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Abstract. Mobile ad hoc networks (MANET) are dynamic networks
formed on-the-fly as mobile nodes move in and out of each others’ trans-
mission ranges. In general, the mobile ad hoc networking model makes
no assumption that nodes know their own locations. However, recent re-
search shows that location-awareness can be beneficial to fundamental
tasks such as routing and energy-conservation. On the other hand, the
cost and limited energy resources associated with common, low-cost mo-
bile nodes prohibits them from carrying relatively expensive and power-
hungry location-sensing devices such as GPS. This paper proposes a
mechanism that allows non-GPS-equipped nodes in the network to derive
their approximated locations from a limited number of GPS-equipped
nodes In our method, all nodes periodically broadcast their estimated
location, in term of a compressed particle filter distribution. Non-GPS
nodes estimate the distance to their neighbors by measuring the received
signal strength of incoming messages. A particle filter is then used to esti-
mate the approximated location from the sequence of distance estimates.
Simulation studies show that our solution is capable of producing good
estimates - equal or better

1 Introduction

Mobile ad hoc networks (MANET) are constructed on-the-fly as nodes move in
and out of the transmission range of each other. A major challenge in proto-
col design for MANETs is to provide mechanisms that deal with this dynamic
topology change. Constant topology change has an inverse effect on fundamental
tasks such as routing since routing algorithms cannot simply rely on previous
knowledge of the network topology. Furthermore, even after a route has been suc-
cessfully established, it can still be disrupted at any time due to the movement
of the intermediate nodes. For this reason, most protocols originally designed
for static networks cannot be adopted to ad hoc networks without significant
change. Thus, many protocols have to be redesigned for ad hoc networks in
order to cope with the topology change.

Studies have shown that innovative algorithms can aid MANET protocols if
the nodes in the network are capable of obtaining their own as well as others’
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location information. For instance, algorithms such as LAR [8], GRID [11], and
GOAFR+ [10] rely on the location information to provide more stable routes
during unicast route discovery. The location information is also applied to geo-
cast (multicast based on geographic information) [7] for algorithms such as LBM
[9], GeoGRID [12] and PBM [14]. To minimize the power consumption, The GAF
algorithm [22] uses the location information to effectively modify the network
density by turning off certain nodes at certain instances.

The algorithms listed earlier all rely on the availability of reasonably accu-
rate location information. This assumption is valid for networks in which some
location sensing devices, such as GPS receivers, are available at all nodes. How-
ever, in reality this is rarely the case; although GPS receivers are increasingly
cheaper to produce and becoming more widely available, they are still relatively
expensive and power-hungry, and it is too general to assume that they will be
available to every node in ad hoc networks. For this reason, different algorithms
have been proposed to derive approximated locations of all nodes based on the
relaxed assumption that direct location sensing devices (such as GPS) are avail-
able to some nodes.

This paper presents a solution to the location tracking problem based on
particle filters. Given an ad hoc network with limited number of location-aware
nodes, our solution estimates the locations of all other nodes by measuring the
received signal strength indication (RSSI) from neighbors. For each node, the
estimated location is viewed as a probabilistic distribution maintained by a par-
ticle filter. Unlike other location tracking methods, our solution has low overhead
because it is purely based on local broadcasting and does not require flooding of
the location information over the entire network. Simulation studies show that
even without flooding, our solution can still generate good estimates compara-
ble to other existing methods, given that the network is well connected and the
percentage of anchors is not extremely low. In addition when connectivity is
low and the percentage of anchors is small, our algorithm is still able to derive
location information which is not the case with most of the other approaches.

1.1 Related Work

Given a network graph G = (V,E) in which the number of location-aware nodes
(also called anchor nodes) |Vgps| ≤ |V |, the objective of the location tracking
algorithm is to find the locations of non-anchor nodes {V } − {Vgps}. In this
section we survey the previous work on the location tracking problem in ad hoc
networks.

