

A Dynamic and Distributed Scatternet Formation Protocol for Real-life Bluetooth

Scatternets

Deepak Jayanna, Gergely V. Záruba

Department of Computer Science and Engineering, The University of Texas at Arlington

deepakjayanna@yahoo.com, zaruba@uta.edu

Abstract

Bluetooth is a universal radio interface for short-range

wireless networks. The basic Bluetooth network topology

is a single-hop star-shaped piconet. Several such piconets

can be interconnected into a scatternet to form a wireless

ad hoc network. This paper proposes a dynamic and

distributed protocol to the Bluetooth scatternet formation

problem. The protocol was developed strictly within the

constraints imposed by the Bluetooth standard, without

assuming any outside knowledge on the topology of the

underlying connectivity graph or attributes of different

nodes. We show relevant performance measures of our

scatternet formation protocol by simulations performed

with an extended BlueHoc based simulator.

1. Introduction

The massive growth of portable electronic consumer

devices such as laptops, cell phones, personal digital

assistants (PDA), digital cameras and MP3 players has

called for a new way to connect these devices to

communicate or share information. Information transfer

between these devices, using wires, applying various

connectors and protocols has proved to be cumbersome.

Recently, Bluetooth (BT) [1,2,3], a new radio interface

has been developed to provide device-to-device

connectivity via short radio links. BT is a low-cost, low-

power, short-range, wireless de-facto standard developed

for replacing cables that connect electronic devices.

Most radio systems today are based on a hierarchical

structure; base stations are placed at fixed locations that

provide local cell coverage, and are connected via a wired

backbone infrastructure. Mobile terminals can move

within the cells while connected to the fixed network

through the base stations. Base stations contain

intelligence to provide critical functions like channel

selection, registration, etc. On the other hand, in ad hoc

systems there is no inherited hierarchical structure, i.e., no

distinction is made between base stations and mobile

nodes. Ad hoc connectivity is based on peer-to-peer

communication between neighbors; there is no wired

infrastructure to support connectivity between the mobile

nodes. For our purposes we can distinguish between two

types of ad hoc networks:

In conventional ad hoc networks, a group of peer

units that are all in the transmission range share the same

channel: packets transmitted on the wireless channel are

received by all nodes within the transmission range. Ad

hoc networks based on Wi-Fi (IEEE 802.11x) technology

are good representatives for these ad hoc networks.

In a scatter ad hoc network, several groups of units

may exist in the same area each with their own logical or

real channel. The BT specification enables such scatter ad

hoc networking. BT devices need to discover and connect

to other devices that are in the vicinity before they can

exchange packets among themselves.

We have developed a new scatternet formation

protocol that is distributed and dynamic in nature. The

protocol generates a topology that is of the form of a

mesh. Master and slave roles are assigned to nodes in a

distributed manner thus no centralized decision-making is

required. Unlike most of the earlier works our design

allows nodes to be added to the network any time. We

have extended BlueHoc [11] (a BT simulator by IBM

based on ns2) and implemented our proposed scheme; this

demonstrates that our scheme can be implemented within

the exiting BT specification. Through simulation we show

that our scheme achieves connectivity with low delays

while trying to minimize the number of piconets.

The remaining sections of this paper are organized as

follows. Section 2 gives an introduction to the BT

standard. Section 3 describes scatternets, i.e., Bluetooth’s

capability to establish multi-hop networks while outlining

some of the more important previous work in scatternet

formation. Section 4 is devoted to describing our dynamic

and distributed approach to scatternet formation. Section

5 describes our simulation efforts and provides with the

performance evaluation of our scheme. Section 6

concludes the paper.

2. Bluetooth Overview

Bluetooth operates in the unlicensed Industrial,

Scientific and Medical (ISM) band at 2.4 GHz. A set of

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

79 frequencies has been defined at 1 MHz spacing. Since

the ISM band is open, systems operating in this band need

to deal with interfering sources such as microwaves,

Wi-Fi devices and baby monitors. Hence, to reduce

interference, BT uses frequency hopping spread spectrum

(FHSS), with a hop dwell time of 625 µs.

Two or more BT units that share the same channel

(same frequency hopping sequence and synchronization)

form a piconet. One device acts as the master and all other

devices act as slaves. Slaves in the piconet can have links

only to the master and cannot communicate directly with

other slaves, i.e., the master node controls the

communication in the piconet. The master also allocates

transmission slots to slave nodes. There can be 7 active

slaves in the piconet; each slave is given a 3-bit Active

Member Address (AM_ADDR) so it can be addressed.

