. Introduction
Bluetooth (BT) is a wireless technology with the

original aim to eliminate cables between devices. BT is
built on a fast frequency hopping (1600 hops/sec)
physical layer operating in the 2.4 GHz frequency ISM
band. The potential of this technology opened a wide
range of applications; the three most popular usage
scenarios being replacement for cables that are used to
connect devices, universal bridging to connect data
networks, and ad-hoc networking to provide a mechanism
to form small personal area networks (PANs).

 The smallest network unit formed among BT devices
is called a piconet, which comprises of a master node and
one or more slave nodes. During the process of the
piconet establishment, the device that initiates a link
connection with another device within its range takes the
role of the master while the latter takes the role of a slave.
Eventually, other slave devices may join the master and
thus increase the size of the piconet. Exchange of
information takes place only between the master and a
slave (i.e., there is no direct slave-slave communication).

In BT, a virtual channel is defined by a random
hopping sequence, determined by the master of the
piconet (slaves are hop synchronized to that of the master

and transmit data on the same frequency that the master
hops to). All the stations within the piconet share the
radio channel in a time division duplex basis, where the
uplink and downlink transmissions between the master
and each slave are alternated. The master can only start
transmissions in an even-numbered slot while slaves may
transmit data in the following odd-numbered slot if and
only if they have been addressed in the previous slot.
Thus, access to the medium is controlled by the master of
the piconet, which schedules time slots among all the
slaves within the piconet.

Bluetooth allows two types of virtual data
communication links namely, Synchronous Connection
Oriented (SCO) links for voice and Asynchronous
Connection Less links (ACL) for data. Voice traffic (SCO
links) is allocated reserved time slots while data traffic
(ACL links) from different connections are scheduled
based on a polling access scheme that is controlled by the
master of the piconet. Figure 1 shows the TDD slots that
are shared among the SCO voice traffic and the ACL data
traffic from different master-slave connections.

The ACL data are classified based on the data rates
that they carry, namely high data rate packets (also called
DH packets) and medium data rate packets (also called
DM packets). The packets are also classified into three
types based on their length and these include the 1-slot, 3-
slots and 5-slots long packets. The combination of these
two classifications gives rise to six packet types which
have been summarized in Table 1. The 2/3 FEC error-
correction scheme is provided for the entire payload for
DM packets, which helps to reduce the number of
retransmissions that may occur due to wireless errors.
However, in a reasonably error-free environment, FEC
scheme creates unnecessary overhead thus reducing the
throughput. DH packets do not use the 2/3FEC scheme in
the payload. Both DM and DH packets employ an
unnumbered ARQ (Automatic Repeat Request) scheme
that allows data to be transmitted repeatedly from the
sender to the receiver until an acknowledgement is
received in the next scheduled slot.

The limitation of the BT polling scheme is that once a
master polls a slave, the next slot is reserved for the slave
irrespective of whether it has data to transmit or not,
resulting in a pair wise scheduling of slots (i.e., the
master-slave pairs). For such a system, the default Round

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

Robin scheduler, suggested in the BT specification [2], is
not suitable for the BT Piconet as it performs very poorly
in the presence of asymmetric and heterogeneous traffic
conditions.

Another issue that affects the performance is the
presence of errors that are typically present on wireless
channels. Errors may come as interference from other
users using the same frequency band or as impairments
such as multipath fading and shadowing from objects.
Therefore an error-adaptive scheduling scheme is required
that should allow the master to decide whether to use the
more reliable, 2/3 FEC encoded DM packets, or the high
data rate DH packets based on the channel error
conditions.

The above two issues boil down to designing a scheme
that employs an efficient scheduling scheme, which can

predict the availability of data at the master and slave,
thereby preventing wastage of slots and an adaptive
packet selection scheme that can adapt the data
transmission according to channel conditions, by
choosing the correct packet types. This paper focuses on
scheduling ACL data traffic in the presence of
asymmetric and heterogeneous traffic and various
wireless channel error conditions.

The rest of the paper is organized as follows: Section 2
introduces applying previous work in piconet scheduling.
Section 3 introduces our proposed piconet scheduling
scheme. Section 4 describes the simulation model used;
while Section 5 presents the simulation results. Finally,
Section 6 concludes the paper.

master

slave1

slave2

slave

Time
SCO Link ACL Link

Figure 1. ACL and SCO Links.