Generally speaking, there are two categories of localization methods depend-
ing on whether sensory data are used. The methods that do no use sensory data
are simpler but tend to perform poorly especially when anchor ratio is low or
the network is sparse. The methods that do use sensory data generally perform
better but tend to be significantly more complex. The performance in the latter
case is also largely affected by the noise introduced to the sensory data which
tends to aggregate rapidly as sensory data is propagated through the network.
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The Centroid method [2] provides the most straight-forward solution that
does not use sensory data. Assuming that a non-anchor node is capable of receiv-
ing the location information from multiple anchor nodes, the Centroid method
derives the location of a non-anchor node as the average of its neighboring an-
chor nodes’ locations. The method is simple and efficient, but it requires the
anchor nodes to redundantly cover large areas for an acceptable performance.
The APIT method [5] estimates the node location by isolating the area using
various triangles formed by anchor nodes. The location of the node is narrowed
down by analyzing overlapping triangles to determine whether the node is con-
tained within the triangles. Simulation shows that the APIT method performs
much better than the Centroid method. However, like Centroid method, it re-
quires all points in the area to be covered by multiple anchors. Thus, both the
Centroid method and the APIT method require the transmission range of an-
chors to be much greater than non-anchors (10 times greater [5]) in order for
nodes to obtain reasonable location estimates.

The DV-Hop method [18] can be seen as an extension of the Centroid method
by allowing the location information from anchor nodes to propagate through
multiple hops. The locations of anchors are periodically flooded throughout the
network much like the routing packets in a distance vector routing protocol.
The locations of non-anchor nodes are derived geometrically by performing tri-
angulation of the distance estimates from at least three anchor nodes. Here the
distance estimates are obtained by multiplying the number of hops to the anchor
node to a predefined average-distance-per-hop value. The DV-Hop method does
not require a greater transmission range of anchors, and it works well even when
the ratio between anchor and non-anchor nodes is low. However, the message
complexity is rather high due to the flooding of the location information. Fur-
thermore, because the average-distance-per-hop is an estimated value over the
entire network, the accuracy of the location estimation suffers when the nodes
are not uniformly placed over the network.

Other, significant location tracking methods make use of additional sensors.
In [13], the location, velocity and acceleration of mobile nodes are estimated
by measuring the received signal strength indicator (RSSI) from multiple base
stations in a cellular network. The measured power levels are fed into a Kalman
filter to smooth out (filter) the erratic readings and thus be able to derive the
distance. Since base station locations are assumed to be well-known in a cellular
network, mobile nodes can use them as reference points for location estimation.
In [17], the authors assume that non-anchor nodes are equipped with devices
that measure the incoming signal directions. The directional information allows
the receivers to obtain the angle of arrival (AoA) of the signal thus allowing more
accurate location estimates than the pure DV-Hop method. The DV-Distance
method [18] is similar to the DV-Hop method but uses the estimated distance
instead of the hop count during triangulation. In [20] after obtaining the initial
location estimates from the DV method, the nodes obtain the estimated loca-
tions from the neighbors via local broadcast. The RSSI readings also provide
the distance estimates from the neighbors. Using the distance estimates along
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with the estimated locations from the neighbors, the nodes can refine their ini-
tial location estimates via triangulation. Sensors that measure RSSI are widely
available to mobile devices as they are usually a required part of the RF re-
ceivers anyway. Indeed, most off-the-shelf technologies (e.g., Wi-Fi, Bluetooth)
implicitly provide such information. Based on RSSI and an underlying signal
propagation model, the distance to the sender can be estimated. Because of the
noise caused by multipath fading and far field scattering during the signal trans-
mission, the distance estimates derived from RSSI suffer accordingly, especially
when a significant amount of obstacles are present. However, a number of mech-
anisms have been proposed to improve the accuracy of such estimates, such as
the ones that use a more robust acoustic ranging system [3], device calibration
on the RSSI sensors [21], and Kalman filters to smooth out noisy readings from
the sensors [6]. Experiments have shown that the distance estimation error can
be drastically reduced by using those methods. Thus, the RSSI-based methods
are becoming more practical for node location tracking in ad hoc networks.