Full duplex communication is achieved by applying

Time-Division Duplexing (TDD).

2.1. Bluetooth Protocol Stack
The BT stack [2] is defined as a series of layers. The

Baseband, Link Controller and Link Manager layers form

the lower layers and may be implemented on a single chip

(BT Module). The Logical Link Control and Adaptation

Layer (L2CAP), and RFCOMM and SDP form the upper

layers and are usually implemented in software on the

host. The Host Controller Interface (HCI) provides a

standard serial interface between the lower timing

sensitive layers and the higher computational intensive

layers. Figure 1 shows the BT protocol stack [2].

Figure 1. Bluetooth protocol stack.

The radio modulates and demodulates data for

transmission and reception on air. The Baseband and Link

Controller are responsible for channel encoding, hop

sequence selection and synchronization of local and

remote clocks. The Link Manager controls and configures

links to other devices. The Host Controller Interface

handles communication between a separate Host and a BT

module. The Logical Link Control and Adaptation layer

multiplexes data from higher layers and also handles

segmentation and reassembly of packets. RFCOMM can

emulate RS232 connection over BT link. WAP and

OBEX provides interface to other higher layer

Communications Protocols. SDP (Service Discovery

Protocol) allows BT unit to discover services offered by

other BT devices. TCS (Telephony Control Protocol

Specification) provides telephony services.

2.2. Inquiry and Paging
The link formation process in BT consists of two

phases: Inquiry and Paging. During the inquiry phase

devices may discover other BT units that are within the

range. The discovering device collects the clock and BT

address information from devices that respond to the

inquiry message. This information is used in the paging

phase to establish a bi-directional connection. Figure 2

illustrates the BT link formation process as explained in

the next paragraph.

IAC

IAC

FHS

DAC

FHS

DAC

DAC

Potential Master Node Potential Slave Node

Inquiry

State

Inquiry Scan

State

Page State Page Scan

State

Figure 2. Bluetooth link formation process.

In order for the two devices to discover each other

during the inquiry phase, they must be in two

complementary substates: inquiry and inquiry scan. The

inquiring device (inquiry substate) sends out inquiry

messages (ID packets), which contain the Inquiry Access

Code (IAC). If another device is listening in the inquiry

scan state then a successful inquiry may happen. A device

that wants to be discovered enters the inquiry scan state

periodically with a period Tinq_scan and listens for the

duration of the scan window Tw_inq_scan. In order to reduce

the discovery time, the inquiring device sends out ID

packets at half-slots at two different frequencies and

listens at the corresponding receiving frequencies in the

next slot. There could be more than one device in the

inquiry scan substate listening on the same channel,

receiving the same inquiry message. In order to avoid

collisions in the reply of such devices, after receiving the

inquiry message devices have to choose a random backoff

interval (between 0 and 1023 slots) before reentering the

inquiry scan state. After reentry and upon receiving an ID

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

packet the device will respond with an FHS (Frequency

Hopping Selection) packet containing its own BT device

address and clock.

During the Inquiry phase, both devices follow a 32-

carrier frequency inquiry hop sequence. The inquiry hop

sequence is divided into two trains: A and B of 16

frequencies each. A single train is repeated at least N inquiry

(256) times before a new train is tried. The BT

specification recommends the inquiry substate to last for

10.24 s unless the inquirer collects enough responses and

thus elects to abort the inquiry substate earlier.

Paging is similar to the inquiry process but instead of

using inquiry access code to capture other devices the

paging device uses Device Access Code (DAC) (which is

derived from slaves BD_ADDR). The paging process can

be accelerated because paging device uses an estimated

clock value to predict the hop channel the device will start

page scan.

3. Ad Hoc Networking with Bluetooth

Multiple piconets may coexist in the same physical

space. To interconnect such piconets, BT units can

participate in two or more piconets (via time

multiplexing) creating topologies called scatternets.

Figure 3 depicts a simple Bluetooth scatternet

interconnected from 3 piconets. A BT unit can act as

slave in several piconets and as a master in only one

piconet simultaneously (two piconets with the same

master would be synchronized using the same hopping

sequence). The interconnection of piconets to form a

scatternet is not addressed in the standard and is an open

research problem.

