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Abstract 
Bluetooth is a wireless communication technology, 

aimed at supporting connectivity among close proximity 
mobile devices. Bluetooth enables the design of 
low-power, low-cost, and small-size radios. Bluetooth’s 
MAC is a polling based protocol, where a central 
Bluetooth unit (master) determines channel access to all 
other nodes (slaves) in the network (piconet). One of the  
open research problems in Bluetooth is the design of 
efficient scheduling protocols. This paper proposes a 
polling policy that aims to achieve increased system 
throughput and reduced packet delays while providing 
reasonable fairness among all traffic flows, even in the 
presence of asymmetric traffic rates and unpredictable 
channel error conditions. Simulation results confirm that 
our proposed policy achieves higher throughput, lower 
packet delays with reasonable fairness among all the 
connections, compared to previous work in the literature. 

 

1. Introduction 
Bluetooth (BT) is a wireless technology with the 

original aim to eliminate cables between devices. BT is 
built on a fast frequency hopping (1600 hops/sec) 
physical layer operating in the 2.4 GHz frequency ISM 
band. The potential of this technology opened a wide 
range of applications; the three most popular usage 
scenarios being replacement for cables that are used to 
connect devices, universal bridging to connect data 
networks, and ad-hoc networking to provide a mechanism 
to form small personal area networks (PANs). 

 The smallest network unit formed among BT devices 
is called a piconet, which comprises of a master node and 
one or more slave nodes. During the process of the 
piconet establishment, the device that initiates a link 
connection with another device within its range takes the 
role of the master while the latter takes the role of a slave. 
Eventually, other slave devices may join the master and 
thus increase the size of the piconet. Exchange of 
information takes place only between the master and a 
slave (i.e., there is no direct slave-slave communication). 

In BT, a virtual channel is defined by a random 
hopping sequence, determined by the master of the 
piconet (slaves are hop synchronized to that of the master 

and transmit data on the same frequency that the master 
hops to). All the stations within the piconet share the 
radio channel in a time division duplex basis, where the 
uplink and downlink transmissions between the master 
and each slave are alternated. The master can only start 
transmissions in an even-numbered slot while slaves may 
transmit data in the following odd-numbered slot if and 
only if they have been addressed in the previous slot. 
Thus, access to the medium is controlled by the master of 
the piconet, which schedules time slots among all the 
slaves within the piconet.  

Bluetooth allows two types of virtual data 
communication links namely, Synchronous Connection 
Oriented (SCO) links for voice and Asynchronous 
Connection Less links (ACL) for data. Voice traffic (SCO 
links) is allocated reserved time slots while data traffic 
(ACL links) from different connections are scheduled 
based on a polling access scheme that is controlled by the 
master of the piconet. Figure 1 shows the TDD slots that 
are shared among the SCO voice traffic and the ACL data 
traffic from different master-slave connections. 

The ACL data are classified based on the data rates 
that they carry, namely high data rate packets (also called 
DH packets) and medium data rate packets (also called 
DM packets). The packets are also classified into three 
types based on their length and these include the 1-slot, 3-
slots and 5-slots long packets. The combination of these 
two classifications gives rise to six packet types which 
have been summarized in Table 1. The 2/3 FEC error-
correction scheme is provided for the entire payload for 
DM packets, which helps to reduce the number of 
retransmissions that may occur due to wireless errors. 
However, in a reasonably error-free environment, FEC 
scheme creates unnecessary overhead thus reducing the 
throughput. DH packets do not use the 2/3FEC scheme in 
the payload. Both DM and DH packets employ an 
unnumbered ARQ (Automatic Repeat Request) scheme 
that allows data to be transmitted repeatedly from the 
sender to the receiver until an acknowledgement is 
received in the next scheduled slot. 

The limitation of the BT polling scheme is that once a 
master polls a slave, the next slot is reserved for the slave 
irrespective of whether it has data to transmit or not, 
resulting in a pair wise scheduling of slots (i.e., the 
master-slave pairs). For such a system, the default Round 
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Robin scheduler, suggested in the BT specification [2], is 
not suitable for the BT Piconet as it performs very poorly 
in the presence of asymmetric and heterogeneous traffic 
conditions.  