Table 1. Bluetooth data packet types

Packet
Type

Maximum
payload
[bytes]

FEC
encoding

Maximum data
rate

[kbps]
DM1 17 Yes 108.8
DH1 27 No 172.8
DM3 121 Yes 387.2
DH3 183 No 585.6
DM5 224 Yes 477.8
DH5 339 No 732.2

2. Related Work
Previous work has been focused on designing efficient

MAC scheduling and SAR policies in Bluetooth, which is
motivated by the need to achieve maximum slot usage,
minimum average packet delays, fairness among all the
scheduled connections and adaptive usage of different
packet types that are available as per the BT standard. The
Pure Round Robin (PRR) scheme was the suggested
default-scheduling algorithm for the Bluetooth MAC [2],
which defines a fixed cyclic order in which every slave
gets a chance to transmit one data packet, irrespective of
whether they have data to transmit or not. Thus the
limitation of this algorithm is that all the master-slave

pairs at polled at the same rate, even under asymmetric
traffic (data arrives at different rates at different master-
to-slave and slave-to-master queues) conditions,
eventually wasting slots with connections not having any
backlog.

In [5] and [6], the authors suggest a master-slave
queue-state dependent packet scheduling policy that
assigns a priority to every master-slave pair based on their
queue status. An unused bit in the payload header is used
which is set to indicate the presence next available data in
the queues and vice versa. A higher priority is assigned to
the pair that utilizes slots more efficiently than the pairs
that do not and is hence polled more often than the latter.
The K Fairness policy [5] (KFP) is one such policy,
where a counter is maintained for every master-slave pair
and when a lower priority sacrifices its service to a higher
priority pair, the counter is decreased by one for the
former and increased by one for the latter. This sacrifice
of service is allowed only until the difference between the
maximum and minimum counter values lies within a
threshold K. Once this threshold value is reached, no
more service-sacrifice is performed and Round Robin
scheduling is resumed.

However, the limitation of this algorithm is that when
the threshold is attained, services are no longer sacrificed

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

to higher priority pairs, and the Round Robin scheme is
resumed once again, thus leading to degraded
performance after the threshold is reached. Thus the
performance of this algorithm is limited by the maximum
and minimum counter values. In order to overcome this
limitation, the authors in [11] suggest the Differentiated K
Fairness Policy (Diff_KFP) \which compares the counter
values for the two pairs that are involved in transferring
and receiving the sacrificed service, instead of comparing
the highest and lowest counter values among all the pairs.
If the difference is less than K, then the sacrifice is
performed, otherwise the lower priority pair is polled as
per schedule and its counter value is increased by one.
The authors suggest that QoS can be incorporated in this
algorithm by incrementing the counter of the lower
priority pair by a step-size, when the threshold is reached.
However, the current work does not focus on QoS and
hence the step-size is set to one. This policy attains higher
throughput and decreased packet delays compared to the
K-fairness policy. However, the limitation of the KFP and
the Diff_KFP schemes is that they do not consider the
presence of errors on the wireless channel, which affect
the performance of the system substantially.

In order to provide error protection, this scheme has
been modified to an error adaptive version, according to
which the service is transferred by a master-slave pair that
encounters errors to any other pair such that the difference
between the maximum and minimum counter values
among the pairs is less than the threshold value K. The
limitation of this scheme is that there is no predictive
analysis about the occurrences of errors on the channel.
The service is simply transferred to any other pair that
satisfies the constraint for K value. However, there is no
guarantee that this pair does not have any errors on its
channel. Additionally, on encountering an error at one
connection, the service is transferred to another
connection, without even checking if the second
connection has data to transmit. This will result in
inefficient slot usage. Further, the scheme does not make
use of error correction schemes provided by the Bluetooth
standard, like the FEC and ARQ schemes to handle the
error conditions. These may be more appropriate solutions
to compensate for channel errors.

The segmentation and reassembly scheme incorporated
in the Bluetooth MAC allows the data packets to span
over 1, 3 or 5 slots in length. The manner in which the
data is segmented into these packet types, greatly affects
the efficiency of the system. This is because each packet
type has its own performance characteristics in terms of
data rates and error correction schemes and hence the
SAR policy plays a vital role in achieving high utilization
efficiency.