Figure 3. A simple Bluetooth scatternet.

3.1. Bluetooth Scatternet Formation

Some of the important goals for scatternet formation

protocols are:

Scalability: The algorithm should work for any

number of nodes; not all nodes need to be necessarily in

the radio vicinity of every other node.

Low Delay: The time taken to form a connected

network should be as little as possible.

Dynamicity and Resilience: Nodes may arrive and/or

depart at an arbitrary time.

Decentralized: The algorithm should be completely

decentralized. No centralized decision-making.

Minimal number of piconets: The number of piconets

in the scatternet should be reduced; by reducing the

number of piconets, the average number of hops for

messages can be reduced.

Minimal average role for nodes: The number of

piconets that a node participates in should be reduced;

nodes assuming a large number of roles become

bottlenecks.

3.2. Previous Work in Scatternet Formation
Scatternet formation protocols can be divided into

single-hop [7,8] and multi-hop [5,6,9] solutions. In the

single-hop case all nodes are in each other’s radio

transmission range, thus restricting their usability. Our

proposed solution works for multi-hop scenarios, where

not all nodes need to be in each other’s transmission range

thus forming real ad hoc networks. In the following

paragraphs we will show some of the most relevant

previous approaches to scatternet formation. Our

discussion list is not complete, i.e., it does not show all

approaches that have been published but only those that

we think are relevant for our further discussions.

Záruba et al. [9] have proposed the first two

protocols for forming connected multi-hop scatternets. In

both cases the resulting topology is termed a bluetree. The

number of roles each node takes is limited to two or three.

The first protocol is initiated by a given, single node,

called the blueroot, which will be the root of the bluetree.

The root node is assigned the role of the master and all of

its one-hop neighbors will be its slaves. The children of

the root are now assigned an additional master role and all

their neighbors that are not assigned any roles will

become slaves of the newly created masters. This

procedure is repeated recursively until all nodes are

assigned roles. In order to limit the number of slaves, the

authors observed that if a node has more than five

neighbors, then there are at least two nodes among these

neighbors that are neighbors themselves. This observation

is used to re-configure the bluetree so that each master has

less than eight slaves. If a master has more than seven

slaves, it selects two of its slaves, s1 and s2 that are

neighbors themselves and instructs s2 to be the master of

s1 and disconnects s2 from itself. In the second protocol,

several root nodes are picked and each of them creates it’s

own scatternet in the first phase of the protocol. In the

second phase, the sub-tree scatternets are connected into

one scatternet that spans the entire network. The above

two solutions are not time efficient. The protocol also

assumes all nodes to start the formation process at the

same time and that one of the nodes is designated as the

blueroot before the formation starts (defeating the

decentralized purpose).

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

In [6] the authors have proposed a multi-hop solution

called BlueMesh, which defines rules for device

discovery, piconet formation and piconet interconnection.

The protocol proceeds in two phases (similar to the

bluetree approach), topology discovery phase and

scatternet formation phase. In the topology discovery

phase each node discovers its one and two hop neighbors

(note, that BT does not provide with functions to achieve

this). Inquiry procedure in BT does not guarantee a

symmetric knowledge of neighbors, in the sense if a node

u discovers v, node v may not be aware of u. To achieve

symmetric knowledge of nodes neighbors the protocol

uses inquiry and paging procedures to set up two-node

temporary piconets through which two neighboring

devices exchange identity. This phase therefore may take

several seconds between each node (recall that the

recommended time for inquiry is 10.24s). The total time

required is not addressed but may be several hundred

seconds even for small networks. After having discovered

all of its neighbors, a node exchanges this list with its

neighbors, thus obtaining two-hop neighborhood

knowledge. The scatternet formation phase proceeds in

iterations taking care of piconet formation and their

interconnection to form a scatternet. The authors [6] do

not specify the time taken for the protocol to finish and

our view is that this solution is not feasible in a dynamic

environment.

Salonidis et al. [7] have proposed another topology

construction scheme. In their scheme the nodes alternate

between inquiry and inquiry scan state continuously to

discover or to be discovered by other nodes. Coordinator

nodes are elected, one for each connected component.

Coordinators collect information about the whole

network, and decide on the roles for each other node. This

protocol is limited to single-hop scenarios where all nodes

appear at the same time. The authors also assume the

number of nodes to be less than 36.