Another issue that affects the performance is the 
presence of errors that are typically present on wireless 
channels. Errors may come as interference from other 
users using the same frequency band or as impairments 
such as multipath fading and shadowing from objects. 
Therefore an error-adaptive scheduling scheme is required 
that should allow the master to decide whether to use the 
more reliable, 2/3 FEC encoded DM packets, or the high 
data rate DH packets based on the channel error 
conditions.  

The above two issues boil down to designing a scheme 
that employs an efficient scheduling scheme, which can 

predict the availability of data at the master and slave, 
thereby preventing wastage of slots and an adaptive 
packet selection scheme that can adapt the data 
transmission according to channel conditions, by 
choosing the correct packet types. This paper focuses on 
scheduling ACL data traffic in the presence of 
asymmetric and heterogeneous traffic and various 
wireless channel error conditions.  

The rest of the paper is organized as follows: Section 2 
introduces applying previous work in piconet scheduling. 
Section 3 introduces our proposed piconet scheduling 
scheme. Section 4 describes the simulation model used; 
while Section 5 presents the simulation results. Finally, 
Section 6 concludes the paper. 

 
master 

slave1 

slave2 

slave

Time 
SCO Link ACL Link

 
Figure 1. ACL and SCO Links.

Table 1. Bluetooth data packet types 

Packet 
Type 

Maximum 
payload 
[bytes] 

FEC 
encoding 

Maximum data 
rate 

[kbps] 
DM1 17 Yes 108.8 
DH1 27 No 172.8 
DM3 121 Yes 387.2 
DH3 183 No 585.6 
DM5 224 Yes 477.8 
DH5 339 No 732.2 

2. Related Work 
Previous work has been focused on designing efficient 

MAC scheduling and SAR policies in Bluetooth, which is 
motivated by the need to achieve maximum slot usage, 
minimum average packet delays, fairness among all the 
scheduled connections and adaptive usage of different 
packet types that are available as per the BT standard. The 
Pure Round Robin (PRR) scheme was the suggested 
default-scheduling algorithm for the Bluetooth MAC  [2], 
which defines a fixed cyclic order in which every slave 
gets a chance to transmit one data packet, irrespective of 
whether they have data to transmit or not. Thus the 
limitation of this algorithm is that all the master-slave 

pairs at polled at the same rate, even under asymmetric 
traffic (data arrives at different rates at different master-
to-slave and slave-to-master queues) conditions, 
eventually wasting slots with connections not having any 
backlog.  

In [5] and [6], the authors suggest a master-slave 
queue-state dependent packet scheduling policy that 
assigns a priority to every master-slave pair based on their 
queue status. An unused bit in the payload header is used 
which is set to indicate the presence next available data in 
the queues and vice versa. A higher priority is assigned to 
the pair that utilizes slots more efficiently than the pairs 
that do not and is hence polled more often than the latter. 
The K Fairness policy [5] (KFP) is one such policy, 
where a counter is maintained for every master-slave pair 
and when a lower priority sacrifices its service to a higher 
priority pair, the counter is decreased by one for the 
former and increased by one for the latter. This sacrifice 
of service is allowed only until the difference between the 
maximum and minimum counter values lies within a 
threshold K. Once this threshold value is reached, no 
more service-sacrifice is performed and Round Robin 
scheduling is resumed.  

However, the limitation of this algorithm is that when 
the threshold is attained, services are no longer sacrificed 
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to higher priority pairs, and the Round Robin scheme is 
resumed once again, thus leading to degraded 
performance after the threshold is reached. Thus the 
performance of this algorithm is limited by the maximum 
and minimum counter values. In order to overcome this 
limitation, the authors in [11] suggest the Differentiated K 
Fairness Policy (Diff_KFP) \which compares the counter 
values for the two pairs that are involved in transferring 
and receiving the sacrificed service, instead of comparing 
the highest and lowest counter values among all the pairs. 
If the difference is less than K, then the sacrifice is 
performed, otherwise the lower priority pair is polled as 
per schedule and its counter value is increased by one. 
The authors suggest that QoS can be incorporated in this 
algorithm by incrementing the counter of the lower 
priority pair by a step-size, when the threshold is reached. 
However, the current work does not focus on QoS and 
hence the step-size is set to one. This policy attains higher 
throughput and decreased packet delays compared to the 
K-fairness policy. However, the limitation of the KFP and 
the Diff_KFP schemes is that they do not consider the 
presence of errors on the wireless channel, which affect 
the performance of the system substantially.  

