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Abstract 

Bluetooth is a universal radio interface for short-range 

wireless networks. The basic Bluetooth network topology 

is a single-hop star-shaped piconet. Several such piconets 

can be interconnected into a scatternet to form a wireless 

ad hoc network. This paper proposes a dynamic and 

distributed protocol to the Bluetooth scatternet formation 

problem. The protocol was developed strictly within the 

constraints imposed by the Bluetooth standard, without 

assuming any outside knowledge on the topology of the 

underlying connectivity graph or attributes of different 

nodes. We show relevant performance measures of our 

scatternet formation protocol by simulations performed 

with an extended BlueHoc based simulator. 

 

1. Introduction 

The massive growth of portable electronic consumer 

devices such as laptops, cell phones, personal digital 

assistants (PDA), digital cameras and MP3 players has 

called for a new way to connect these devices to 

communicate or share information. Information transfer 

between these devices, using wires, applying various 

connectors and protocols has proved to be cumbersome. 

Recently, Bluetooth (BT) [1,2,3], a new radio interface 

has been developed to provide device-to-device 

connectivity via short radio links. BT is a low-cost, low-

power, short-range, wireless de-facto standard developed 

for replacing cables that connect electronic devices.  

Most radio systems today are based on a hierarchical 

structure; base stations are placed at fixed locations that 

provide local cell coverage, and are connected via a wired 

backbone infrastructure. Mobile terminals can move 

within the cells while connected to the fixed network 

through the base stations. Base stations contain 

intelligence to provide critical functions like channel 

selection, registration, etc. On the other hand, in ad hoc 

systems there is no inherited hierarchical structure, i.e., no 

distinction is made between base stations and mobile 

nodes. Ad hoc connectivity is based on peer-to-peer 

communication between neighbors; there is no wired 

infrastructure to support connectivity between the mobile 

nodes. For our purposes we can distinguish between two 

types of ad hoc networks:  

In conventional ad hoc networks, a group of peer 

units that are all in the transmission range share the same 

channel: packets transmitted on the wireless channel are 

received by all nodes within the transmission range. Ad 

hoc networks based on Wi-Fi (IEEE 802.11x) technology 

are good representatives for these ad hoc networks. 

In a scatter ad hoc network, several groups of units 

may exist in the same area each with their own logical or 

real channel. The BT specification enables such scatter ad 

hoc networking. BT devices need to discover and connect 

to other devices that are in the vicinity before they can 

exchange packets among themselves.  

We have developed a new scatternet formation 

protocol that is distributed and dynamic in nature. The 

protocol generates a topology that is of the form of a 

mesh. Master and slave roles are assigned to nodes in a 

distributed manner thus no centralized decision-making is 

required. Unlike most of the earlier works our design 

allows nodes to be added to the network any time. We 

have extended BlueHoc [11] (a BT simulator by IBM 

based on ns2) and implemented our proposed scheme; this 

demonstrates that our scheme can be implemented within 

the exiting BT specification. Through simulation we show 

that our scheme achieves connectivity with low delays 

while trying to minimize the number of piconets.  

The remaining sections of this paper are organized as 

follows. Section 2 gives an introduction to the BT 

standard. Section 3 describes scatternets, i.e., Bluetooth’s 

capability to establish multi-hop networks while outlining 

some of the more important previous work in scatternet 

formation. Section 4 is devoted to describing our dynamic 

and distributed approach to scatternet formation. Section 

5 describes our simulation efforts and provides with the 

performance evaluation of our scheme. Section 6 

concludes the paper.  

2. Bluetooth Overview 

Bluetooth operates in the unlicensed Industrial, 

Scientific and Medical (ISM) band at 2.4 GHz. A set of 
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79 frequencies has been defined at 1 MHz spacing.  Since 

the ISM band is open, systems operating in this band need 

to deal with interfering sources such as microwaves, 

Wi-Fi devices and baby monitors. Hence, to reduce 

interference, BT uses frequency hopping spread spectrum 

(FHSS), with a hop dwell time of 625 µs.  