Li et al. [5] have proposed several localized

scatternet formation algorithms based on sparse geometric

structures. The algorithms have three different phases. In

first phase, the neighbor discovery and information

exchange phase, the nodes learn about their one-hop and

two-hop neighbors. The second phase, planar subgraph

construction phase is optional. In this phase, each node

computes the incident edges that belong to chosen planar

sparse structure, Relative Neighborhood Graph, Gabriel

Graph, or Partial Delaunay Triangulation (details of each

of these sparse geometric structure is described in [5]).

All other edges that are not a part of the sparse structure

are removed. The final phase of the algorithm is an

iterative phase. The degree of each node is limited to 7 by

applying Yao structure [5], and the master-slave relations

are assigned in the created subgraphs. The solutions

defined by the authors assume that each node knows

absolute or relative positions of itself and neighbors (BT

does not provide with such functions or the native relay of

such information).

Wang et al. [15] have presented a scatternet

formation protocol called BlueNet, which has three

different phases. In the first phase separate piconets are

formed and in the second and third phase the piconets are

connected to form a scatternet. Due to the multi-phase

nature of this protocol, nodes need to arrive at the same

time and start the scatternet formation at the same time.

Law et al. [14] have proposed a randomized

distributed scatternet formation protocol and evaluated the

performance. The resulting scatternet is a tree, which

limits the efficiency and robustness. They also assume

that every node is aware of its neighbors and all nodes

start the formation process at the same time.

Tan et al. [8] have developed Tree Scatternet

Formation (TSF) an online topology formation algorithm

that builds scatternet by connecting nodes into a tree

structure. Topology produced by TSF at any time is a

collection of one or more rooted trees that are

autonomously trying to merge to a smaller number of

trees. Goal is to form a one rooted tree. Their algorithm is

decentralized and self-healing, nodes can join and leave at

any time without causing long disruptions in connectivity.

However TSF assures connectivity only in single-hop

scenarios. Our proposed protocol doesn’t have any such

limitations.

4. Our Scatternet Formation Approach

In this section we describe our proposed new

scatternet formation protocol. The proposed scheme is i)

dynamic, i.e., nodes can arrive at an arbitrary time; ii)

distributed, i.e., no centralized decision-making is

required; and iii) works for multi-hop scenarios. In the

previous section we have described some of the

limitations of the earlier proposed protocols. Our goal is

to propose a new scheme that relaxes some of the

limitations of the earlier work and to make it possible to

simulate our approach with nothing more but a Bluetooth

compliant simulator. Thus, the goals for our scatternet

formation algorithm are:

1. To reduce the delay to form a connected topology.

2. To reduce the number of piconets in the scatternet

formed.

3. To reduce the average number of roles taken up by

a node

4. To be BT compliant, i.e., to consider all constraints

imposed by the BT standard (e.g., nodes need not

know their absolute or relative location nor the ids

of their neighboring nodes in advance).

The communication topology generated by our

protocol is a mesh, which has some advantages over the

tree structure. The mesh structure is considered to be

more robust in an ad hoc environment where nodes arrive

and depart at arbitrary times. In the tree structure there is

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

only one path between every node pair in the connected

network. When an intermediate node along the path,

which is an internal node in the tree, departs, it could

break the tree into several smaller the trees. These trees

would have to be merged again to form a fully connected

topology. In case of a mesh structure there could be

several paths between every node pair and when an

intermediate node departs only one of the paths is broken,

connectivity is still preserved via other paths. Even

though routing decisions are more complex in a mesh

structure when compared to a tree structure, packets in a

mesh structure can be routed on different paths (e.g.,

depending on the traffic load).

4.1. Description of Algorithm
In our approach all nodes maintain a neighbor list,

which can be varied to contain list of nodes in the one-

hop, two-hop, etc. piconets. This list is dynamically

generated (when a node is not involved in the scatternet

this list is empty). We define the one-hop piconet

neighbor list to be the node ids of all nodes in a piconet(s)

that the node participates in. Nodes that are in the

adjacent piconet(s) form the two-hop neighbor list (and so

on). Nodes that are not a part of any piconet do not have

any nodes as neighbors. Table 1 shows a sample 1-, 2-,

and 3-hop neighbor set for the scatternet in Figure 3.