2 Localization using Particle Filters

”Geometrically speaking,” in order to find the location of a node in a 2-dimensional
space, the distances and locations of at least three anchors need to be known
(as each of these anchors define a circle where the target node could be). In a
network where the percentage of anchors is low, the major challenge is to obtain
the distances and locations of anchors when the node is several hops away from
the anchors. Previous works resolve this problem by either 1) assuming a greater
transmission range of anchors [2, 5] (thus, anchors are always 1-hop away), or
2) broadcasting the anchor locations hop-by-hop over the entire network [18, 17,
20]. The assumption made in the first solution requires the network to be het-
erogeneous in the node types (in which anchors’ radios are considered different
than those of non-anchors) and requires homogeneity (uniformity) for anchor
nodes’ location over the area. The flooding of the location packets in the second
solution requires extra overhead. This overhead can be especially heavy when
nodes are mobile, where location packets need to be re-broadcasted repeatedly
by nodes.

Recognizing various shortcomings of previous approaches, we propose a dif-
ferent location tracking method that is based on Bayesian filters using Monte
Carlo sampling (also known as particle filters) introduced in [4]. Our method
can be considered as a probabilistic approach in which the estimated location
of each node is regarded as a probability distribution captured by samples, thus
the term particles. The distribution of particles (the probability distribution of
a node’s location over the area) is continuously updated as the node receives lo-
cation estimates from its neighbors along with the distance estimates from RSSI
reading. Essentially, the nodes estimate their own locations by interchanging the
location distributions with their neighbors. Our method has several advantages
over existing methods. First of all, our method does not require a greater range
for anchors, which allows it to work in homogeneous networks. Secondly, our
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method employs a simple computation and communication model which relies
solely on local broadcast (broadcast to neighbors only). This allows our method
to be naturally integrated in periodical Hello messages used by mobile nodes in
ad hoc networks to declare their existence. Comparing to existing methods such
as APS, our method generally converges with less message overhead. Finally,
while previous works do not provide simulation result for mobile scenarios, we
demonstrate via simulation that our method can be effectively used in mobile
ad hoc networks.

A similar Bayesian based approach has been proposed by the authors in
[23] for the in-door location tracking problem. In [23], because of the different
obstacles (walls, windows and doors) presented in the in-door floor-plan, a signal
strength (RSSI) map needs to be obtained via measurement ahead of time.
The location tracking problem then becomes a decision-making problem. The
problem can be solved using a measurement model that compares current RSSI
readings with the signal strength map to find the location in the map that
contains the largest probability of matching the current RSSI characteristics.
While similar in the tool used, our solution is designed for the mobile ad hoc
paradigm where reliable distance estimates can be obtained from RSSI readings
and the signal propagation model. Based on these assumptions, our solution does
not require an RSSI map. The probability distributions of location estimates are
updated solely from the distance and location estimates from neighbors.

Figure 1 (sub-figures a to d) demonstrates how our method solves the local-
ization problem in a simple scenario. Here, nodes 2, 3 and 4 are GPS nodes, and
node 0 and 1 are non-GPS nodes. Of the non-GPS nodes, node 0 may receive
signals from nodes 1 and 4, and node 1 may receive signal from nodes 0, 2, and
3. The probability distribution of the estimated location is represented by the
particles (depicted as dots, thus the probability distribution is indicated by the
density of particles) in the graph. In case (a), node 0 can only receive a signal
from node 4. Thus, as the particle densities indicate, the probability distribu-
tion of node 0’s location is on a circle around node 4. In Figure 1(b), node 1
can receive signals from node 2 and 3. Thus, node 1 is probably located where
circles around nodes 2 and 3 intersect. Intuitively, in order to localize itself a
node needs to receive location information from a minimum of three other nodes
(note, that this is not always required as past location information can eliminate
possible intersections). In both case (a) and case (b), the location of nodes 0 and
1 cannot be derived because they do not receive location information from three
other nodes. In Figures 1(c) and (d), node 0 and 1 are able to communicate to
each other and exchange their probability distributions. Thus, their locations
can be identified even though neither node receives location information from
all three GPS nodes directly.

