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Abstract – This paper describes research towards a system for 
locating users in a home environment requiring only a minimal 
wireless infrastructure. The only sensor reading used for the 
location estimation is the radio frequency received signal strength 
indication (RSSI) measured by an RF Interface (e.g., Wi-Fi). 
Location estimates are computed using Bayesian filtering on 
sample sets derived by Monte Carlo sampling. Wireless signal 
strength maps for the filter are obtained by a two-step parametric 
and measurement driven ray-tracing approach to account for 
absorption and reflection characteristics of various obstacles. Our 
trace driven simulations indicate that RSSI readings from a single 
access point in an indoor environment are sufficient to derive 
good location estimates of users. 
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I. INTRODUCTION AND MOTIVATION 
Location-aware computing [2,10] is a recent research 

paradigm relying on the knowledge of the physical location of 
mobile users. Location awareness is also an important enabler 
of pervasive computing, where the more information is 
available on the physical environment of users and computing 
entities the better the applications on the network can adapt to 
the user. In this paper we restrict ourselves to in-door 
localization, more precisely to in-home localization (without 
loosing the generality to apply our results to any indoor 
environment). Our work relies only on received signal strength 
measurements from wireless radio access points to determine 
the location of users. The major contribution of our paper is to 
show that good results can be achieved with readings from a 
single access point. This is in contrast to previous works 
where at least three access points were required to localize 
users on the corridors (only) of office environments.  

A. Localization Techniques 
The best-known location determination system is the 

Global Positioning System (GPS) [7]. A GPS receiver can 
estimate its location by measuring the propagation time of 
radio signals from several satellites to the receiver. Although, 
after the recent liberalization of the GPS the precision of the 
obtained GPS position is quite accurate (down to a meter), 
many commercial GPS receivers need to have line-of-sight to 
at least three satellites in the sky. Although GPS is the most 
wide spread (and global) positioning system, there are several 
other approaches available for location estimation and even 
more have been proposed in the literature. The types of sensors 
used to obtain the location information vary from ultrasonic 
through photonic to radio signal strength measurement sensors. 
Since our work is focused towards the indoor environment we 

will not revisit other outdoor positioning systems. In the indoor 
environment, infrared and laser transmitter/receiver systems 
[23], ultrasonic sensor/actuator systems [16], computer vision 
systems [5,12], physical contact [15] and close proximity radio 
identification (RFID) sensor [22] based localization systems 
have been proposed and built to track mobile users.  

Due to the fact that most mobile users that need to be 
tracked are enabled with wireless radio communication 
network interfaces today, such as Wi-Fi (IEEE802.11b), 
protocols that provide location estimates based on the received 
signal strength indication (RSSI) of wireless access points 
[3,13,17,19,24] are becoming more-and-more precise and 
sophisticated. Yet, all of the above listed approaches need 
RSSI readings from at least 3 access points at each location to 
provide with some precision. 

In general, RSSI based positioning includes two phases: i) 
the training phase where the wireless map of the environment 
is determined by field measurements and ii) the positioning 
phase where position calculation is performed based on the 
wireless map. In [14] the authors apply an extended Kalman 
filter [6] to RSSI measurements of cellular base-stations. 
Although [14] considers relatively macro-term outdoor 
movements, it was the first major work (to our best 
knowledge) to apply statistical methods to RSSI measurements 
for localization. RSSI based measurement techniques can be 
broadly divided into deterministic and probabilistic techniques: 

 Deterministic techniques include [1] and [19] where the 
location area is subdivided into smaller cells and readings are 
taken in these cells from several known access points (training 
phase). In the positioning phase the most likely cell is then 
selected, i.e., the cell that best fits the current measurement.  

Probabilistic positioning techniques include [3, 
6,13,17,24] where a probability distribution of the user’s 
location is defined over the area of the movement. The goal of 
the positioning is to reach a single mode for this distribution, 
which is the most likely location of the tracked user. In [6] the 
authors establish and train a Bayesian belief network with a 
preset number of discretized location possibilities (cells). By 
inverting the Bayesian network, they derive the conditional 
probabilities of a user being at the different cells given the 
current RSSI reading. The results of this approach show a very 
coarse location determination with a large computational and 
memory overhead. In [24], the authors use a similar Bayesian 
model except that inversion calculations are not made for all 
base-stations, but for only the strongest subset of them Both 
[6] and [24] apply their systems to office hallways. The model 
in [17] is a generalized version of [3] that applies machine 



learning techniques to the Bayesian network to increase 
precision (which in turn increases the computational burden). 
In [13] the authors take the Bayesian approach a step further 
by including directions of users in their model. 