In order to provide error protection, this scheme has 
been modified to an error adaptive version, according to 
which the service is transferred by a master-slave pair that 
encounters errors to any other pair such that the difference 
between the maximum and minimum counter values 
among the pairs is less than the threshold value K. The 
limitation of this scheme is that there is no predictive 
analysis about the occurrences of errors on the channel. 
The service is simply transferred to any other pair that 
satisfies the constraint for K value. However, there is no 
guarantee that this pair does not have any errors on its 
channel. Additionally, on encountering an error at one 
connection, the service is transferred to another 
connection, without even checking if the second 
connection has data to transmit. This will result in 
inefficient slot usage. Further, the scheme does not make 
use of error correction schemes provided by the Bluetooth 
standard, like the FEC and ARQ schemes to handle the 
error conditions. These may be more appropriate solutions 
to compensate for channel errors.  

The segmentation and reassembly scheme incorporated 
in the Bluetooth MAC allows the data packets to span 
over 1, 3 or 5 slots in length. The manner in which the 
data is segmented into these packet types, greatly affects 
the efficiency of the system. This is because each packet 
type has its own performance characteristics in terms of 
data rates and error correction schemes and hence the 
SAR policy plays a vital role in achieving high utilization 
efficiency.  

Kalia et al. have suggested SAR policies for Bluetooth 
in [5], which include the Random SAR policy, Batch 
SAR policy, Intelligent SAR policy and SAR with partial 
reordering. The Random and Batch SAR policies are 

static policies and do not adapt to the changing traffic 
rates or error rates on the channel. The Intelligent SAR 
policy introduces the idea of adaptive segmentation by 
dynamically segmenting the datagram packets into 
different multi-slot baseband packets, based on the 
varying data rates at the master and slave ends. According 
to this scheme, initially, all the queues have a baseband 
packet size equal to one-slot length. If the data rates at 
both the master and slave ends have the same arrival rate 
(high or low), the slot size is maintained at one, so that 
both ends are served at an equal rate. However, if one of 
the ends has a high data rate while the other end has a low 
data rate, large MAC packets are used for the side with a 
high data rate and small packets are used for the side with 
low rates. In order for the SAR at the master to know the 
data rate at the slave’s end and vice versa, this policy 
suggests the use of a single reserved bit in the data packet 
to convey this information. The bit is set to 1, when the 
rates are very high and set to 0 when they are very low. 

The limitation of this work is that the segmentation 
scheme does not consider the presence of error conditions 
and the packet type produced based on data rates may not 
be suitable for transmission under channel error 
conditions. For instance, in a case where the data rates are 
very high and a large MAC packet is used as suggested by 
the algorithm, the packet will most likely be hit by an 
error, under bad error conditions, and this will lead to 
multiple retransmissions. This would increase the overall 
delay and eventually waste time slots in retransmissions. 
Thus, efficient slot utilization is not achieved and this 
leads to degradation in system performance. 

In [4], SAR – Best Fit and SAR – Optimum Slot 
Utilization have been suggested, which also do not 
consider the presence of error conditions on the wireless 
channel and hence are not very appropriate segmentation 
schemes under such conditions. The error adaptive 
segmentation scheme has been suggested in [8], according 
to which the datagram packets are segmented dynamically 
based on the error conditions on the channel, such that 
minimum number of retransmissions takes place. By 
doing this for every pair, an overall decrease in packet 
delays and increase in network throughput is achieved. 
This scheme is based on the fact that a large packet has 
low overheads and is very advantageous to use when the 
error rates on the channel are very low. On the other hand, 
small packets have a low packet error rate and so are 
advantageous to use when the channel error rates are very 
high. Therefore, there exists a threshold where the smaller 
packet error rate of a small packet outweighs the benefit 
of efficiency of a big packet. Based on this principle a 
finite state machine has been derived that suggests the 
most suitable packet type to be used based on the packet 
error rates (Figure 3). This model assumes a uniform bit 
error model that allows one to interpolate the packet error 
rates of different packet sizes so that the best packet type 
can be determined. Moreover, only high data rate packets 
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(DH5, DH3 and DH1) have been used in this model. 
However, it has been suggested that the model may be 
extended to incorporate medium rate packets as well. 