2.1 Classic Monte Carlo Sampling-Based Bayesian Filtering

This section describes the theoretical background behind Bayesian filtering and
how it can be applied to location estimation using RSSI. Let us envision a grid
system superimposed over the entire tracking area, and let the state st be the
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(a) Particle distribution of node 0
when node 1 is not present

(b) Particle distribution of node 1
when node 0 is not present

(c) Particle distribution of node 0
when node 1 is present.

(d) Particle distribution of node 1
when node 0 is present.

Fig. 1. Location distributions in simple ad hoc scenarios
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location of the node to be tracked in the grid system at the time t . Our goal
is to estimate the posterior probability distribution, p(st|d1, . . . , dt), of potential
states - st, using the RSSI measurements, d1, . . . , dt. The calculation of the
distribution is performed recursively using a Bayes filter:

p(st|d1, . . . , dt) =
p(dt|d1, . . . , dt−1) · p(st|d1, . . . , dt−1)

p(dt|d1, . . . , dt−1)

Assuming that the Markov assumption holds, i.e., p(st|st−1, . . . , s0, dt−1, . . . , d1) =
p(st|st−1), the above equation can be transformed into the recursive form:

p(st|d1, . . . , dt) =
p(dt|st) ·

∫
p(st|st−1) · p(st−1|d1, . . . , dt−1)dst−1

p(dt|d1, . . . , dt−1)
,

where p(dt|d1, . . . , dt−1) is a normalization constant. In the case of the localiza-
tion of a mobile node from RSSI measurements, the Markov assumption requires
that the state contains all available information that could assist in predicting
the next state and thus, an estimate of the non-random motion parameters of
the nodes is required as part of the state description. Starting with an initial,
prior probability distribution, p(s0), a system model, p(st|st−1), representing the
motion of the mobile node (the mobility model), and the measurement model,
p(d|s), it is then possible to drive new estimates of the probability distribution
over time, integrating one new measurement at a time. Each recursive update
of the filter can be broken into two stages:

Prediction: Use the system model to predict the state distribution based on
previous readings

p(st|d1, . . . , dt−1) =
∫

p(st|st−1) · p(st−1|d1, . . . , dt−1)dst−1

Update: Use the measurement model to update the estimate

p(st|d1, . . . , dt) =
p(dt|st)

p(dt|d1, . . . , dt−1)
p(st|d1, . . . , dt−1)

To address the complexity of the integration step and the problem of repre-
senting and updating a probability function defined on a continuous state space
(which therefore has an infinite number of states), the approach presented here
uses a sequential Monte Carlo filter to perform Bayesian filtering on a sam-
ple representation. The distribution is represented by a set of weighted random
samples and all filtering steps are performed using Monte Carlo sampling opera-
tions. Since we have no prior knowledge of the state we are in, the initial sample
distribution, pN (s0), is represented by a set of uniformly distributed samples
with equal weights, {(s(i)

0 , w
(i)
0 |i ∈ [1, N ], w(i)

0 = 1/N} and the filtering steps are
performed as follows:

Prediction: For each sample, (s(i)
t−1, w

(i)
t−1), in the sample set, randomly gen-

erate a replacement sample according to the system (mobility) model p(st|st−1).
This results in a new set of samples corresponding to p(st|d1, . . . , dt):

{s̃(i)
t , w

(i)
t |i ∈ [1, N ], w(i)

t = 1/N}
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Update: For each sample, (s̃(i)
t , w

(i)
t ), set the importance weight to the mea-

surement probability of the actual measurement, w̃
(i)
t = p(dt|s̃(i)

t ). Normalize the
weights such that

∑
i η · w̃(i)

t = 1.0, and draw N random samples for the sam-
ple set {s̃(i)

t , η · w(i)
t |i ∈ [1, N ]} according to the normalized weight distribution.