Our work can be categorized as a probabilistic approach. 
The main tool and theme throughout the proposed work will be 
Bayesian filtering using Monte Carlo (MC) sampling 
(introduced in [5]), where the probability distribution of the 
location of users is captured, followed, and calculated by 
sampling. This method can use an arbitrary a-priori 
distribution converging (or “collapsing”) to a single mode of 
the sampled distribution. This method is computationally less 
expensive than evaluating Bayesian networks.  

B. Wireless Maps- The Training Phase 
To estimate location from signal strength readings it is 

necessary to have a spatial statistical representation of the 
received signal strengths from the surrounding access points. 
All the above mentioned RSSI based indoor localization 
approaches rely on a long “training” phase where the entire 
target area is measured with some spatial precision. However, 
such data collection/measurement requires significant human 
labor. Often, it would be preferable to be able to use a simple 
model of the environment to determine a model for the signal 
strength’s distribution. A number of such modeling techniques 
have been devised for managed wireless networks in office 
environments. In [8] the authors evaluate ray-tracing 
techniques that are used to derive indoor propagation models 
while in [9] a statistical approach is used that builds a wireless 
map based on statistical properties of rooms and the area.  

C. Sequential Monte Carlo Sampling 
Probabilistic approaches to mobile node localization from 

RSSI measurements rely on the precise estimation of a 
posterior probability distribution, ),,|( 1 tt ddsp K , of the 
likelihood of the node’s state (location), st, given a history of 
the received measurements, d1,…,dt. The goal is to derive a 
representation that deals with missing information about the 
motion of the mobile node and the uncertainty present in the 
measurement data. The main problem when using such 
probabilistic representations is that they can be prohibitively 
complex. As a result, most existing approaches to localization 
using RSSI measurements rely either on the discretization of 
space into a small number of regions of interest [1,9,19,24] or 
an unrealistic model of the uncertainty of the measurements 
[14,19]. An example of the latter can be seen in Kalman filter-
based approaches which have to make the assumption that the 
probability distribution for the locations as well as the 
measurement error model are Gaussian. However, in the 
presence of highly ambiguous measurements these 
distributions are generally multi-modal, indicating the 
existence of multiple possible positions that match a particular 
set of RSSI readings. 

In recent years, MC sampling-based techniques for the 
estimation of probability distributions have been developed 
[4,5] and applied to different problems [11,5,21]. In these 
simulation-based techniques, empirical probability 
distributions, pN(s), are represented by a set of N weighted, 

samples, {(s(i), w(i)) | i∈[1,N] } as  ∑
=

=
N

i
s

i
N swsp i

1

)( )()( )(δ , 

where w(i) is the weight of sample s(i) and  )()( )(
)( sss i

s i −= δδ  is 
the Dirac delta function. This distribution approximates the 
actual probability distribution, p(s), as 

∫ ∑∫
∈

=≈
2

1 ]2,1[

)(
2

1 )(

)()(
s

s sss

i
N

s

s i

wdsspdssp  

As a result, MC sampling-based techniques can be used to 
represent arbitrary probability distributions as long as the 
number of samples is sufficiently high. Calculations of 
posterior distributions p(s | d) in these techniques  are 
performed by re-sampling operations on the samples 
representing the prior distribution p(s). The computational 
complexity of these MC techniques is therefore determined by 
the number of samples used to represent the distribution. 
Computation time can be traded off against precision by 
modifying the number of samples used.  

II. WIRELESS MAP CALCULATION 
This section outlines our five-step approach to derive 

wireless signal strength maps.  

A. Step One: Floor-Plan 
To obtain a wireless map, the first step is to define the 

environment. This requires measuring the wall, window and 
door lengths of rooms as well as identifying major obstacles. 
In our example we took the house of one of the authors, which 
was already equipped with a Wi-Fi access point. We have 
defined four different obstacle types: brick walls, interior 
walls, windows and doors. We have used the xfig format due 
to its simple design to define the floor-plan. The map is 
depicted in Figure 1, where black lines around the perimeter 
are brick walls (O1), grey lines around the perimeter are 
windows (O2), grey lines inside the house are interior walls 
(O3) and dark lines inside the house are doors (O4). The grey 
square indicates the location of the access point and the grey 
circles represent measurement points.  
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Figure 1. Floor-plan of a house with measurement points. 