Two or more BT units that share the same channel 

(same frequency hopping sequence and synchronization) 

form a piconet. One device acts as the master and all other 

devices act as slaves. Slaves in the piconet can have links 

only to the master and cannot communicate directly with 

other slaves, i.e., the master node controls the 

communication in the piconet. The master also allocates 

transmission slots to slave nodes. There can be 7 active 

slaves in the piconet; each slave is given a 3-bit Active 

Member Address (AM_ADDR) so it can be addressed. 

Full duplex communication is achieved by applying 

Time-Division Duplexing (TDD).  

2.1. Bluetooth Protocol Stack  
The BT stack [2] is defined as a series of layers. The 

Baseband, Link Controller and Link Manager layers form 

the lower layers and may be implemented on a single chip 

(BT Module). The Logical Link Control and Adaptation 

Layer (L2CAP), and RFCOMM and SDP form the upper 

layers and are usually implemented in software on the 

host. The Host Controller Interface (HCI) provides a 

standard serial interface between the lower timing 

sensitive layers and the higher computational intensive 

layers. Figure 1 shows the BT protocol stack [2]. 

 

Figure 1. Bluetooth protocol stack. 

The radio modulates and demodulates data for 

transmission and reception on air. The Baseband and Link 

Controller are responsible for channel encoding, hop 

sequence selection and synchronization of local and 

remote clocks. The Link Manager controls and configures 

links to other devices. The Host Controller Interface 

handles communication between a separate Host and a BT 

module. The Logical Link Control and Adaptation layer 

multiplexes data from higher layers and also handles 

segmentation and reassembly of packets. RFCOMM can 

emulate RS232 connection over BT link. WAP and 

OBEX provides interface to other higher layer 

Communications Protocols. SDP (Service Discovery 

Protocol) allows BT unit to discover services offered by 

other BT devices. TCS (Telephony Control Protocol 

Specification) provides telephony services. 

2.2. Inquiry and Paging 
The link formation process in BT consists of two 

phases: Inquiry and Paging. During the inquiry phase 

devices may discover other BT units that are within the 

range. The discovering device collects the clock and BT 

address information from devices that respond to the 

inquiry message. This information is used in the paging 

phase to establish a bi-directional connection. Figure 2 

illustrates the BT link formation process as explained in 

the next paragraph. 
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Figure 2. Bluetooth link formation process. 

In order for the two devices to discover each other 

during the inquiry phase, they must be in two 

complementary substates: inquiry and inquiry scan. The 

inquiring device (inquiry substate) sends out inquiry 

messages (ID packets), which contain the Inquiry Access 

Code (IAC). If another device is listening in the inquiry 

scan state then a successful inquiry may happen. A device 

that wants to be discovered enters the inquiry scan state 

periodically with a period Tinq_scan and listens for the 

duration of the scan window Tw_inq_scan. In order to reduce 

the discovery time, the inquiring device sends out ID 

packets at half-slots at two different frequencies and 

listens at the corresponding receiving frequencies in the 

next slot. There could be more than one device in the 

inquiry scan substate listening on the same channel, 

receiving the same inquiry message. In order to avoid 

collisions in the reply of such devices, after receiving the 

inquiry message devices have to choose a random backoff 

interval (between 0 and 1023 slots) before reentering the 

inquiry scan state. After reentry and upon receiving an ID 
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packet the device will respond with an FHS (Frequency 

Hopping Selection) packet containing its own BT device 

address and clock.  

During the Inquiry phase, both devices follow a 32-

carrier frequency inquiry hop sequence. The inquiry hop 

sequence is divided into two trains: A and B of 16 

frequencies each. A single train is repeated at least N inquiry 

(256) times before a new train is tried. The BT 

specification recommends the inquiry substate to last for 

10.24 s unless the inquirer collects enough responses and 

thus elects to abort the inquiry substate earlier. 

Paging is similar to the inquiry process but instead of 

using inquiry access code to capture other devices the 

paging device uses Device Access Code (DAC) (which is 

derived from slaves BD_ADDR). The paging process can 

be accelerated because paging device uses an estimated 

clock value to predict the hop channel the device will start 

page scan. 