Set the weights of the new samples to 1/N , resulting in a new set of samples
{(s(i)

t , w
(i)
t |i ∈ [1, N ], w(i)

t = 1/N} corresponding to the posterior distribution
p(st|d1, . . . , dt).

2.2 Modified Particle Filtering for Location Estimations

The classical Monte Carlo method is often implemented using particle filters.
To apply the filter to the location tracking problem a system model and a mea-
surement model must be provided. We use a simple random placement model as
our system model (please note that this is the mobility model used in the filter
which is different from the mobility model used in the simulations to enable node
movement). The model assumes that at any point in time the node moves with
a random velocity drawn from a Normal distribution with a mean of 0m/s and a
fixed standard deviation σ. No information about the environment is included in
this model, and as a consequence, the filter permits the estimates to move along
arbitrary paths. Thus, our system model is simply p(st|st−1) = N(0, σ), where
N is a Normal distribution. Note that while such system model should work well
in stationary networks, it’s not best suited for mobile networks. In reality, mo-
bile nodes follow a certain kind of movement profile instead of random motion.
The system model should closely resemble the current movement profile of the
node. However, since it’s difficult to obtain a reliable movement profile when the
location is unknown, the assumption of random movement is probably the best
we can do at this stage.

The measurement data are obtained by observing the periodical location data
broadcast from neighbors. To minimize the impact of the measurement error, we
apply a simple Kalman filter to the RSSI sensor readings [6] before feeding the
measurement data to the particle filter. When a node u receives broadcast lo-
cation data from node v, the broadcast data consist of the unique identifier of
v, and the probability distribution, Xv, of the location estimate of v at time t.
The Xv distribution is a compressed version of the actual particle distribution
at v. The detail method of compressing and decompressing the particle distri-
bution is the topic of the next section. For now, let us assume that Xv contains
a set of sample particles that represents v’s location. Along with the RSSI read-
ing of the broadcast, RSSIv, the complete measurement metrics dt is therefore
(id,Xv, RSSIv).

After the measurement from the neighbor v is collected, the particle filter
at node u is updated. In the classic particle filtering, particles are re-sampled
based on weights, which are in turn assigned based on the measurement. More
weights are assigned to the particle values that are more consistent with the
measurement reading. After re-sampling, the particle distribution becomes more
consistent with the current measurement. In our situation we have a unique
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scenario where the measurement itself consists of a particle distribution, Xv.
Furthermore, both Xu and Xv are imprecise. Our task during the update step is
to modify the particle distribution Xu so that it becomes more consistent with
RSSIv while taking into account the inherent impreciseness of Xu and Xv. First,
we obtain a distance estimate from the inverse of the signal propagation model
P :

D(RSSI) = P ′(RSSIv)

Note that P can be arbitrary as long as it depends on the distance from the
sender to the receiver. Noise can be added to the model, but we disregard it
when calculating the inverse and let it be filtered out by the particle filtering
(note, that in the simulations noise is indeed added to the RSSI measurements).

For each particle xu in Xu, we randomly select a particle xv in Xv and cal-
culate their distance D(xu,xv). We then measure the difference between D(xu,xv)

and D(RSSI), and select a new location for re-sampling based on the difference
as well as the variances of the particle distribution Xv and Xu. For instance,
before the update step xu and xv are located at point A and B, respectively.
Thus, D(xu,xv) = |AB|. Let A′ be the location of xu based on the RSSI reading
on the same line, i.e., D(RSSI) = |A′B|. Intuitively, if the location estimate given
by the distribution Xv is accurate and the actual location for node v is indeed
at xv, then the new location for particle xu should be at point A′. Conversely, if
the location estimate of the distribution Xu is accurate, the new location for xu

should stay at A. Therefore, we select the new location based on the perceived
accuracy, i.e., the variances, of the distribution Xu and Xv. Let the variance of
a distribution X be var(X). We select the new location of xu, x′u, along the line
|AA′| such that

|Ax′u|
|x′uA| =

var(Xu)
var(Xv)