Kalia et al. have suggested SAR policies for Bluetooth
in [5], which include the Random SAR policy, Batch
SAR policy, Intelligent SAR policy and SAR with partial
reordering. The Random and Batch SAR policies are

static policies and do not adapt to the changing traffic
rates or error rates on the channel. The Intelligent SAR
policy introduces the idea of adaptive segmentation by
dynamically segmenting the datagram packets into
different multi-slot baseband packets, based on the
varying data rates at the master and slave ends. According
to this scheme, initially, all the queues have a baseband
packet size equal to one-slot length. If the data rates at
both the master and slave ends have the same arrival rate
(high or low), the slot size is maintained at one, so that
both ends are served at an equal rate. However, if one of
the ends has a high data rate while the other end has a low
data rate, large MAC packets are used for the side with a
high data rate and small packets are used for the side with
low rates. In order for the SAR at the master to know the
data rate at the slave’s end and vice versa, this policy
suggests the use of a single reserved bit in the data packet
to convey this information. The bit is set to 1, when the
rates are very high and set to 0 when they are very low.

The limitation of this work is that the segmentation
scheme does not consider the presence of error conditions
and the packet type produced based on data rates may not
be suitable for transmission under channel error
conditions. For instance, in a case where the data rates are
very high and a large MAC packet is used as suggested by
the algorithm, the packet will most likely be hit by an
error, under bad error conditions, and this will lead to
multiple retransmissions. This would increase the overall
delay and eventually waste time slots in retransmissions.
Thus, efficient slot utilization is not achieved and this
leads to degradation in system performance.

In [4], SAR – Best Fit and SAR – Optimum Slot
Utilization have been suggested, which also do not
consider the presence of error conditions on the wireless
channel and hence are not very appropriate segmentation
schemes under such conditions. The error adaptive
segmentation scheme has been suggested in [8], according
to which the datagram packets are segmented dynamically
based on the error conditions on the channel, such that
minimum number of retransmissions takes place. By
doing this for every pair, an overall decrease in packet
delays and increase in network throughput is achieved.
This scheme is based on the fact that a large packet has
low overheads and is very advantageous to use when the
error rates on the channel are very low. On the other hand,
small packets have a low packet error rate and so are
advantageous to use when the channel error rates are very
high. Therefore, there exists a threshold where the smaller
packet error rate of a small packet outweighs the benefit
of efficiency of a big packet. Based on this principle a
finite state machine has been derived that suggests the
most suitable packet type to be used based on the packet
error rates (Figure 3). This model assumes a uniform bit
error model that allows one to interpolate the packet error
rates of different packet sizes so that the best packet type
can be determined. Moreover, only high data rate packets

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

(DH5, DH3 and DH1) have been used in this model.
However, it has been suggested that the model may be
extended to incorporate medium rate packets as well.

The decision about the packet type to be used
depending on the channel error conditions is made based
on the calculated packet error rate. The DH packets have
are said to be unsuccessfully transmitted if even a single
bit error occurs. If PER(X) represents the packet error rate
of the DHx (x = 1, 3 or 5) packet and BER represents the
channel bit error rate, then,

PER(X) = 1-(1-BER)bps(X)
If N represents the number of transmissions of a packet

before a successful transmission,

PER

N
−

=
1

1

Therefore the effective bandwidth R of a packet type
DHx can be represented as,

 bps
xDN

KR
)10625)((6-=

where K represents the number of data bits in the packet,
D represents the number of slots occupied by the packet
type DHx. K/(D*625) represents the efficiency of the
packet type used for transmission (Table 2).

 R = (1-PER) x efficiency x bandwidth
From the equations above it can be inferred that the

effective bandwidth of a packet type DHx can be
calculated based on the bit error rate (Figure 2).

This adaptive segmentation scheme has not been
suggested to be employed with a scheduling scheme in
the presence of real-life traffic conditions. Therefore we
propose that a combination scheme that includes the
Differentiated K fairness scheduling policy and the
adaptive segmentation scheme would achieves higher
system efficiency and lower average packet delays
compared to each of these schemes employed individually
in the presence of asymmetric traffic and channel-error
conditions. In order for the adaptive segmentation scheme
to work dynamically with the scheduling scheme in the
presence of changing traffic and error conditions we
suggest a few modifications to each of these schemes.

Table 2. Efficiency of DH packets

Packet type Efficiency [%]
DH1 0.17
DH3 0.59
DH5 0.72

Figure 2. Effective Bandwidth of packets vs. BER

DH5 DH3 DH1

PER > 0.4 PER > 0.75

PER < 0.2 PER < 0.2

Figure 3. FSA for adaptive SAR

3. Proposed Piconet Polling Protocol
The Diff_KFP scheme schedules the pair to be polled

based on the queue status at the master and slave. We
assume that three types of priorities are assigned to the
master-slave pairs based on the presence or absence of
data at the respective queues. These have been
summarized in Table 3.