3. Ad Hoc Networking with Bluetooth 

Multiple piconets may coexist in the same physical 

space. To interconnect such piconets, BT units can 

participate in two or more piconets (via time 

multiplexing) creating topologies called scatternets. 

Figure 3 depicts a simple Bluetooth scatternet 

interconnected from 3 piconets. A BT unit can act as 

slave in several piconets and as a master in only one 

piconet simultaneously (two piconets with the same 

master would be synchronized using the same hopping 

sequence). The interconnection of piconets to form a 

scatternet is not addressed in the standard and is an open 

research problem. 

 

Figure 3. A simple Bluetooth scatternet. 

3.1. Bluetooth Scatternet Formation 

Some of the important goals for scatternet formation 

protocols are: 

Scalability: The algorithm should work for any 

number of nodes; not all nodes need to be necessarily in 

the radio vicinity of every other node. 

Low Delay: The time taken to form a connected 

network should be as little as possible. 

Dynamicity and Resilience: Nodes may arrive and/or 

depart at an arbitrary time. 

Decentralized: The algorithm should be completely 

decentralized. No centralized decision-making.  

Minimal number of piconets: The number of piconets 

in the scatternet should be reduced; by reducing the 

number of piconets, the average number of hops for 

messages can be reduced.  

Minimal average role for nodes: The number of 

piconets that a node participates in should be reduced; 

nodes assuming a large number of roles become 

bottlenecks. 

3.2. Previous Work in Scatternet Formation 
Scatternet formation protocols can be divided into 

single-hop [7,8] and multi-hop [5,6,9] solutions. In the 

single-hop case all nodes are in each other’s radio 

transmission range, thus restricting their usability. Our 

proposed solution works for multi-hop scenarios, where 

not all nodes need to be in each other’s transmission range 

thus forming real ad hoc networks. In the following 

paragraphs we will show some of the most relevant 

previous approaches to scatternet formation. Our 

discussion list is not complete, i.e., it does not show all 

approaches that have been published but only those that 

we think are relevant for our further discussions. 

Záruba et al. [9] have proposed the first two 

protocols for forming connected multi-hop scatternets. In 

both cases the resulting topology is termed a bluetree. The 

number of roles each node takes is limited to two or three. 

The first protocol is initiated by a given, single node, 

called the blueroot, which will be the root of the bluetree. 

The root node is assigned the role of the master and all of 

its one-hop neighbors will be its slaves. The children of 

the root are now assigned an additional master role and all 

their neighbors that are not assigned any roles will 

become slaves of the newly created masters. This 

procedure is repeated recursively until all nodes are 

assigned roles. In order to limit the number of slaves, the 

authors observed that if a node has more than five 

neighbors, then there are at least two nodes among these 

neighbors that are neighbors themselves. This observation 

is used to re-configure the bluetree so that each master has 

less than eight slaves. If a master has more than seven 

slaves, it selects two of its slaves, s1 and s2 that are 

neighbors themselves and instructs s2 to be the master of 

s1 and disconnects s2 from itself. In the second protocol, 

several root nodes are picked and each of them creates it’s 

own scatternet in the first phase of the protocol. In the 

second phase, the sub-tree scatternets are connected into 

one scatternet that spans the entire network. The above 

two solutions are not time efficient. The protocol also 

assumes all nodes to start the formation process at the 

same time and that one of the nodes is designated as the 

blueroot before the formation starts (defeating the 

decentralized purpose).  
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In [6] the authors have proposed a multi-hop solution 

called BlueMesh, which defines rules for device 

discovery, piconet formation and piconet interconnection. 

The protocol proceeds in two phases (similar to the 

bluetree approach), topology discovery phase and 

scatternet formation phase. In the topology discovery 

phase each node discovers its one and two hop neighbors 

(note, that BT does not provide with functions to achieve 

this). Inquiry procedure in BT does not guarantee a 

symmetric knowledge of neighbors, in the sense if a node 

u discovers v, node v may not be aware of u. To achieve 

symmetric knowledge of nodes neighbors the protocol 

uses inquiry and paging procedures to set up two-node 

temporary piconets through which two neighboring 

devices exchange identity. This phase therefore may take 

several seconds between each node (recall that the 

recommended time for inquiry is 10.24s). The total time 

required is not addressed but may be several hundred 

seconds even for small networks. After having discovered 

all of its neighbors, a node exchanges this list with its 

neighbors, thus obtaining two-hop neighborhood 

knowledge. The scatternet formation phase proceeds in 

iterations taking care of piconet formation and their 

interconnection to form a scatternet. The authors [6] do 

not specify the time taken for the protocol to finish and 

our view is that this solution is not feasible in a dynamic 

environment.  