Table 1. A sample 1-, 2-, and 3-hop neighbor list.

node neighbor_list

one-hop

neighbor_list

two-hop

neighbor_list

three-hop

A {b, c, d, e, f} {h, i, j, g, m} {k, l}

B {a, c, d, e, f} {h, i, j, g, m} {k, l}

I {f, g, h, j, m} {a, b, c, d, e, k,

l}

-

L {j, k} {f, g, h, i} {a, b, c, d, e}

The pseudo-code for the algorithm is shown in

Figure 4. A node on arrival picks a role by executing

PICK_ROLE procedure. In PICK_ROLE, a node takes

either the master role with a probability p, (p < 0.5) and

calls ROLE_MASTER procedure or takes up the slave

role (with probability 1-p) and calls ROLE_SLAVE. If a

node chooses to be a master, then it goes into the

INQUIRY state. In inquiry nodes send out inquiry

messages trying to discover other nodes that are in the

INQUIRY SCAN state. On inquiry timeout (suggested

time in BT specification is 10.24 s) or on getting required

number of responses the node goes into the PAGE state.

In the page state, the master node connects to the newly

discovered nodes that do not belong to the neighbor list.

A node does not form new connection with the nodes

in the neighbor list to minimize the degree of the piconet

(i.e. number of slaves in a piconet) and average number of

roles that a node takes. If the neighbor list includes one-

hop and two-hop piconet neighbor information then two

adjacent piconets can share only one bridge node i.e. only

one link connects these two piconets. A node can only

have a single unique path with the nodes in the neighbor

list, therefore reducing the degree of the piconet and

average number of roles taken the nodes.

PICK_ROLE () {

 x ← a random number in [0,1]

 if x < p (p < 0.5)

 then MASTER_ROLE ()

 else SLAVE_ROLE()

}

MASTER_ROLE () {

 do INQUIRY

 if (new_node discovered & new_node ∉ neighbor_list)
 then form connection to new_node by PAGE

 neighbor_list ← neighbor_list + new_node.

 if connection complete

 then exchange neighbor information

 update neighbor_list.
 PICK_ROLE ()

}

SLAVE_ROLE() {

 do INQUIRY SCAN and PAGE SCAN

 if page message & master id ∉ neighbor_list

 then accept connection
 while(slave role timeout)

 if slave role timeout

 PICK_ROLE ()

}

Figure 4. Pseudo-code of algorithm.

The master node - after it finishes paging the nodes

that it has discovered - picks a new role with the same

probability p. If the node chooses to be a master again and

the number of slaves that it has already acquired is less

than 7 then it goes into inquiry and paging. In case the

node already has acquired 7 slaves it goes into

connection, polling the slaves. A timer for master and

slave roles is defined, which can be varied depending on

the degree and number of roles a node takes. On

expiration of the timer the node picks another role again.

4.2. Biasing Inquiry Scan to Inquiry
One of the main contributions of this paper is the

consideration of biasing the inquiry scan state to the

inquiry state. Intuitively, to ensure a high scatternet

throughput, we would like to reduce the number of

piconets in the scatternet. This can be done by

reorganizing the scatternet after it has been established

(e.g., as it has been described in [5,9]). Since each piconet

has only one master, another way to reduce the number of

piconets is by reducing the number of masters. Such an

endeavor may look difficult but considering that nodes

that start the inquiry in the inquiry substate are likely to

become masters, it is enough to reduce the relative

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

probability of nodes picking the inquiry substate.

Fortunately this probability can be easily changed. If we

define the master role probability p to be less than 0.5

then statistically more nodes will take up a slave role.

This will also reduce the number of master-slave bridge

nodes. As we are going to show in section 5, in a dense

environment the p could be reduced to as little as 20%.

5. Simulation and Performance Evaluation

In this section we present our experimental results.

To evaluate the performance of our scheme, we have

extended BlueHoc [11], a BT Simulator developed by

IBM as an extension to the Network Simulator (ns2) [10].

We have implemented the proposed scatternet formation

protocol and conducted tests to study the performance.

BlueHoc can simulatee BT piconets, which do not

consist more than a master and 1 to 7 slaves. However,

BlueHoc lacks support for scatternets. An officially

unreleased version of BlueHoc called Bluescat features

some support for scatternet scenarios. Bluescat supports

scatternet only in a sense that it allows a slave to

participate in more than one piconet on a time division

basis. We have extended Bluescat to support bridge nodes

that take up the roles of master and slave as outlined in

[16].