B. Step Two: Measurement and Measurement Points 
In the second step the user is required to define 

measurement points well-spread across the floor-plan (as 



represented by the gray circles in Figure 1). The number of 
measurement points to be defined depends on the number of 
obstacles in the floor-plan. To obtain good results, at least 
twice as many measurement points are needed as there are 
obstacle types (as explained in the next subsection). In our 
example we have defined 10 measurement points (8 that are 
needed and an additional 2 for increased precision) since we 
have b=4 different obstacle types.  

C. Step Three: Parametric Ray-tracing 
In this step we are running a ray-tracing algorithm to find 

the signal strength of the access point at all the measurement 
points as a function of the transmission and reflection 
parameters of the obstacles. Wi-Fi transmits in the 2.4GHz 
band, where the radio signal coming off the access point can be 
approximated with the sum of single straight-line propagation 
rays emanating in all directions around the omni-directional 
antenna of the access point [8]. Each obstacle is assumed to 
reflect and transmit (let through) some portion of the energy of 
radio wave. ROi

 and TOi
 are defined as the reflection and 

transmission coefficients for the ith obstacle type (0<i≤b), 
where (ROi

 + TOi
 ) < 1. For example if O1 is in the way of a ray, 

then it is assumed to reflect RO1
 portion while letting TO1

 
portion of the same incoming energy propagate through.  

Rays are generated by the access point in all directions but 
to keep the process computationally feasible, the direction of 
the rays has to be discretized between [0,2π) with precision 
∆α. The ⎣2π/∆α⎦ rays are then traced one-by-one sequentially. 
A ray hitting an obstacle will cease to exist but will spawn two 
other rays, one going on in the same direction (if the perimeter 
is not reached) while the other bouncing back from the 
obstacle. For each of the rays, the distance traveled, the 
number and type of obstacles reflected from and the number 
and type of obstacles transmitted by is stored, until the distance 
traveled reaches a pre-defined threshold. If a ray hits the area 
of a measurement point, then its current parameters (distance 
traveled, number and type of different transmissions and 
reflections) are stored for that measurement point. Let us 
denote the number of reflections from obstacles O1 to Ob by 
r1…rb, the number of transmissions by obstacles O1 to Ob by 
t1…tb, and the distance of travel by d. The power of this ray at 
the measurement point is: ∏∏
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number of rays going through measurement points M1 … Mm, 
by NM1
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 respectively. Thus for each measurement 

point:  
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 where RO1
 … ROb

 and TO1
 … TOb

 are unknown, and upper-left 
indices represent ray indexes for the kth ray. 

D. Step Four: Obstacle Parameter Determination 
The signal strength measurements obtained in the second 

step can now be used as the values for PM1
…PMm

. By looking 

at Equation 1 we note that we have 2b unknowns. In step-four 
we will estimate these unknowns finding values for the 
reflection and transmission rates of all obstacles. In order to 
solve the above polynomials for the 2b unknowns, we need at 
least m ≥ 2b equations, i.e., measurement points. Due to the 
coarse modeling of the environment, we have to also include 
an error term into the measurement. Let us denote the 
measured power levels by WM1

…WMm
. Then for all i, where 

m≥ i ≥1 ; WMi
= PMi

 +ei. We can now calculate a least squares 
error estimate for all unknowns by minimizing function F: 
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Minimization of F is a complex problem due to the 
number of variables, and the order of the individual 
polynomials. Thus, to minimize F we employ a heuristic 
optimization technique We have chosen simulated annealing 
(SA) to obtain such sub-optimal values for RO1

 … ROb
, 

TO1
 … TOb

. Our SA algorithm takes the polynomial description 
file generated in the third step, and the measured values for the 
measurement points and P0 (received power at a one meter 
distance in a free propagation environment) as input and 
provides with the estimated values for the reflection and 
transmission parameters for all defined obstacles. 

E. Step Five: Ray-tracing for Wireless Power Maps 
We calculate the actual wireless power map in this step.. 

The first task is to define the angular precision of the ray-
tracing as well as defining the resolution of the wireless power 
map by discretizing the target area into ∆s side-sized square 
cells. ∆s has little impact on the complexity of computation of 
the ray-tracing however it influences the precision of the 
location estimate. The ray-tracing process is similar to that of 
the third step with the exception that rays leave a scalar power 
level footprint in all cells they travel through. Figure 2 shows a 
visualization of the wireless power map for our sample floor-
plan, with ∆s=0.3m.  

 

 
Figure 2. Calculated wireless map. 