Salonidis et al. [7] have proposed another topology 

construction scheme. In their scheme the nodes alternate 

between inquiry and inquiry scan state continuously to 

discover or to be discovered by other nodes. Coordinator 

nodes are elected, one for each connected component. 

Coordinators collect information about the whole 

network, and decide on the roles for each other node. This 

protocol is limited to single-hop scenarios where all nodes 

appear at the same time. The authors also assume the 

number of nodes to be less than 36.  

Li et al. [5] have proposed several localized 

scatternet formation algorithms based on sparse geometric 

structures. The algorithms have three different phases. In 

first phase, the neighbor discovery and information 

exchange phase, the nodes learn about their one-hop and 

two-hop neighbors. The second phase, planar subgraph 

construction phase is optional. In this phase, each node 

computes the incident edges that belong to chosen planar 

sparse structure, Relative Neighborhood Graph, Gabriel 

Graph, or Partial Delaunay Triangulation (details of each 

of these sparse geometric structure is described in [5]). 

All other edges that are not a part of the sparse structure 

are removed. The final phase of the algorithm is an 

iterative phase. The degree of each node is limited to 7 by 

applying Yao structure [5], and the master-slave relations 

are assigned in the created subgraphs. The solutions 

defined by the authors assume that each node knows 

absolute or relative positions of itself and neighbors (BT 

does not provide with such functions or the native relay of 

such information). 

Wang et al. [15] have presented a scatternet 

formation protocol called BlueNet, which has three 

different phases. In the first phase separate piconets are 

formed and in the second and third phase the piconets are 

connected to form a scatternet. Due to the multi-phase 

nature of this protocol, nodes need to arrive at the same 

time and start the scatternet formation at the same time. 

Law et al. [14] have proposed a randomized 

distributed scatternet formation protocol and evaluated the 

performance. The resulting scatternet is a tree, which 

limits the efficiency and robustness. They also assume 

that every node is aware of its neighbors and all nodes 

start the formation process at the same time. 

Tan et al. [8] have developed Tree Scatternet 

Formation (TSF) an online topology formation algorithm 

that builds scatternet by connecting nodes into a tree 

structure. Topology produced by TSF at any time is a 

collection of one or more rooted trees that are 

autonomously trying to merge to a smaller number of 

trees. Goal is to form a one rooted tree. Their algorithm is 

decentralized and self-healing, nodes can join and leave at 

any time without causing long disruptions in connectivity. 

However TSF assures connectivity only in single-hop 

scenarios. Our proposed protocol doesn’t have any such 

limitations. 

4. Our Scatternet Formation Approach 

In this section we describe our proposed new 

scatternet formation protocol. The proposed scheme is i) 

dynamic, i.e., nodes can arrive at an arbitrary time; ii) 

distributed, i.e., no centralized decision-making is 

required; and iii) works for multi-hop scenarios. In the 

previous section we have described some of the 

limitations of the earlier proposed protocols. Our goal is 

to propose a new scheme that relaxes some of the 

limitations of the earlier work and to make it possible to 

simulate our approach with nothing more but a Bluetooth 

compliant simulator. Thus, the goals for our scatternet 

formation algorithm are: 

1. To reduce the delay to form a connected topology. 

2. To reduce the number of piconets in the scatternet 

formed. 

3. To reduce the average number of roles taken up by 

a node 

4. To be BT compliant, i.e., to consider all constraints 

imposed by the BT standard (e.g., nodes need not 

know their absolute or relative location nor the ids 

of their neighboring nodes in advance).  