The decision about the packet type to be used 
depending on the channel error conditions is made based 
on the calculated packet error rate. The DH packets have 
are said to be unsuccessfully transmitted if even a single 
bit error occurs. If PER(X) represents the packet error rate 
of the DHx (x = 1, 3 or 5) packet and BER represents the 
channel bit error rate, then, 

PER(X) = 1-(1-BER)bps(X)  
If N represents the number of transmissions of a packet 

before a successful transmission,  

 
PER

N
−

=
1

1
 

Therefore the effective bandwidth R of a packet type 
DHx can be represented as, 

 bps
xDN

KR
 )10625)(( 6-=  

where K represents the number of data bits in the packet, 
D represents the number of slots occupied by the packet 
type DHx. K/(D*625) represents the efficiency of the 
packet type used for transmission (Table 2).  

 R = (1-PER) x efficiency x bandwidth 
From the equations above it can be inferred that the 

effective bandwidth of a packet type DHx can be 
calculated based on the bit error rate (Figure 2).  

This adaptive segmentation scheme has not been 
suggested to be employed with a scheduling scheme in 
the presence of real-life traffic conditions. Therefore we 
propose that a combination scheme that includes the 
Differentiated K fairness scheduling policy and the 
adaptive segmentation scheme would achieves higher 
system efficiency and lower average packet delays 
compared to each of these schemes employed individually 
in the presence of asymmetric traffic and channel-error 
conditions. In order for the adaptive segmentation scheme 
to work dynamically with the scheduling scheme in the 
presence of changing traffic and error conditions we 
suggest a few modifications to each of these schemes. 

 
 

Table 2. Efficiency of DH packets 

Packet type Efficiency [%] 
DH1 0.17 
DH3 0.59 
DH5 0.72 

 

 

 
Figure 2. Effective Bandwidth of packets vs. BER 

 

DH5 DH3 DH1 

PER > 0.4 PER > 0.75 

PER < 0.2 PER < 0.2 

 

Figure 3. FSA for adaptive SAR 

3. Proposed Piconet Polling Protocol 
The Diff_KFP scheme schedules the pair to be polled 

based on the queue status at the master and slave. We 
assume that three types of priorities are assigned to the 
master-slave pairs based on the presence or absence of 
data at the respective queues. These have been 
summarized in Table 3. 

The 0-0 pairs are polled every threshold number of 
cycles to check for any change in the respective master 
and slave queue status. This polling is done even if the 
threshold value K is not reached. Once the pair to be 
polled is picked, the adaptive segmentation scheme is 
employed so that the most appropriate baseband packet is 
used based on the channel error conditions. Currently, this 
work assumes the presence of only the high data rate 
packets, namely, DH1, DH3 and DH5.  

Our proposed scheme defines CSi, as the channel 
status, which represents the maximum allowable packet 
length that may be transmitted on the channel between the 
ith master-slave pair, for the given error conditions. 
Therefore, CSi can assume one of the values in {DH1, 
DH3, DH5}. CSi is calculated based on the Packet Error 
Rate (PER), as explained by the FSA shown in Figure 3. 

Packet Error Rate is defined as the ratio of number of 
attempts before a successful transmission to the total 
number of attempts until a successful transmission. 
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Table 3. Priorities of master-slave queue conditions 

 
Since the error conditions change dynamically on a 

channel, the PER needs to be calculated periodically on 
every connection so that the value of CSi can be increased 
when the channel goes into a good state (low Bit Error 
Rate) and decreased when it goes into a bad state (high 
Bit Error Rate). These two processes have been defined as 
the Stepping Up process and the Stepping Down process 
respectively. The goal of both the processes is to 
minimize the number of retransmissions (hence the 
average packet delay) and maximize the throughput in the 
piconet under the given error conditions. When the 
channel goes from a good state to a bad state, the 
Stepping Down Procedure is implemented where the 
master observes the increase in PER for the current packet 
type. Once a threshold PER value reached, the next 
smaller packet type is chosen for data transmission. This 
reduces the chances for this packet type to get hit by an 
error. On the other hand, when the channel goes from a 
bad state to a good state it is difficult for the master to 
deduce this situation. This is because when the packet 
gets successfully transmitted, the master does not know if 
it is because the current packet type is suitable for the 
current error conditions or if the channel is going into a 
good state. This is unlike in the stepping down procedure, 
where it can be easily deduced when the channel is going 
from a good state to a bad state as indicated by an 
increase in PER. Therefore, the master periodically 
performs the Stepping Up procedure for every master-
slave pair and this period is defined by the number of 
slots passed since the pair was last polled. Afterwards, the 
master transmits packets continuously to the same slave 

until the master is able to deduce the channel error 
conditions for this pair by calculating the PER.  