The 0-0 pairs are polled every threshold number of
cycles to check for any change in the respective master
and slave queue status. This polling is done even if the
threshold value K is not reached. Once the pair to be
polled is picked, the adaptive segmentation scheme is
employed so that the most appropriate baseband packet is
used based on the channel error conditions. Currently, this
work assumes the presence of only the high data rate
packets, namely, DH1, DH3 and DH5.

Our proposed scheme defines CSi, as the channel
status, which represents the maximum allowable packet
length that may be transmitted on the channel between the
ith master-slave pair, for the given error conditions.
Therefore, CSi can assume one of the values in {DH1,
DH3, DH5}. CSi is calculated based on the Packet Error
Rate (PER), as explained by the FSA shown in Figure 3.

Packet Error Rate is defined as the ratio of number of
attempts before a successful transmission to the total
number of attempts until a successful transmission.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

nransmissiouccessfultialsuntilsNumberoftr
nransmissiouccessfultialsuntilsNumberoftr

PERrRatePacketErro
1

)(
−

=

Table 3. Priorities of master-slave queue conditions

Since the error conditions change dynamically on a

channel, the PER needs to be calculated periodically on
every connection so that the value of CSi can be increased
when the channel goes into a good state (low Bit Error
Rate) and decreased when it goes into a bad state (high
Bit Error Rate). These two processes have been defined as
the Stepping Up process and the Stepping Down process
respectively. The goal of both the processes is to
minimize the number of retransmissions (hence the
average packet delay) and maximize the throughput in the
piconet under the given error conditions. When the
channel goes from a good state to a bad state, the
Stepping Down Procedure is implemented where the
master observes the increase in PER for the current packet
type. Once a threshold PER value reached, the next
smaller packet type is chosen for data transmission. This
reduces the chances for this packet type to get hit by an
error. On the other hand, when the channel goes from a
bad state to a good state it is difficult for the master to
deduce this situation. This is because when the packet
gets successfully transmitted, the master does not know if
it is because the current packet type is suitable for the
current error conditions or if the channel is going into a
good state. This is unlike in the stepping down procedure,
where it can be easily deduced when the channel is going
from a good state to a bad state as indicated by an
increase in PER. Therefore, the master periodically
performs the Stepping Up procedure for every master-
slave pair and this period is defined by the number of
slots passed since the pair was last polled. Afterwards, the
master transmits packets continuously to the same slave

until the master is able to deduce the channel error
conditions for this pair by calculating the PER.

The above algorithm helps calculating CSi, which
represents the largest packet type that may be transmitted
on the channel with the least number of retransmissions,
for the given error conditions. However, sometimes, the
data at the head of the queue may contain much less data
than what can be carried as indicated by CSi. In such a
case, the following SAR scheme is employed, which we
name as the random segmentation scheme:

1. if HOL_data_packet_size < 27 bytes , use DH1
2. if 27 bytes < HOL_data_packet_size < 183 bytes,

use DH3
3. if 183 bytes < HOL_data_packet_size, use DH5.

Therefore, packet type used to transmit the data from
the master to the slave, defined as m_packet_length, is
min(CSi, HOL_data_packet_size).

The above algorithm is implemented at the master’s
end to deduce the suitable packet type for transmitting
data from the master to the slave. However, the slave is
unable to perform the same calculation while transmitting
data from its end to the master. This is because,
calculation of PER requires subsequent retransmissions of
data packets, until a successful transmission takes place.
However according to the BT specification, subsequent
retransmissions are not allowed from the slave’s side.
Therefore, when an error occurs during data transmission
from the slave, this baseband packet is retransmitted only
when it is polled again. As a result, the slave is not able to
deduce the correct packet type based on errors on the
channel. Taking this into consideration, we propose that
the slave can use the same packet type that was
transmitted from the master, defined by m_packet_length.
However, as explained in the above algorithm, the HOL
packet size may be smaller than the m_packet_length and
so the slave deduces the correct packet type as
min(m_packet_length., HOL_packet_size (at the slave)).