The communication topology generated by our 

protocol is a mesh, which has some advantages over the 

tree structure. The mesh structure is considered to be 

more robust in an ad hoc environment where nodes arrive 

and depart at arbitrary times. In the tree structure there is 
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only one path between every node pair in the connected 

network. When an intermediate node along the path, 

which is an internal node in the tree, departs, it could 

break the tree into several smaller the trees. These trees 

would have to be merged again to form a fully connected 

topology. In case of a mesh structure there could be 

several paths between every node pair and when an 

intermediate node departs only one of the paths is broken, 

connectivity is still preserved via other paths. Even 

though routing decisions are more complex in a mesh 

structure when compared to a tree structure, packets in a 

mesh structure can be routed on different paths (e.g., 

depending on the traffic load).  

4.1. Description of Algorithm 
In our approach all nodes maintain a neighbor list, 

which can be varied to contain list of nodes in the one-

hop, two-hop, etc. piconets. This list is dynamically 

generated (when a node is not involved in the scatternet 

this list is empty). We define the one-hop piconet 

neighbor list to be the node ids of all nodes in a piconet(s) 

that the node participates in. Nodes that are in the 

adjacent piconet(s) form the two-hop neighbor list (and so 

on). Nodes that are not a part of any piconet do not have 

any nodes as neighbors. Table 1 shows a sample 1-, 2-, 

and 3-hop neighbor set for the scatternet in Figure 3. 

Table 1. A sample 1-, 2-, and 3-hop neighbor list. 

node neighbor_list 

one-hop 

neighbor_list 

two-hop 

neighbor_list 

three-hop 

A {b, c, d, e, f} {h, i, j, g, m} {k, l} 

B {a, c, d, e, f} {h, i, j, g, m} {k, l} 

I {f, g, h, j, m} {a, b, c, d, e, k, 

l} 

- 

L {j, k} {f, g, h, i} {a, b, c, d, e} 

 

The pseudo-code for the algorithm is shown in 

Figure 4. A node on arrival picks a role by executing 

PICK_ROLE procedure. In PICK_ROLE, a node takes 

either the master role with a probability p, (p < 0.5) and 

calls ROLE_MASTER procedure or takes up the slave 

role (with probability 1-p) and calls ROLE_SLAVE. If a 

node chooses to be a master, then it goes into the 

INQUIRY state.  In inquiry nodes send out inquiry 

messages trying to discover other nodes that are in the 

INQUIRY SCAN state. On inquiry timeout (suggested 

time in BT specification is 10.24 s) or on getting required 

number of responses the node goes into the PAGE state. 

In the page state, the master node connects to the newly 

discovered nodes that do not belong to the neighbor list.   

A node does not form new connection with the nodes 

in the neighbor list to minimize the degree of the piconet 

(i.e. number of slaves in a piconet) and average number of 

roles that a node takes. If the neighbor list includes one-

hop and two-hop piconet neighbor information then two 

adjacent piconets can share only one bridge node i.e. only 

one link connects these two piconets. A node can only 

have a single unique path with the nodes in the neighbor 

list, therefore reducing the degree of the piconet and 

average number of roles taken the nodes.  

PICK_ROLE ( ) { 

 x ← a random number in [0,1] 

 if x < p (p < 0.5) 

     then MASTER_ROLE ( ) 

     else SLAVE_ROLE( ) 

} 
 

MASTER_ROLE ( ) { 

 do INQUIRY  

 if (new_node discovered & new_node ∉ neighbor_list) 
       then form connection to new_node by PAGE 

                           neighbor_list ← neighbor_list + new_node. 

 if connection complete 

        then exchange neighbor information 

      update neighbor_list. 
 PICK_ROLE ( )  

} 

 

SLAVE_ROLE( ) { 

 do INQUIRY SCAN and PAGE SCAN 

 if page message & master id ∉ neighbor_list 

                   then accept connection 
            while(slave role timeout) 

            if slave role timeout  

  PICK_ROLE ( ) 

} 

 

Figure 4. Pseudo-code of algorithm. 

