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Abstract— In ad hoc networks, links are established on the
fly as mobile nodes move in and out of each other’s transmission
range. Due to this mobility, routes can be disrupted while in
service. Availability of a good estimation of link longevity between
neighboring nodes could permit the selection of a more stable
route, thus enabling a better enforcement of quality of service
(QoS) contracts. In this paper, we propose three link longevity
estimators that could be embedded into mobile nodes. In our
approach, link longevity estimates do not require knowledge of
the mobility patterns/models of nodes. The foundation of all
three designs lies in extended Kalman filtering, where a linear
process model is implemented to represent the state transition,
while a non-linear measurement model is included to account
for the received signal strength indication measurements. We
provide with the mathematical background for our estimators
and their input/output vectors, and show various performance
metrics using extensive simulations. We conclude that our filters
provide good estimates for the remaining up-time of wireless
links.

I. INTRODUCTION

In ad hoc networks, links are established on the fly as mobile
nodes are moving in and out of the transmission ranges of
each other. This node mobility results in a constantly changing
network connectivity graph. Due to the distributed nature of ad
hoc networks, a route between two arbitrary nodes is likely a
combination of multiple links over several intermediate nodes.
The selection of the sequence of links between nodes is the
task of the ad hoc routing protocol. Due to link failures caused
by node movement, routes can be disrupted while in service.
Loss of links can invalidate routing entries, which in turn
causes undesired latencies in packet delivery. Availability of a
good estimation of link longevity between neighboring nodes
could permit the selection of a more stable route, thus enabling
a better enforcement of quality of service (QoS) contracts.

There are a number of previous works addressing the link
longevity problem based on probability models [1], [2]. Their
contribution lies in defining node mobility models and per-
forming a mathematical analysis on these models to quantify
statistical properties of the longevity of links. In [1], the link
longevity is measured as the probability of the link remaining
available for a time t. The probabilistic model is then used as
the basis to form and maintain clusters within ad hoc networks
to maximize the cluster stability. The probability calculation
assumes that all nodes move according to an epoch based

movement pattern. For each node, the movement history is
divided into a sequence of epochs. Within each epoch, the
node moves at a randomly selected (but constant) direction
and velocity. The pure probability based model is extended
in [2] by incorporating a measurement model. First, the link
longevity, in term of remaining time (t) in which the link
remains available, is measured under the assumption that the
nodes maintain their constant velocities. A probability model is
then applied to calculate the probability of the link availability
at time t by considering the cases of varying velocities within
t.

A non-probabilistic solution is proposed in [3], in which the
link longevity estimation is used to measure the stability of the
entire route so that a handoff can be triggered in anticipation.
The longevity estimation relies on a Global Positioning System
(GPS) receiver at each node to provide the location and
velocity data. The remaining connection time between two
nodes is calculated from the GPS data assuming that the
nodes maintain their headings and speeds. If GPS data is not
available other measurement-based models could be used. In
[4], the location, velocity and acceleration of a mobile node are
estimated by measuring the received signal strength indication
(RSSI) from multiple base stations in a cellular network. The
measured power levels are feed into a Kalman filter. Since base
station locations are assumed to be well-known in a cellular
network, mobile nodes can use them as reference points.

RSSI measurements can also be used to estimate the loca-
tion of mobile nodes in ad hoc networks. In [5], the authors
propose a method of propagating the location data from nodes
that are GPS-equipped. Other non-GPS nodes can then deduce
their distances to the GPS nodes by measuring the RSSI from
neighboring nodes. The actual location can then be calculated
using triangulation methods from the distance information.
The method is further improved in [6] by assuming non-GPS
nodes are equipped with devices that measure the incoming
signal directions. The directional information allows the re-
ceivers to obtain the angle of arrival (AoA) of the signal thus
allowing more accurate location estimates.