. A new particle is then randomly re-sampled by a Normal distribution centered
at x′u with the variance being the average of the variances of Xu and Xv. We
consider the variances of both Xu and Xv during re-sampling because the spread
of both distributions affects the spread of the updated distribution X ′

u.
Comparing to the re-sampling method of classic particle filters, our method

is different in that we do not use a weight based re-sampling method. Instead, we
re-sample by comparing the two distributions together against the measurement
reading. But, the concept is the same as we are updating the distribution to fit
the measurement readings. Our re-sampling method has a number of advantages
over the traditional method. First, our method does not re-sample directly from
the original particle location using a weight based Gaussian distribution. Instead,
it re-samples from a more accurate location influenced by neighbor’s distribution.
Thus, our method requires less amount of random probing and converges more
quickly. Secondly, since our method requires less amount of random probing, a
significantly smaller number of particles are required. With less particles, the
particle filter update procedure computes more efficiently.
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2.3 Compressing and Decompressing Particle Filter Distributions

The previous section makes the assumption that the complete location distri-
bution is received from the neighbor. Since the complete distribution consists of
a large number of particles with their location data, doing so is obviously not
very practical due to the limited bandwidth of ad hoc networks. Therefore, we
propose a simple yet effective mechanism to compress this information.

Given a particle distribution X, we locate the most likely value, x̂, as the
particle in the distribution that has the minimum overall distance between it-
self and other particles, i.e., x̂ = arg minx∈X (

∑
y∈Y |x− y|). In other words, x̂

is the most representative particle of the entire distribution. From x̂, we count
the number of particles n within the predefined range r. We then calculate the
variance, σ2 within those n particles. Thus, we obtain a quadruple (x̂, r, n, σ2).
From there, we remove the n particles in the previous quadruple from the dis-
tribution and repeat the process of finding the most likely value, a larger range
(explained later) and the variance. By continuing the same process until all par-
ticles have been covered, we obtain a sequences of quadruples that approximates
the original particle distribution (each of this quadruples thus will represent
modes of the particle density distribution). When the quadruples are received
by the receivers, a decompressing algorithm runs to reproduce the distribution
by randomly generating particles based on the expected value, range, particle
number and variance for each quadruple.

Our experiment has shown that the compression method reduces the amount
of data exchange by nearly 90 percent without a significant increase to the loca-
tion estimation error (results are omitted in this paper due to space limitations).

3 Simulation Results

We have conducted a number of experiments to validate the effectiveness of
our particle filter based solution. Our experiments attempt to duplicate real
world scenarios as closely as possible. In our simulations we assume a network in
which all nodes have an identical transmission power, with a certain percentage
of nodes (simulation parameter) being anchor nodes. For a network of fixed size,
the connectivity of the network depends (almost solely) on the transmission
range. When a node is located within the transmission range of another node,
we assume that it is capable of receiving signal from the sender when noise is
not present. The received signal strength depends on the distance to the sender
as well as a signal propagation model and a noise model.

The signal propagation model is given by P = c · d−2, in which the power of
the received signal P is inversely proportional to the second power of the distance
d (while c is a constant including the unit distance received power and the inverse
square of the carrier frequency - among others). When the received signal power
P is below a threshold Pmin, it is considered too weak to be captured by the
receiver thus the link breaks. Note the c and Pmin selection does not affect the
overall simulation results, as long as the same values are used consistently in
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the observation model of the filters. In fact, the same can be said about all
other signal propagation models - all we require is a model that represents the
receiving power as a function of distance, and we let the filter to filter out the
noise. For the particle filter itself, we use a total number of 200 particles at each
node.

We use an isotropic type of network of 100 randomly placed nodes with an
average degree of 7.6. Noise is added to the signal strength calculated via the
signal propagation model as a percentage of the calculated signal strength. For
instance, a 10 percent noise means that the received signal strength may vary
within a plus-minus 10 percent range of the calculated signal strength (uniformly
distributed). Note that our network configuration and noise model is identical
to that of the isotropic topology in [16], so that we can effectively compare our
method with APS.