The master node - after it finishes paging the nodes 

that it has discovered - picks a new role with the same 

probability p. If the node chooses to be a master again and 

the number of slaves that it has already acquired is less 

than 7 then it goes into inquiry and paging. In case the 

node already has acquired 7 slaves it goes into 

connection, polling the slaves. A timer for master and 

slave roles is defined, which can be varied depending on 

the degree and number of roles a node takes. On 

expiration of the timer the node picks another role again.  

4.2. Biasing Inquiry Scan to Inquiry 
One of the main contributions of this paper is the 

consideration of biasing the inquiry scan state to the 

inquiry state. Intuitively, to ensure a high scatternet 

throughput, we would like to reduce the number of 

piconets in the scatternet. This can be done by 

reorganizing the scatternet after it has been established 

(e.g., as it has been described in [5,9]). Since each piconet 

has only one master, another way to reduce the number of 

piconets is by reducing the number of masters. Such an 

endeavor may look difficult but considering that nodes 

that start the inquiry in the inquiry substate are likely to 

become masters, it is enough to reduce the relative 
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probability of nodes picking the inquiry substate. 

Fortunately this probability can be easily changed. If we 

define the master role probability p to be less than 0.5 

then statistically more nodes will take up a slave role. 

This will also reduce the number of master-slave bridge 

nodes. As we are going to show in section 5, in a dense 

environment the p could be reduced to as little as 20%.  

5. Simulation and Performance Evaluation 

In this section we present our experimental results. 

To evaluate the performance of our scheme, we have 

extended BlueHoc [11], a BT Simulator developed by 

IBM as an extension to the Network Simulator (ns2) [10]. 

We have implemented the proposed scatternet formation 

protocol and conducted tests to study the performance. 

BlueHoc can simulatee BT piconets, which do not 

consist more than a master and 1 to 7 slaves. However, 

BlueHoc lacks support for scatternets. An officially 

unreleased version of BlueHoc called Bluescat features 

some support for scatternet scenarios. Bluescat supports 

scatternet only in a sense that it allows a slave to  

participate in more than one piconet on a time division 

basis. We have extended Bluescat to support bridge nodes 

that take up the roles of master and slave as outlined in 

[16].  

We have considered two different environments; 1) 

dynamic environment, where nodes arrive at an arbitrary 

time; 2) static environment, where all nodes start at the 

same time. In both the cases nodes are uniform randomly 

scattered over a square area of side L meters. L has been 

chosen to obtain connected networks. Nodes used are 

Class 3 BT nodes that have an approximate transmission 

range of 10 meters. The BT Baseband parameters used for 

Inquiry and Paging are listed in Table 2. The hold time 

duration (holdTO) used was 2 seconds. 

Table 2. Bluetooth baseband parameters in seconds. 

T inq_scan T w_inq_scan T page_scan T w_page_scan 

2.56 11.25 x 10
-3

 1.28 11.25 x 10
-3

 

For the dynamic environment, we have considered 

two cases for establishing the neighbor list. In the first 

case the neighbor list consists of nodes in the one-hop and 

two-hop piconets thus named: 2-hop neighbor list case. In 

the second case, i.e., the 4-hop neighbor list case, the 

neighbor list contains nodes that are up to four piconet-

hops away. For the static environment, we only 

considered the 4-hop neighbor list case. We have varied 

the population from 30 to 60 nodes. We have chosen four 

different values for probability p, for a node to take a 

master role. The values range from 0.2 to 0.5. All our 

simulations have been completed with a confidence level 

above 90% to keep the relative error below 10%. 

The metrics used to measure the quality of the 

scatternet are 1) the average time for the protocol to 

converge to a steady state, 2) the average number of 

piconets in the formed scatternet, 3) average number of 

master-slave role nodes, 4) average number of slave 

role(s) nodes.    

It is difficult to compare our scheme with any of the 

previous schemes. Due to the lack of simulation tools, 

Záruba et al. have chosen different metrics to measure the 

quality of the piconets. The authors of [6] base their 

comparison on the number of iterations taken for their 

protocol to obtain a fully connected scatternet. We use the 

average number of piconets obtained in the static 

environment case of our scheme to compare with their 

scheme. Salonidis et al. assume that the clocks of all 

nodes are synchronized. We do not make any such 

assumptions. Li et al. apply their algorithm on a sparse 

geometry structure and make an assumption that every 

node knows its position (a working simulation model is 

unavailable). It is difficult to compare their scheme using 

the metrics we use to evaluate the quality of the 

scatternet. The scheme described by Tan et al. works only 

for single hop scenarios and the generated topology is a 

tree. We therefore chose not to use their scheme for 

comparison.  