We have considered two different environments; 1)

dynamic environment, where nodes arrive at an arbitrary

time; 2) static environment, where all nodes start at the

same time. In both the cases nodes are uniform randomly

scattered over a square area of side L meters. L has been

chosen to obtain connected networks. Nodes used are

Class 3 BT nodes that have an approximate transmission

range of 10 meters. The BT Baseband parameters used for

Inquiry and Paging are listed in Table 2. The hold time

duration (holdTO) used was 2 seconds.

Table 2. Bluetooth baseband parameters in seconds.

T inq_scan T w_inq_scan T page_scan T w_page_scan

2.56 11.25 x 10
-3

 1.28 11.25 x 10
-3

For the dynamic environment, we have considered

two cases for establishing the neighbor list. In the first

case the neighbor list consists of nodes in the one-hop and

two-hop piconets thus named: 2-hop neighbor list case. In

the second case, i.e., the 4-hop neighbor list case, the

neighbor list contains nodes that are up to four piconet-

hops away. For the static environment, we only

considered the 4-hop neighbor list case. We have varied

the population from 30 to 60 nodes. We have chosen four

different values for probability p, for a node to take a

master role. The values range from 0.2 to 0.5. All our

simulations have been completed with a confidence level

above 90% to keep the relative error below 10%.

The metrics used to measure the quality of the

scatternet are 1) the average time for the protocol to

converge to a steady state, 2) the average number of

piconets in the formed scatternet, 3) average number of

master-slave role nodes, 4) average number of slave

role(s) nodes.

It is difficult to compare our scheme with any of the

previous schemes. Due to the lack of simulation tools,

Záruba et al. have chosen different metrics to measure the

quality of the piconets. The authors of [6] base their

comparison on the number of iterations taken for their

protocol to obtain a fully connected scatternet. We use the

average number of piconets obtained in the static

environment case of our scheme to compare with their

scheme. Salonidis et al. assume that the clocks of all

nodes are synchronized. We do not make any such

assumptions. Li et al. apply their algorithm on a sparse

geometry structure and make an assumption that every

node knows its position (a working simulation model is

unavailable). It is difficult to compare their scheme using

the metrics we use to evaluate the quality of the

scatternet. The scheme described by Tan et al. works only

for single hop scenarios and the generated topology is a

tree. We therefore chose not to use their scheme for

comparison.

5.1. Dynamic Environment
In our experiments for the dynamic environment, half

of the nodes arrive randomly over a period of 2 seconds

and the other half arrive randomly over a time window of

0 to 20 seconds.

5.1.1. Average Number of Piconets

Figure 5 and Figure 6 show the average number of

piconets in the scatternet for the 4-hop and 2-hop

neighbor lists respectively. The increase in the number of

piconets is linear with the increase in the number of nodes

and is at its minimum when p=0.2. The average number

of piconets for the 4-hop neighbor list is marginally less

when compared to the 2-hop neighbor list scenario. This

is because in the 4-hop scenario no node shares more than

one path between any node that is up to 4 piconet hops

away, where as in the 2-hop neighbor list scenario there is

no more than one path between nodes that are up to 2

piconet hops away. Nodes in the 4-hop neighbor list

scenario cannot form a new link with any nodes that are

up to four piconets hops away.

5.1.2. Time to Converge to Steady State

Figure 7 and Figure 8 show the time taken for the

protocol to converge to a steady state (achieving >99%

connectivity) for the 4-hop and 2-hop neighbor lists

respectively. Results show that the time is fairly constant

with the increase in the number of nodes and in the

probability p. The time taken by the 4-hop neighbor list

scheme to converge is marginally less when compared to

2-hop neighbor list. This is because of the fact that the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

number of piconets formed by the 4-hop scheme is less

than that of the 2-hop scheme. Therefore the 4-hop

scheme reaches a steady state faster.

Figure 5. Avg. number of piconets for 4-hop neighbor list

Figure 6. Avg. number of piconets for 2-hop neighbor list

5.1.3. Average Number of Master-Slave Role Nodes

Figure 9 and Figure 10 illustrate the average number

of master-slave role nodes in the scatternet for the 2-hop

and 4-hop neighbor lists respectively. The plots show that

the average number of master-slave role nodes is less than

one when the probability p is 0.2 and increases linearly

with the increase in p. The reason for this behavior is due

to a reduced number of nodes choosing the master role

whenever a node picks a new role.