The above algorithm helps calculating CSi, which 
represents the largest packet type that may be transmitted 
on the channel with the least number of retransmissions, 
for the given error conditions. However, sometimes, the 
data at the head of the queue may contain much less data 
than what can be carried as indicated by CSi. In such a 
case, the following SAR scheme is employed, which we 
name as the random segmentation scheme: 

1. if HOL_data_packet_size < 27 bytes , use DH1 
2. if 27 bytes < HOL_data_packet_size < 183 bytes, 

use DH3 
3. if 183 bytes < HOL_data_packet_size, use DH5. 

Therefore, packet type used to transmit the data from 
the master to the slave, defined as m_packet_length, is 
min(CSi, HOL_data_packet_size).  

The above algorithm is implemented at the master’s 
end to deduce the suitable packet type for transmitting 
data from the master to the slave. However, the slave is 
unable to perform the same calculation while transmitting 
data from its end to the master. This is because, 
calculation of PER requires subsequent retransmissions of 
data packets, until a successful transmission takes place. 
However according to the BT specification, subsequent 
retransmissions are not allowed from the slave’s side. 
Therefore, when an error occurs during data transmission 
from the slave, this baseband packet is retransmitted only 
when it is polled again. As a result, the slave is not able to 
deduce the correct packet type based on errors on the 
channel. Taking this into consideration, we propose that 
the slave can use the same packet type that was 
transmitted from the master, defined by m_packet_length. 
However, as explained in the above algorithm, the HOL 
packet size may be smaller than the m_packet_length and 
so the slave deduces the correct packet type as 
min(m_packet_length., HOL_packet_size (at the slave)). 

4. Simulation Model 
In order to obtain results for our proposed algorithm 

and to compare with the previously suggested algorithms 
in literature, we used a discrete event simulator we have 
developed in C++. All simulations were performed on a 
piconet consisting of six slaves and a master. For all 
measurement points, enough simulations have been run to 
claim a 95% confidence that the average result shown has 
less than 5% error. 

4.1 Data Traffic Model  
Data traffic was generated independently for each M-S 

pair in each direction according to a Poisson process. The 
length for the datagram packets was also assumed to be 
I.I.D. exponentially distributed with average packet size 
of 500 bytes. The load in the piconet was varied by 

Priority Queue status Description 
1 1-1 Data present at master-

to-slave queue and slave-to-
master queue 

2 1-0 Data present at the 
master-to-slave queue, no 
data present from slave-to-
master queue 

2 0-1 No data present at 
master-to-slave queue, data 
present at the slave-to-
master queues 

3 0-0 No data present at 
master-to-slave queue, no 
data present at slave-to-
master queue 
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varying the inter-arrival times for the packets. For 
example, high load is simulated by reducing the packet 
inter-arrival time and low load is simulated by increasing 
the inter-arrival time.  

4.2 Correlated Fading Channel Model 
Based on the observations reported earlier, we model 

the Bluetooth RF link as a 2-state Markov Chain 
[1][7][9][12]. Since every wireless connection between 
the master and slave is an independent channel with its 
own time-varying error distribution [10], this scenario 
was simulated using a 2-state Markov model on each 
master-slave connection. According to the 2-state Markov 
model, at any instant, the channel can be in any one of the 
two states, namely, good state or bad state. The bit error 
rate (BER) is low in the good state and high in the bad 
state. However, errors occur uniformly in each of these 
states. Figure 4. describes the two states in the 2-state 
Markov model. 

The time spent in each of these good and bad error 
states in exponentially distributed with different rates of 
state transitions μG=1/PG and μB=1/PB. In our current 
simulation, we used values from [3]; PG = 435 ms and PB 
= 55.8 ms. The BER values were simulated in orders of 
10-6, 10-5 , 10-4, 10-3 and 10-2 . The threshold value, K for 
the Differentiated K-fairness scheduling scheme was 
assumed to be equal to 300 and the threshold number of 
slots since last poll was taken to be 100 slots before 
performing the Step Up process for every master-slave 
pair. 