5.1. Dynamic Environment 
In our experiments for the dynamic environment, half 

of the nodes arrive randomly over a period of 2 seconds 

and the other half arrive randomly over a time window of 

0 to 20 seconds.   

5.1.1. Average Number of Piconets 

Figure 5 and Figure 6 show the average number of 

piconets in the scatternet for the 4-hop and 2-hop 

neighbor lists respectively. The increase in the number of 

piconets is linear with the increase in the number of nodes 

and is at its minimum when p=0.2. The average number 

of piconets for the 4-hop neighbor list is marginally less 

when compared to the 2-hop neighbor list scenario. This 

is because in the 4-hop scenario no node shares more than 

one path between any node that is up to 4 piconet hops 

away, where as in the 2-hop neighbor list scenario there is 

no more than one path between nodes that are up to 2 

piconet hops away. Nodes in the 4-hop neighbor list 

scenario cannot form a new link with any nodes that are 

up to four piconets hops away. 

5.1.2. Time to Converge to Steady State 

Figure 7 and Figure 8 show the time taken for the 

protocol to converge to a steady state (achieving >99% 

connectivity) for the 4-hop and 2-hop neighbor lists 

respectively. Results show that the time is fairly constant 

with the increase in the number of nodes and in the 

probability p. The time taken by the 4-hop neighbor list 

scheme to converge is marginally less when compared to 

2-hop neighbor list.  This is because of the fact that the 
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number of piconets formed by the 4-hop scheme is less 

than that of the 2-hop scheme. Therefore the 4-hop 

scheme reaches a steady state faster. 

 

Figure 5. Avg. number of piconets for 4-hop neighbor list 

 

Figure 6. Avg. number of piconets for 2-hop neighbor list 

5.1.3. Average Number of Master-Slave Role Nodes 

Figure 9 and Figure 10 illustrate the average number 

of master-slave role nodes in the scatternet for the 2-hop 

and 4-hop neighbor lists respectively. The plots show that 

the average number of master-slave role nodes is less than 

one when the probability p is 0.2 and increases linearly 

with the increase in p. The reason for this behavior is due 

to a reduced number of nodes choosing the master role 

whenever a node picks a new role.  

 

Figure 7. Average time to converge to a steady state for 

4-hop neighbor list 

 

Figure 8. Average time to converge to a steady state for 

2-hop neighbor list. 

5.1.4. Average Number of Slave Nodes  

Table 3and Table 4 list the average number of slave 

nodes that serve as slaves in one or more piconets for the 
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4-hop and 2-hop neighbor lists respectively. S
1
 denotes 

that the node serves as a slave in one piconet and S
2
 

denotes that the node serves as a slave in two piconets and 

so on (note that nodes act only as slaves and does not 

include those nodes that take up master and slave roles).  

 

Figure 9. Average number of master-slave role nodes for 

4-hop neighbor list. 

 

Figure 10. Average number of master-slave role nodes 

for 4-hop neighbor list. 

The nodes that take up S
4
 and greater were less than 

2% of all the nodes and we have therefore omitted them 

in our tables. Results show that number of S
1
 role nodes is 

highest when p = 0.2 and decreases with the increase in p. 

This behavior counters the behavior of S
3
 role nodes, 

where the numbers decrease with the increase in p; when 

p = 0.2 the number of piconets in the scatternet is the least 

therefore lesser more number of nodes take up the S
1
 role 

and with the increase in the number of piconets more 

bridge nodes are required to interconnect the piconets. 

5.2. Static Environment  
For the static case,  nodes start randomly over a small 

time interval ensuring that clocks are not synchronized. 