Figure 7. Average time to converge to a steady state for

4-hop neighbor list

Figure 8. Average time to converge to a steady state for

2-hop neighbor list.

5.1.4. Average Number of Slave Nodes

Table 3and Table 4 list the average number of slave

nodes that serve as slaves in one or more piconets for the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

4-hop and 2-hop neighbor lists respectively. S
1
 denotes

that the node serves as a slave in one piconet and S
2

denotes that the node serves as a slave in two piconets and

so on (note that nodes act only as slaves and does not

include those nodes that take up master and slave roles).

Figure 9. Average number of master-slave role nodes for

4-hop neighbor list.

Figure 10. Average number of master-slave role nodes

for 4-hop neighbor list.

The nodes that take up S
4
 and greater were less than

2% of all the nodes and we have therefore omitted them

in our tables. Results show that number of S
1
 role nodes is

highest when p = 0.2 and decreases with the increase in p.

This behavior counters the behavior of S
3
 role nodes,

where the numbers decrease with the increase in p; when

p = 0.2 the number of piconets in the scatternet is the least

therefore lesser more number of nodes take up the S
1
 role

and with the increase in the number of piconets more

bridge nodes are required to interconnect the piconets.

5.2. Static Environment
For the static case, nodes start randomly over a small

time interval ensuring that clocks are not synchronized.

5.2.1. Average Number of Piconets

Error! Reference source not found. shows the

average number of piconets in the scatternet for the 4-hop

neighbor list case. The graph is similar to plot obtained in

the dynamic environment scenario. The average number

of piconets is minimal when p=0.2 and increases linearly

with the increase in p.

Figure 11 shows a comparison of our scheme with

results of BlueMesh [6]. For comparison we chose the

case where p = 0.2, since the average number of piconets

in the formed scatternet is minimal there. The data points

for the BlueMesh scheme were obtained from [6]. Based

on our assumptions, our scheme outperforms BlueMesh.

5.2.2. Time to Converge to Steady State

Figure 12 shows the average time to reach steady

state with more than 99% connectivity. The behavior seen

here is a little different from the dynamic environment

case. The time increases marginally with the increase in

number of nodes. The reason for this behavior is due to

more nodes being active at the same time. In the dynamic

case, many nodes arrive when the scatternet formation is

already initiated and therefore the time is fairly constant.

6. Conclusions

The inexpensive, short-range, wireless standard

Bluetooth can be used to enable ad hoc multihop

networking. Multihop topology generation in BT is an

open research problem referred to as the scatternet

formation problem. In this paper we have proposed a

distributed and dynamic scatternet formation algorithm

providing a working solution to scatternet formation. Our

design does not restrict the number of nodes and works

for both single- and multi-hop scenarios not restricting

arrival and departure times of nodes. Through simulations

we have confirmed that our scheme works within the

Bluetooth specification. We have shown the performance

of our scheme in measuring the time required for link

formation. Study on p (probability that the node takes up

the master role) has shown that when p>0.2 the “quality”

of the scatternet degrades; since the average number of

piconets increases with the increase in p, which results in

more number of nodes acting as gateway nodes.

 As per our current knowledge our proposed

scatternet formation protocol is the only multi-hop
solution that can be implemented within the constraints

imposed by BT standard.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

Table 3. Average number of slave and master nodes for 4-hop neighbor list.

S1 S2 S3 Master M-S

Probability p Probability p Probability p Probability p Probability p

#
 o

f
n
o
d

es

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

30 10.3 7.5 7 5.4 7 5.9 5.9 5.8 2.4 3.7 3.2 3.8 8.4 9.7 8.8 9.7 1.2 2.9 3.8 4.8

40 12.1 9.8 9.2 6.7 8 8.4 8.1 8.4 5.8 5.4 5.3 4.5 12.1 13.4 11.9 14.1 1.5 2.5 4 4.6

50 17.4 9.8 9.3 6.5 11.2 11.8 10.9 10.5 5.2 7.3 7.4 7.2 14.9 16.6 14.8 16.1 1 3.2 5 7.7

60 17.8 17.9 11.5 8.6 14.3 12.9 14.4 11.1 7.9 7.4 8.5 10.9 18.1 18.2 19.6 20.8 2.1 2.6 5 7.3

Table 4. Average number of slave and master nodes for 2-hop neighbor list.