4. Simulation Model
In order to obtain results for our proposed algorithm

and to compare with the previously suggested algorithms
in literature, we used a discrete event simulator we have
developed in C++. All simulations were performed on a
piconet consisting of six slaves and a master. For all
measurement points, enough simulations have been run to
claim a 95% confidence that the average result shown has
less than 5% error.

4.1 Data Traffic Model
Data traffic was generated independently for each M-S

pair in each direction according to a Poisson process. The
length for the datagram packets was also assumed to be
I.I.D. exponentially distributed with average packet size
of 500 bytes. The load in the piconet was varied by

Priority Queue status Description
1 1-1 Data present at master-

to-slave queue and slave-to-
master queue

2 1-0 Data present at the
master-to-slave queue, no
data present from slave-to-
master queue

2 0-1 No data present at
master-to-slave queue, data
present at the slave-to-
master queues

3 0-0 No data present at
master-to-slave queue, no
data present at slave-to-
master queue

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

varying the inter-arrival times for the packets. For
example, high load is simulated by reducing the packet
inter-arrival time and low load is simulated by increasing
the inter-arrival time.

4.2 Correlated Fading Channel Model
Based on the observations reported earlier, we model

the Bluetooth RF link as a 2-state Markov Chain
[1][7][9][12]. Since every wireless connection between
the master and slave is an independent channel with its
own time-varying error distribution [10], this scenario
was simulated using a 2-state Markov model on each
master-slave connection. According to the 2-state Markov
model, at any instant, the channel can be in any one of the
two states, namely, good state or bad state. The bit error
rate (BER) is low in the good state and high in the bad
state. However, errors occur uniformly in each of these
states. Figure 4. describes the two states in the 2-state
Markov model.

The time spent in each of these good and bad error
states in exponentially distributed with different rates of
state transitions μG=1/PG and μB=1/PB. In our current
simulation, we used values from [3]; PG = 435 ms and PB
= 55.8 ms. The BER values were simulated in orders of
10-6, 10-5 , 10-4, 10-3 and 10-2 . The threshold value, K for
the Differentiated K-fairness scheduling scheme was
assumed to be equal to 300 and the threshold number of
slots since last poll was taken to be 100 slots before
performing the Step Up process for every master-slave
pair.

GOOD
STATE

BAD
STATE

μg

μb

Figure 4. Markov model of wireless channel errors

4.3 Algorithms Implemented
We have implemented and compared five algorithms

namely, i) differentiated scheduling with adaptive
segmentation scheme; ii) Round Robin scheduling with
adaptive segmentation scheme; iii) wireless KFP
scheduling with random SAR; iv) KFP scheduling with
random SAR and v) Round Robin scheduling with
random SAR scheme. Each of these policies was
implemented with full compliance to the BT ARQ
scheme.

4.4 Performance Metrics
The algorithms have been compared in terms of three

metrics namely, utilization, delay and fairness. Utilization
was measured by comparing actual throughput to the
1Mbps total channel capacity. Delay has been measured
in the form of two different parameters namely: average
end-to-end packet delay, also called the average waiting
time per packet and average segment delay. Fairness has
been calculated in terms of throughput and delay, which is
used as a measure to calculate the bandwidth and delay
equality between connections. Assuming that there are n
individual connections (these connections include master-
to-slave and slave-to-master connections, each considered
separately), and Ti is the throughput for the ith connection,
the fairness in throughput is calculated using the formula
in Equation 1.

Fairness f(T1, T2 … Tn) =
2

0

2

0

)(

)(

∑

∑

=

=
n

i
i

n

i
i

Tn

T
 (1)

If the connections share the bandwidth equally then
f=1, else it is less than 1. Fairness in delay is calculated
according to Equation 2.

 Fairness f(D1, D2 … Dn) =
2

0

2

0

)(

)(

∑

∑

=

=
n

i
i

n

i
i

Dn

D
 (2)

where Di represents the average packet delay on every
connection, between the master and each slave.