3.1 Filter Convergence

Figure 2 shows how the estimation error converges as more measurement read-
ings are processed in a static network. We are interested in how long and how
many messages it takes for the error to reach an acceptable level from which it
only reduces insignificantly. We added a noise level of 50 percent to the measure-
ment readings. The estimation error is calculated as the difference between the
most likely value given by the particle distribution and the actual location. The
difference is then measured in term of the ratio against the maximum transmis-
sion range. Thus, an estimation error of 100% means that difference between the
expected value and actual location equals to the maximum transmission range.
The data is collected of enough simulation runs to claim a 90 percent confidence
that the error is less than 10 percent; the error ratio is the average of all non-GPS
nodes (i.e., the perfect ”estimates” of anchor nodes are not biasing the results).

Two obvious facts can be observed from Figure 2: 1) the networks with higher
GPS ratio produce better estimations and 2) estimation error reduces quicker
with higher GPS ratio. Both of those observations can be explained by the
fact that GPS ratio determines how fast and how accurate location information
can be propagated through the network. With a higher GPS ratio, non-GPS
nodes will be able to obtain the necessary location information faster because
non-GPS nodes are closer (i.e., less number of hops) to GPS nodes. Also, since
measurement error is aggregated at each hop, the location information will be
more accurate with higher GPS ratio.

Figure 2 also shows that the estimation error converges to the minimum be-
tween 2 to 5 seconds depending on the GPS ratio. Considering that the location
broadcast occurs every 0.5 seconds, it takes about 4 to 10 rounds of broadcasts
for the error to reach the minimum. Since the average degree of the network is 7.5
with a total of 100 nodes, each round of broadcast is equivalent to 750 messages.
Therefore, it takes about 3000 to 7500 messages to minimize the error depending
on the GPS ratio. Note that when even in the worst case where the GPS ratio is
low, error converges very quickly and is close the minimum after 2 seconds. The
results are at least as good as those of APS, where the ”DV-distance” method
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uses 6500 messages (when GPS ratio is 0.1) to 9000 messages (when GPS ratio
is 0.9), and the ”Euclidean” method takes from 3000 to 8500 messages (results
taken from Figures 7 and 11 of [16]). Note that our method converges quicker
and takes less number of messages when the GPS ratio is high.
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Fig. 2. Filter convergence (stationary network, 50% noise) .

3.2 Minimum Estimation Error

Figure 3 compares the estimation error of varying GPS ratio and measurement
noise in the network. (The DV-Hop and Euclidean curves are obtained from
figures in [16]. The Euclidean curves are normalized based on the coverage.)
Again, the simulation scenario is duplicated from that of the isotropic topology
in APS [16]. Our results show that the estimation error continues to decline
with higher GPS ratio compared to APS, making it performing more like the
”Euclidean” method in APS. Like the ”Euclidean” method, our method outper-
forms DV-Hop and DV-Distance when the GPS ratio is higher. The drawback of
the ”Euclidean” method is that, when the GPS ratio is low and the noise ratio
is high, its coverage area (i.e., the number of nodes able to obtain the location
estimates) is very limited comparing to the DV-Hop and DV-Distance, and thus
it brings down the overall estimation error. As shown in Figure 3, our method
improves over the ”Euclidean” method especially in the difficult cases of low
GPS ratio and high noise ratio. At a very low GPS ratio (i.e., 0.1), DV-Hop still
performs better because it does not depend on any sensor readings and thus it is
not affected by noises, although this is an unfair comparison due to the relaxed
assumptions in our method.
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Fig. 3. Estimation error of varying GPS ratio and measurement noise.