III. MONTE CARLO SAMPLING-BASED BAYESIAN-FILTERING 
This section describes the basic approach to mobile node 

localization from RSSI measurements and introduces three 
estimation models that have been implemented and tested. The 



goal is to obtain an estimate of the posterior probability 
distribution, ),,|( 1 tt ddsp K , of potential states, st, using the 
RSSI measurements, d1, ..,dt, and the wireless power map 
introduced in the Section II. The calculation of the distribution 
is performed recursively using a Bayes filter: 
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Assuming that the Markov assumption holds, i.e., 
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equation can be transformed into the recursive form:  
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where p(dt | d1, …,dt-1) is a normalization constant. In the case 
of the localization of a mobile node from RSSI measurements, 
the Markov assumption requires that the state contains all 
available information that could assist in predicting the next 
state. Thus, an estimate of the non-random motion parameters 
of the node is required as part of the state description. Starting 
with an initial, prior probability distribution, p(s0), a system 
model, p(st | st-1), representing the motion of the mobile node, 
and the measurement model, )|( sdp , it is then possible to 
derive new estimates of the probability distribution over time, 
integrating one new measurement at a time. Each recursive 
update of the filter can be broken into two stages: 

Prediction: Use the system model to predict the state 
distribution based on previous readings 
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Update: Use the measurement model to update the 
estimate 
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To address the complexity of the integration step and the 
problem of representing and updating a probability function 
defined on a continuous state space, the approach presented 
uses a sequential Monte Carlo filter to perform Bayesian 
filtering on a sample representation. As introduced in Section 
I.C, a distribution is represented by a set of weighted random 
samples and all filtering steps are performed using Monte 
Carlo sampling operations. In particular, the initial sample 
distribution, pN(s0), is represented by a set of uniformly 
distributed samples with equal weights, 
{ }NwNiws iii /1],,1[|),( )(

0
)(

0
)(

0 =∈ ,  and the filtering steps 
are performed as follows: 

Prediction: For each sample, ),( )(
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set, randomly generate a replacement sample according to the 
system model, p(st | st-1).This result in a new set of samples 
corresponding to ),,|( 1 tt ddsp K  
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normalized weight distribution. Set the weights of the new 
samples to 1/N, resulting in a new set of samples 
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posterior distribution ),,|( 1 tt ddsp K . 

To apply the filter to the problem of mobile node 
localization from RSSI measurements a measurement model 
has to be provided. Three different motion models were tested: 

A. Simple Sequential Monte Carlo Filter 
The simplest localization algorithm uses a system model 

assuming that at every point in time, the node moves with a 
random velocity drawn from a Normal distribution N(0, 1) (in 
metric units). No information about the environment is 
included in this model, and as a consequence, the filter permits 
the estimates to move along arbitrary paths. Since this motion 
model does not consider any past motions, the state of the 
localization filter can be represented as a vector of the x and y 
location, s=(x  y)T.  

B. Simple Sequential MC Filter with Boundary Information  
To model the effects of boundaries and limit the simulated 

sample trajectories to physically possible ones, the second 
filter uses information about the location of the walls to 
modify the Gaussian velocity model by limiting available 
choices to that do not lead to collisions. Figure 3 shows an 
example for this motion model, which corresponds to a 
random displacement limited by the walls. The figure shows 
the probability density of moving to a new location within one 
step assuming that the mobile node is located at the center of 
the distribution. In the same way as in the filter in Section A, 
this filter uses a two-dimensional state vector, s = (x  y)T.  

C. Sequential MC Filter with Internal Motion Model 
Due to the inertia of a physical node moving in the 

environment, the random displacement model used in Section 
A might not be sufficiently realistic. The third movement 
model assumes that nodes tend to move at a constant velocity. 
Thus the model relies on the previous velocity with a current 
random acceleration, where the acceleration is drawn randomly 
from a Normal distribution a ~ N(0 m/s2, 1 m/s2). To permit the 
use of this model, the state used in this filters has to include an 
estimate of the current velocity of the mobile node and is thus 
a four-dimensional vector consisting of the position and 
velocity of the mobile node, s = (x  y  vx  vy)T. To address 
walls, samples that collide with walls in the prediction step of 
the filtering update are assigned a weight of 0.  

 
Figure 3. Probabilistic Displacement Model with Wall Limitations 



IV. PERFORMANCE STUDIES 
The goals of our evaluation studies are: i) to validate our 

ray-tracing based wireless power map with real-life 
measurements, and ii) to simulate a scenario where a mobile 
user is tracked using our filtering methods. 