Yet another comparison is performed in terms of the
effect of variation in the distribution of load (for a
particular load value) on the channel utilization and
average end-to-end packet delays. Coefficient of variation
of a random variable can be defined as the ratio of
standard deviation to the mean of the distribution –
Equation 3. Using COV as a load measure we can easily
depict heterogeneous traffic. These comparisons were
performed for a high load of 0.84Mbps and a low load of
0.192Mbps

COV=

n

n
n

i
i

n

i

n

i
ii

/

)(1

0

0 0

22

∑

∑ ∑

=

= =

−

λ

λλ
=

Mean
iondardDeviatS tan (3)

5. Simulation Results
Figure 5 shows the comparison of the five target

algorithms in terms of channel utilization with varying

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

system load. It can be seen that our proposed combination
scheme outperforms the other four algorithms, while the
Round Robin scheduling policy with adaptive
segmentation performs next best. This indicates that the
error adaptive packet segmentation is one of the most
important factors that determine the performance of a
system. The wireless adaptive K fairness scheduling
scheme with random segmentation on the other hand does
not perform very well, which is due to two reasons, i)
when the threshold value, K, is reached, the Round Robin
scheme is resumed, which is an inefficient scheduling
policy under asymmetric traffic conditions; ii) random
SAR policy does not suitably handle error conditions
further adding to the degradation in performance.
According to this scheme error handling is performed by
transferring service from an error hit connection to
another connection provided the threshold value is not
reached. However, this is an inefficient scheme because,
in a scenario where most of the connections are in a bad
error state, lot of slots would get wasted in trying to
transfer the service to a connection that is in good error
state (less BER). This only decreases the overall
throughput and increases the waiting time of packets. The
Differentiated K fairness scheduling with random SAR
policy, also shows degraded channel utilization. Though
the differentiated scheduling scheme avoids slot wastage
by polling the higher priority pairs more often than the
lower priority pairs, the random SAR scheme leads to
very poor system throughput in the presence of wireless
channel conditions. Finally, the Round Robin scheduling
with random segmentation shows the most degraded
performance since it neither provides a mechanism to
avoid polling pairs that do not have data to transmit nor a
mechanism to avoid retransmissions due to errors.

Figure 6 shows the average end-to-end packet delay
versus a varying channel load. It can be seen that
proposed scheme leads to the least average packet delay
compared to the other algorithms. The differentiated KFP
scheme reduces delay by polling those pairs that have data
to be transmitted, unlike the Round Robin scheme which
keeps these pairs waiting though they have data to
transmit. Furthermore, the adaptive segmentation scheme
reduces the number of retransmissions, and consequently
minimizes the overall delay in the system.

Figure 7 compares the average segment delay versus
varying channel load in the five algorithms. It can be
observed that the average segment delay is the lowest for

the differentiated K Fairness scheduling with adaptive
segmentations scheme. Since the segmentation scheme
chooses the most appropriate segment type, depending on
the channel error conditions, it reduces the error hit ratio
of the segments. Furthermore, the differentiated K
Fairness scheme handles those pairs more often that have
data to transmit and thus decrease the delay. Extending
the logic of this reasoning, the other policies do not
perform as well as this scheme.

Fairness in throughput versus the channel load is
compared in Figure 8. It can be seen that the differentiated
KFP with adaptive segmentation scheme provides
reasonable fairness though it does not provide the
maximum fairness. This is because factors that enable
high throughput oppose those that enable high fairness
and hence both the goals are not achievable
simultaneously. It can be seen that the Round Robin
scheduling scheme provides the highest fairness in terms
of throughput at very high loads. This is because all the
pairs will have data to transmit and each pair gets an equal
opportunity for data transmission by getting polled in a
sequence.

Figure 9 shows a comparison of fairness in average
packet delay versus the channel load. It can be seen that
proposed scheme performs reasonably fair in terms of
average packet delay though it does not provide the best
fairness index. The reason is similar to what has been
explained for fairness in throughput.

The effect of variation in channel load (high channel
load = 0.84Mbps) on the system throughput and average
packet delay have been compared for the five algorithms
in Figure 10 and Figure 11 respectively. From Figure 10,
we can deduct that the Round Robin scheduling with
random SAR and Round Robin scheduling with adaptive
SAR starts to become unstable at high COV values, while
the other three schemes perform almost steadily for all
COV values. According to Figure 11, the delay
performance of Round Robin scheduling with random
segmentation becomes increasingly unstable for higher
COV values. The other four algorithms on the other hand
show a relatively stable performance for all COV values.
The figures show that Round Robin scheduling scheme is
not a suitable under high variations in traffic conditions.

Figure 12 and Figure 13 plot similar curves to Figure
10 and Figure 11 except they are showing results for low
overall channel load (0.192Mbps). These figures second
the findings described in the previous paragraph.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

Figure 5. Channel utilization vs. load.

Figure 6. Packet delay vs. load.

Figure 7. Segment delay vs. load.