 

GOOD 
STATE 

BAD 
STATE 

μg 

μb 
 

Figure 4. Markov model of wireless channel errors 

4.3 Algorithms Implemented  
We have implemented and compared five algorithms 

namely, i) differentiated scheduling with adaptive 
segmentation scheme; ii) Round Robin scheduling with 
adaptive segmentation scheme; iii) wireless KFP 
scheduling with random SAR; iv) KFP scheduling with 
random SAR and v) Round Robin scheduling with 
random SAR scheme. Each of these policies was 
implemented with full compliance to the BT ARQ 
scheme. 

4.4 Performance Metrics 
The algorithms have been compared in terms of three 

metrics namely, utilization, delay and fairness. Utilization 
was measured by comparing actual throughput to the 
1Mbps total channel capacity. Delay has been measured 
in the form of two different parameters namely: average 
end-to-end packet delay, also called the average waiting 
time per packet and average segment delay. Fairness has 
been calculated in terms of throughput and delay, which is 
used as a measure to calculate the bandwidth and delay 
equality between connections. Assuming that there are n 
individual connections (these connections include master-
to-slave and slave-to-master connections, each considered 
separately), and Ti is the throughput for the ith connection, 
the fairness in throughput is calculated using the formula 
in Equation 1. 

Fairness f(T1, T2 … Tn) = 
2

0

2

0

)(

)(

∑

∑

=

=
n

i
i

n

i
i

Tn

T
 (1) 

If the connections share the bandwidth equally then 
f=1, else it is less than 1. Fairness in delay is calculated 
according to Equation 2.  

 Fairness f(D1, D2 … Dn) = 
2

0

2

0

)(

)(

∑

∑

=

=
n

i
i

n

i
i

Dn

D
 (2) 

where Di represents the average packet delay on every 
connection, between the master and each slave.  

Yet another comparison is performed in terms of the 
effect of variation in the distribution of load (for a 
particular load value) on the channel utilization and 
average end-to-end packet delays. Coefficient of variation 
of a random variable can be defined as the ratio of 
standard deviation to the mean of the distribution – 
Equation 3. Using COV as a load measure we can easily 
depict heterogeneous traffic. These comparisons were 
performed for a high load of 0.84Mbps and a low load of 
0.192Mbps  

COV= 

n

n
n

i
i

n

i

n

i
ii

/

)(1

0

0 0

22

∑

∑ ∑

=

= =

−

λ

λλ
= 

Mean
iondardDeviatS tan    (3) 

5. Simulation Results 
Figure 5 shows the comparison of the five target 

algorithms in terms of channel utilization with varying 
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system load. It can be seen that our proposed combination 
scheme outperforms the other four algorithms, while the 
Round Robin scheduling policy with adaptive 
segmentation performs next best. This indicates that the 
error adaptive packet segmentation is one of the most 
important factors that determine the performance of a 
system. The wireless adaptive K fairness scheduling 
scheme with random segmentation on the other hand does 
not perform very well, which is due to two reasons, i) 
when the threshold value, K, is reached, the Round Robin 
scheme is resumed, which is an inefficient scheduling 
policy under asymmetric traffic conditions; ii) random 
SAR policy does not suitably handle error conditions 
further adding to the degradation in performance. 
According to this scheme error handling is performed by 
transferring service from an error hit connection to 
another connection provided the threshold value is not 
reached. However, this is an inefficient scheme because, 
in a scenario where most of the connections are in a bad 
error state, lot of slots would get wasted in trying to 
transfer the service to a connection that is in good error 
state (less BER). This only decreases the overall 
throughput and increases the waiting time of packets. The 
Differentiated K fairness scheduling with random SAR 
policy, also shows degraded channel utilization. Though 
the differentiated scheduling scheme avoids slot wastage 
by polling the higher priority pairs more often than the 
lower priority pairs, the random SAR scheme leads to 
very poor system throughput in the presence of wireless 
channel conditions. Finally, the Round Robin scheduling 
with random segmentation shows the most degraded 
performance since it neither provides a mechanism to 
avoid polling pairs that do not have data to transmit nor a 
mechanism to avoid retransmissions due to errors.  

Figure 6 shows the average end-to-end packet delay 
versus a varying channel load. It can be seen that 
proposed scheme leads to the least average packet delay 
compared to the other algorithms. The differentiated KFP 
scheme reduces delay by polling those pairs that have data 
to be transmitted, unlike the Round Robin scheme which 
keeps these pairs waiting though they have data to 
transmit. Furthermore, the adaptive segmentation scheme 
reduces the number of retransmissions, and consequently 
minimizes the overall delay in the system.  