S1 S2 S3 Master M-S

Probability p Probability p Probability p Probability p Probability p

#
 o

f
n
o
d

es

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

30 10.5 8.2 6.2 3.6 6 5.4 5.9 5.9 2.9 4.2 4.3 4.3 9.33 9.9 10.1 10.8 1 2.7 3.7 4.6

40 13.8 10.2 7.1 6.9 8.8 8.4 7.9 8.2 4.2 6.3 6.3 6.2 11.9 13 12.6 13.2 0.8 1.8 5.4 5.1

50 13.3 10.9 9.1 4.3 11.1 11.3 10.9 9.1 7.9 8.2 8.3 9.2 16.2 10.7 16.9 16.7 0.5 2.4 3.1 8.8

60 17.1 16.5 9.3 7.7 14.2 14.7 14.3 13.4 8.1 7.4 9.3 9.7 19.1 19 20.3 19.8 1 1.5 5.6 8.2

References

[1] BLUETOOTH SIG, “Specification of the Bluetooth

System, Volume 1: Core, Version 1.1,” February 22

2001. http://www.bluetooth.com,

[2] Jennifer Bray, and Charles F. Sturman, “Bluetooth:

Connect without Cables,” Prentice Hall, 2001.

[3] J.C. Haartsen, “The Bluetooth Radio System,” IEEE

Personal Communications Magazine, vol. 7, no. 1, pp.

28-36, 2000.

[4] J.C. Haartsen, “Bluetooth – Ad Hoc Networking in an

Uncoordinated Environment,” Proceedings of ICASS,

vol. 4, pp. 2029-2032, 2001.

[5] Xiang-Yang Li, Ivan Stojmenovic, Yu Wang, "Partial

Delaunay Triangulation and Degree Limited Localized

Bluetooth Multihop Scatternet Formation", to appear

in the IEEE Transactions on Parallel and Distributed

Systems, 2003.

[6] “Degree-Constrained Multihop Scatternet Formation

for Bluetooth Networks,” Proceedings of the IEEE

GLOBECOM 2002, Taipei, Taiwan, November 2002.

[7] T. Salonidas, P. Bhagwat, L. Tassiulas, and R.

Lamaire, “Distributed Topology Construction of

Bluetooth Personal Area Networks,” Proceedings of

the IEEE INFOCOM, 2001.

[8] G. Tan, “Self-organizing Bluetooth Scatternets,”

Masters Thesis, MIT 2002.

[9] G.V. Záruba, S. Basagni and I. Chlamtac, “Bluetrees-

Scatternet Formation to Enable Bluetooth Based Ad

Hoc Networks,” Proceedings of the IEEE International

Conference on Communications (ICC), 2001.

[10] The VINT Project, “The ns Manual,” 2002.

http://www.isi.edu/nsnam/ns/

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

[11] “BlueHoc Simulator,” 2001.

http://oss.software.ibm.com/bluehoc/

[12] J. Chung, and M. Claypool, “NS by Example,”

Worcester Polytechnic Institute, 2001.

http://nile.wpi.edu/NS

[13] Marc Greis et al., “Tutorial for the Network Simulator

"ns",” 2002.

http://www.isi.edu/nsnam/ns/tutorial/index.html

[14] C. Law, A. K. Mehta, and K.-Y. Siu, “Performance of

a New Bluetooth Scatternet Formation Protocol,”

Proceedings of the ACM Symposium on Mobile Ad

Hoc Networking and Computing 2001, October 2001.

[15] Z. Wang, R.J. Thomas, Z. Haas, “Bluenet – a New

Scatternet Formation Scheme,” Proceedings of

HICSS-36, Hawaii, 2002.

[16] Deepak Jayanna, “A Dynamic and Distributed

Scatternet Formation Protocol for Real-life Bluetooth

Scatternets,” Master Thesis, The University of Texas

at Arlington, 2003.

0

5

10

15

20

25

30 40 50 60

Number of Nodes

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

P
ic

o
n
e
ts

Static
Environment

BlueMesh

Figure 11. Number of Piconets comparison with

BlueMesh.

Figure 12. Average time to converge to a steady state.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

10