5.2.1. Average Number of Piconets 

Error! Reference source not found. shows the 

average number of piconets in the scatternet for the 4-hop 

neighbor list case. The graph is similar to plot obtained in 

the dynamic environment scenario. The average number 

of piconets is minimal when p=0.2 and increases linearly 

with the increase in p.  

Figure 11 shows a comparison of our scheme with 

results of BlueMesh [6]. For comparison we chose the 

case where p = 0.2, since the average number of piconets 

in the formed scatternet is minimal there. The data points 

for the BlueMesh scheme were obtained from [6]. Based 

on our assumptions, our scheme outperforms BlueMesh. 

5.2.2. Time to Converge to Steady State 

Figure 12 shows the average time to reach steady 

state with more than 99% connectivity. The behavior seen 

here is a little different from the dynamic environment 

case. The time increases marginally with the increase in 

number of nodes. The reason for this behavior is due to 

more nodes being active at the same time. In the dynamic 

case, many nodes arrive when the scatternet formation is 

already initiated and therefore the time is fairly constant. 

6. Conclusions 

The inexpensive, short-range, wireless standard 

Bluetooth can be used to enable ad hoc multihop 

networking. Multihop topology generation in BT is an 

open research problem referred to as the scatternet 

formation problem.  In this paper we have proposed a 

distributed and dynamic scatternet formation algorithm 

providing a working solution to scatternet formation. Our 

design does not restrict the number of nodes and works 

for both single- and multi-hop scenarios not restricting 

arrival and departure times of nodes. Through simulations 

we have confirmed that our scheme works within the 

Bluetooth specification. We have shown the performance 

of our scheme in measuring the time required for link 

formation. Study on p (probability that the node takes up 

the master role) has shown that when p>0.2 the “quality” 

of the scatternet degrades; since the average number of 

piconets increases with the increase in p, which results in 

more number of nodes acting as gateway nodes. 

 As per our current knowledge our proposed 

scatternet formation protocol is the only multi-hop 
solution that can be implemented within the constraints 

imposed by BT standard.  
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Table 3. Average number of slave and master nodes for 4-hop neighbor list. 

S1 S2 S3 Master M-S 

Probability p Probability p Probability p Probability p Probability p 

#
 o

f 
n
o
d

es
 

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

30 10.3 7.5 7 5.4 7 5.9 5.9 5.8 2.4 3.7 3.2 3.8 8.4 9.7 8.8 9.7 1.2 2.9 3.8 4.8 

40 12.1 9.8 9.2 6.7 8 8.4 8.1 8.4 5.8 5.4 5.3 4.5 12.1 13.4 11.9 14.1 1.5 2.5 4 4.6 

50 17.4 9.8 9.3 6.5 11.2 11.8 10.9 10.5 5.2 7.3 7.4 7.2 14.9 16.6 14.8 16.1 1 3.2 5 7.7 

60 17.8 17.9 11.5 8.6 14.3 12.9 14.4 11.1 7.9 7.4 8.5 10.9 18.1 18.2 19.6 20.8 2.1 2.6 5 7.3 

 

Table 4. Average number of slave and master nodes for 2-hop neighbor list. 

S1 S2 S3 Master M-S 

Probability p Probability p Probability p Probability p Probability p 

#
 o

f 
n
o
d

es
 

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

30 10.5 8.2 6.2 3.6 6 5.4 5.9 5.9 2.9 4.2 4.3 4.3 9.33 9.9 10.1 10.8 1 2.7 3.7 4.6 

40 13.8 10.2 7.1 6.9 8.8 8.4 7.9 8.2 4.2 6.3 6.3 6.2 11.9 13 12.6 13.2 0.8 1.8 5.4 5.1 

50 13.3 10.9 9.1 4.3 11.1 11.3 10.9 9.1 7.9 8.2 8.3 9.2 16.2 10.7 16.9 16.7 0.5 2.4 3.1 8.8 

60 17.1 16.5 9.3 7.7 14.2 14.7 14.3 13.4 8.1 7.4 9.3 9.7 19.1 19 20.3 19.8 1 1.5 5.6 8.2 
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Figure 11. Number of Piconets comparison with 

BlueMesh. 

 

 

Figure 12. Average time to converge to a steady state.  
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