Figure 7 compares the average segment delay versus 
varying channel load in the five algorithms. It can be 
observed that the average segment delay is the lowest for 

the differentiated K Fairness scheduling with adaptive 
segmentations scheme. Since the segmentation scheme 
chooses the most appropriate segment type, depending on 
the channel error conditions, it reduces the error hit ratio 
of the segments. Furthermore, the differentiated K 
Fairness scheme handles those pairs more often that have 
data to transmit and thus decrease the delay. Extending 
the logic of this reasoning, the other policies do not 
perform as well as this scheme.  

Fairness in throughput versus the channel load is 
compared in Figure 8. It can be seen that the differentiated 
KFP with adaptive segmentation scheme provides 
reasonable fairness though it does not provide the 
maximum fairness. This is because factors that enable 
high throughput oppose those that enable high fairness 
and hence both the goals are not achievable 
simultaneously. It can be seen that the Round Robin 
scheduling scheme provides the highest fairness in terms 
of throughput at very high loads. This is because all the 
pairs will have data to transmit and each pair gets an equal 
opportunity for data transmission by getting polled in a 
sequence.  

Figure 9 shows a comparison of fairness in average 
packet delay versus the channel load. It can be seen that 
proposed scheme performs reasonably fair in terms of 
average packet delay though it does not provide the best 
fairness index. The reason is similar to what has been 
explained for fairness in throughput.  

The effect of variation in channel load (high channel 
load = 0.84Mbps) on the system throughput and average 
packet delay have been compared for the five algorithms 
in Figure 10 and Figure 11 respectively. From Figure 10, 
we can deduct that the Round Robin scheduling with 
random SAR and Round Robin scheduling with adaptive 
SAR starts to become unstable at high COV values, while 
the other three schemes perform almost steadily for all 
COV values. According to Figure 11, the delay 
performance of Round Robin scheduling with random 
segmentation becomes increasingly unstable for higher 
COV values. The other four algorithms on the other hand 
show a relatively stable performance for all COV values. 
The figures show that Round Robin scheduling scheme is 
not a suitable under high variations in traffic conditions.  

Figure 12 and Figure 13 plot similar curves to Figure 
10 and Figure 11 except they are showing results for low 
overall channel load (0.192Mbps). These figures second 
the findings described in the previous paragraph.  
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Figure 5. Channel utilization vs. load. 

 
Figure 6. Packet delay vs. load. 

 
Figure 7. Segment delay vs. load. 

 
Figure 8. Fairness in throughput vs. load. 
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Figure 9. Fairness in packet delay vs. load. 

 

  
Figure 10. Fairness in throughput vs. COV in load (high load of 0.84Mbps). 

 
Figure 11. Average packet delay vs. load (high load of 0.84Mbps). 

 
Figure 12. Fairness in throughput vs. COV in load (low load of 0.192Mbps). 
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Figure 13. Average packet delay vs. load (low load of 0.192Mbps). 

 

6. Conclusions and Future Work 
In this work we have suggested a piconet scheduling 

scheme for the Bluetooth MAC that aims at increasing 
throughput, decreasing average end-to-end packet delay 
and providing reasonable fairness among all the 
connections, achieving all these in the presence of 
asymmetric traffic conditions and wireless channel errors. 
Our proposed algorithm employs a differentiated K 
fairness scheduling policy combined with an error 
adaptive segmentation scheme that enables good system 
performance by minimizing slot wastage. The 
differentiated K fairness scheme uses the TDD slots 
effectively by polling those pairs more often that have 
data to transfer, while the adaptive segmentation scheme 
does the same by segmenting the data into suitable packet 
types so that minimum number of retransmissions takes 
place in the presence of error conditions. Our simulations 
have shown that the proposed scheme adapts better to the 
changing traffic conditions and channel error conditions, 
than previous algorithms reviewed. 

In the current work, we have considered only the 
presence of ACL traffic. More specifically, we have 
considered only DH packets; the scheme can be extended 
to include DM packets as well by modifying the FSA 
used to deduce the packet types. The suggested adaptive 
segmentation scheme can be extended by choosing the 
suitable packet type not only based on the deduced packet 
error rates but also based on QoS requests, data rates 
arriving at the master and slave ends and the number of 
slots available between the reserved SCO slots. Our work 
considers only errors in the payload and does not consider 
errors in the packet access code and packet header. The 
finite state scheme can be modified by considering these 
as well.  
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