Figure 8. Fairness in throughput vs. load.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

8

Figure 9. Fairness in packet delay vs. load.

Figure 10. Fairness in throughput vs. COV in load (high load of 0.84Mbps).

Figure 11. Average packet delay vs. load (high load of 0.84Mbps).

Figure 12. Fairness in throughput vs. COV in load (low load of 0.192Mbps).

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

9

Figure 13. Average packet delay vs. load (low load of 0.192Mbps).

6. Conclusions and Future Work
In this work we have suggested a piconet scheduling

scheme for the Bluetooth MAC that aims at increasing
throughput, decreasing average end-to-end packet delay
and providing reasonable fairness among all the
connections, achieving all these in the presence of
asymmetric traffic conditions and wireless channel errors.
Our proposed algorithm employs a differentiated K
fairness scheduling policy combined with an error
adaptive segmentation scheme that enables good system
performance by minimizing slot wastage. The
differentiated K fairness scheme uses the TDD slots
effectively by polling those pairs more often that have
data to transfer, while the adaptive segmentation scheme
does the same by segmenting the data into suitable packet
types so that minimum number of retransmissions takes
place in the presence of error conditions. Our simulations
have shown that the proposed scheme adapts better to the
changing traffic conditions and channel error conditions,
than previous algorithms reviewed.

In the current work, we have considered only the
presence of ACL traffic. More specifically, we have
considered only DH packets; the scheme can be extended
to include DM packets as well by modifying the FSA
used to deduce the packet types. The suggested adaptive
segmentation scheme can be extended by choosing the
suitable packet type not only based on the deduced packet
error rates but also based on QoS requests, data rates
arriving at the master and slave ends and the number of
slots available between the reserved SCO slots. Our work
considers only errors in the payload and does not consider
errors in the packet access code and packet header. The
finite state scheme can be modified by considering these
as well.

References
[1] H.Balakrishnan, V.N. Padmanabhan, S.Seshan and R.H.

Katz, “A comparison of mechanism for improving TCP
performance over wireless links”, IEEE/ACM Transactions
on Networking, vol. 5, no.6, pp.756-769, Dec. 1997.

[2] Bluetooth Special Interest group, “Specification of the
Bluetooth System,” 1.1b, vol. 1 and 2, Feb 2001.

[3] A. Das, A. Ghose, R. Shorey, “Adaptive Link-Level Error
Recovery Mechanisms in Bluetooth,” Proceedings of IEEE
International Conference on Personal Wireless
Communication, pp.85-89, 2000.

[4] Das, A. Ghose, R. Shorey, “Enhancing Performance of
Asynchronous Data Traffic over the BT Wireless Ad Hoc
Network”, IEEE INFOCOM, pp. 591-600, April 2001.

[5] M. Kalia, D.Bansal, and R.Shorey, “Data Scheduling and
SAR for Bluetooth MAC,” Proceedings of the IEEE VTC
2001, vol. 2, pp. 716-720, Tokyo, Japan, May 2001.

[6] M. Kalia, D. Bansal, R. Shorey, “MAC Scheduling and
SAR Policies for Bluetooth: A master Driven TDD Pico-
Cellular Wireless System,” 6th IEEE International
Workshop MOMUC, Nov 1999.

[7] R.H. Katz, “A trace Based Approach for modeling wireless
channel behavior”, ACM SIGCOMM, France, Aug. 1997.

[8] J. Kim, Y. Kim, J.S. Ma, “An Adaptive segmentation
scheme for the Bluetooth based wireless channel,”
Proceedings of IEEE IC3N, pp. 440-445, 2001.

[9] A. Kumar, “Comparative Performance Analysis of versions
of TCP in Local Network with a Lossy link,” IEEE Trans.
on Networking, vol. 6, no.4, pp.485-498, Aug. 1998.

[10] D.Moldkar, “Review on radio propagation into and within
buildings”, IEEE Proc-H, vol. 138, no.1, Feb 1991.

[11] J.S. Oh, Y. Kim, Y. Joo, O.Kwon, K.H. Tchah, T. Lee,
“Differentiated Fairness Guaranteeing Scheduling Policies
for Bluetooth,” Proceedings of IEEE 56th VTC, Sept. 2002

[12] H.Wang and N. Moayeri, “Finite State Markov channel - a
useful model for radio communication channels”, IEEE
Trans. Vehic. Technology, vol. 44, pp-163-171 Feb. 1995

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