3.3 Connectivity

Simulation results in previous work are based on a rather dense network with
an average degree of 7.67. Similar networks were used in [16], and thus allow a
more sensible comparison. Fig. 4 shows the estimation error of our particle filter
based localization method in more sparse networks. Here, we vary the network
connectivity by changing the transmission range while maintaining the network
size (100 nodes). As expected more error is introduced in sparser networks.
Roughly speaking, the error halves when the network connectivity doubles. In
theory a node needs to receive signal readings from a minimum of three neighbors
in order to pinpoint its location. Thus, a network with degree of at least three
will be needed to localize all its nodes. With our localization method, respectable
estimations are obtained even with a very sparse networks with degree less than
three (no other approaches are able to derive estimates for such situations).

3.4 Results on Mobile Networks

Previous work on MANET localization generally do not contain extensive sim-
ulation and analysis when the network is indeed mobile (as the definition of
MANETs imply). This section discusses simulation results on running the par-
ticle filter localization method on mobile networks. Again, we use a network
with a population of 100 nodes and average degree of 7.5. We use the epoch-
based mobility model of [15] to simulate node movement; (the model in [15] is
widely accepted as a good mobility model for ad hoc networks - more realistic as,
e.g., simple Brownian motion models). The epoch-based model has the following
properties:

1. The entire movement path of the node is defined by a sequence of ”epochs,”
i.e., (e1, e2, · · · , en).
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2. The duration of each epoch is I.I.D. exponentially distributed with a mean
of 1/λ.

3. Within each epoch, the node moves at a constant velocity (direction and
absolute value).

4. At the end of each epoch, nodes randomly select a new velocity vector. The
direction of the movement is I.I.D. uniform between 0 and 2π. The absolute
value of the velocity is I.I.D. normal with a mean µ of and a variance of σ2.

When selecting a new velocity, the simulation uses a fixed mean and variance
such that µ = σ. The result is obtained by varying µ and σ from 1m/s to 20m/s.
The expected amount of time a node maintains its current velocity is set to 5
seconds, i.e., λ = 5.

Figure 5 shows the filter convergence on mobile networks with measurement
noise level set to 50%. Comparing to the results of stationary networks in Fig-
ure 2, the random movement of the nodes causes the estimation error to swing.
However, the error variances are not very high once the nodes determine their
initial locations after the first couple of seconds. This indicates that the filter
is able to adapt to the node movement well enough to maintain the its overall
estimation accuracy.

Figure 6 shows the average estimation error of mobile networks. The error
does increases gracefully as the speed increases. Considering that neighbors ex-
change location information every 0.5s, in a network with an average nodal speed
of 40m/s nodes move an average of 20 meters per observation; yet our method
is capable of producing usable location estimates.

4 Conclusions

This paper describes a novel solution to the location tracking problem for mo-
bile ad hoc networks that uses a Monte Carlo sampling-based Bayesian filtering
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(i.e., particle filtering) method . The estimated location for nodes is regarded
as a probability distribution represented by a collection of sample points. The
location information from the anchors is propagated through the network via
local broadcasting of the location estimates. When a node receives the location
estimates from neighbors, it updates its location distribution using the particle
filtering method. Simulation study has shown that the particle filter solution
is capable of producing good estimates equal or better than the existing local-
ization methods such as APS-Euclidean. Our solution also performs quite well
when the network connectivity is low. Study has also shown that the solution
is resilient to network topology change, making it suitable for ad hoc networks
with significant mobility.

Our particle filter based localization method currently uses RSSI as the sole
measurement. However, because our method is based on a rather generic algo-
rithm of probabilistic filters, it can be easily extended to incorporate other mea-
surement types such as angle of arrival (AoA). To do so, only the filter update
step needs to be changed in order to meaningfully update the filter according
to the properties of the new measurement, but the basic algorithm remains the
same. In fact, it is easy to implement our method with multiple types of mea-
surements coexisting in the network. The same particle filter method can be
used in a network where an arbitrary portion of nodes are capable of measuring
RSSI, another part of the nodes are capable of measuring AoA, and some are
capable of measuring both. This makes our method truly versatile and ideal for
such heterogeneous network.
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