A. Wireless Map Calculation Studies 
Our ray-tracing map generation was run with an angular 

precision of ∆α=2π/360 and square cells of size 0.3mx0.3m 
covering the floor-plan. We have taken and averaged 50 
measurements for each of the 10 measurement points.  

To evaluate our calculated power map we have randomly 
selected 20 cells (same 0.3m cell side size) from the floor plan. 
At each of these cells we have made 50 power level 
measurements. For each cell, the average and the standard 
deviation of the 50 readings were calculated. Our 
measurements showed that the standard deviation of our 
readings (although being somewhat location dependent), are 
averaging to around 2dB, thus we can safely assume a 3dB 
standard deviation for the measurements. We have calculated 
the square-root of the square mean of the difference between 
the calculated and measured values to be 1.65dB, thus our ray-
tracing approach provides a sufficiently good estimate of the 
wireless propagation behavior in the sample house. 

B. Location Estimation Studies 
To evaluate the particle filtering-based location estimation 

approach, we have created a discrete event simulation program 
in C++ that mimics the movement of a user inside the 
environment. Power level measurement samples are drawn 
according to the location of the user assuming a zero-mean 
Gaussian-noise model with a standard deviation of 3dB. Power 
reading samples were taken every half-second. To obtain the 
most likely position of the user we select the particle that has 
the most particles surrounding. We have defined a 190 second 
long movement path using pedestrian speed (1m/s) visiting 
several rooms of the house as depicted in Figure 4.  

 
Figure 4. Movement path of user in the sample house. 

To observe the behavior of the particles we have also 
created a graphical interface where the user, the particles, and 
the location estimate of the user are displayed after each 
sampling step. Figure 5 shows a short sequence of particle 
behavior1. The user and the single point estimate are denoted 
                                                           
1 Due to the limitations of paper a moving image of particles cannot be nicely 
presented.  

with the letters U and E respectively, while the particles are 
represented with red (gray) dots or dot-clouds. 

We have run simulations to evaluate the location 
estimates’ precision as a function of the number of particles. 
We measured the estimates’ precision by calculating the 
average Euclidian distance between the user and the location 
estimate.  

Figure 6 shows the impact of the number of particles on the 
estimates’ precision for all motion models. The wall 
considering and the 4D particle models’ estimates come on 
average as close as 1 meter to the location of the user. 

 
Figure 5. Particle filtering in progress (U = user; E = single location estimate). 

To investigate how the location estimates’ precision varies 
over time for a fixed particle number, the deviations between 
actual and estimated location were recorded along the path of 
the user. Figures 7,8, and 9 show the corresponding graphs. 
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Figure 6. Number of particles vs. precision of the location estimate. 

Although, the simple zero-mean velocity Gaussian system 
model performs the worst it still provides with an amazing 
performance. The wall considering and the 4D particle filter 
models perform similarly, with the former having less but 
longer error bursts. The latter two models rarely  miss the 
room the user is at, thus we argue that our location system can 
be deployed in a smart environment to locate users. 

V. CONCLUSIONS 
In this paper we presented an approach for localization 

that uses existing RSSI measurements and a map of the 
expected wireless power measurements to estimate the position 
of a mobile node equipped with a wireless network card. To 
facilitate this we presented a multi-step technique that permits 



the construction of the wireless power map with a significantly 
reduced requirement for actual measurements. As opposed to 
previous approaches, the techniques introduced here do not 
require a human labor extensive model construction phase and 
can operate successfully with minimal infrastructure. To 
achieve the latter we use Monte Carlo filtering techniques to 
efficiently estimate the distribution of mobile node locations. 
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Figure 7. Wall ignoring model error vs. simulation time. 
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Figure 8. Wall considering model error vs. simulation time. 
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Figure 9. 4-D particle model error vs. simulation time. 

To demonstrate the performance and applicability of the 
techniques, experiments were performed in a home 
environment. First, a wireless power map was constructed 
using the presented ray-tracing technique and compared to the 
actual readings in the home. This comparison showed that the 
constructed map is within approximately 2dB of the actual 
measurements. Using this map, three movement models were 
implemented in the MC sampling-based location estimators 
and simulation studies were performed to evaluate the 
precision. The experiments showed that the filters were 
successful at estimating the mobile node’s location. It has been 
demonstrated that even a simple movement model can produce 
results with an average precision around 1m. We consider 

showing that sub-room precision positioning is possible with 
RSSI readings from a single access point as our major 
contribution. 
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