In this paper we present a measurement-based approach
to the link longevity problem. Unlike the probability-based
solutions that rely on a particular mobility model [1], [2],
we propose an estimator to be embedded into the mobile
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nodes that operates regardless of the mobility model. The
estimator’s basis is a Kalman filter [9] used to estimate the
relative location of two nodes based solely on simple signal
properties like RSSI. The information obtained from the filter
is then used to derive the expected time the link will remain
available. A major advantage of Kalman filters is that they
can quickly and efficiently compute estimates. Therefore, they
are particularly suited for ad hoc networks due to potentially
limited computing power of mobile nodes. Our solution is
similar to the estimator in [4], but it is designed to work in
the distributed ad hoc environment, where all nodes are mobile
and the relative location needs to be determined. Furthermore,
unlike the measurement-based location estimators [5], [6], our
solution is geared towards estimating the link longevity in time
t instead of the exact node locations. This means that a node
will not only need to determine the locations of other nodes
but also a change in their movement patterns.

The remainder of the paper is organized as follows. Sec-
tion II describes three different the link longevity estimator
designs including detailed process models used by the Kalman
filters. Section III presents the simulation results and compares
the three estimators under different movement and noise
conditions. Section IV concludes this paper.

II. KALMAN ESTIMATOR DESIGNS

This section outlines three different designs of an ad hoc
link longevity estimator. Each of the designs is based on
extended Kalman filters [10]. In all three designs, a linear
process model is implemented to represent the state transition.
The process model assumes that nodes maintain their current
direction and velocity between each state update. Corrections
to the errors in the process model are made via the measure-
ment model of the filter. The need for the extended Kalman
filter arises due to the measurement model’s inherent non-
linearity (radio signal power levels are not linear with the
propagation distance). Each filter design is unique: they rely
on input from different types of sensors and/or keep their state
information in different variables in the process model.

A. Design I

Our first filter design assumes that both the incoming signal
strength and its direction are observable at mobile nodes.
Using a signal propagation model, the distance and direction to
a transmitting node can be estimated from the received signal
strength (RSSI sensor) and the direction of the received signal
(direction sensor). Given the measurements the estimator is
able to track the relative location and velocity in both x and
y directions. Therefore, the state variable of the filter at time
t is (xt, yt, vx, vy), where xt and yt represent the relative
displacement at time t, while vx and vy represent the relative
velocity. By further assuming that nodes move at a constant
velocity, a new state can be derived from the previous state
using a linear process update function xt+1 = xt + vx∆t and
yt+1 = yt + vy∆t, where ∆t is the observation interval. The

state transition matrix is therefore



1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 .

Given a pre-determined transmission range, the expected time
of link termination can be calculated from the state variables.

Hardware-wise, sensors that measure RSSI are widely avail-
able for mobile devices. Indeed most off-the-shelf technologies
implicitly provide such information (e.g., most Wi/Fi cards
provide with RSSI). However, sensors that measure the signal
direction require much more sophistication to antenna design
(which cannot be easily justified for location estimation only).
Nevertheless, our first model provides with a simple yet
precise estimator design such that subsequent designs can be
referenced and compared.

B. Design II

Our second design relaxes some of the previous assumptions
by requiring only the availability of an RSSI sensor, thus
only relying on easy-to-measure properties. In this case, it is
not possible for the receiver to estimate the relative position
and velocity of the sender. Yet, the relative distance to the
sender and the rate of the distance change over time ∆t
can be estimated. Figure 1 explains how the rate of distance
change is related to the location and velocity of the nodes.
Let us consider two nodes, n0 and n1 that are moving with
absolute velocity (vx0 , vy0) and (vx1 , vy1) in some Descartes
coordinate system. Let Dt be the distance between n0 and
n1 at time t, and Rt be the rate of the distance change at t.
Here, we define Rt to be positive if the nodes are moving
away from each other and negative otherwise. In general, let
θx and θy be the angles from the displacement line (away
from the other node) moving counter-clockwise to the x and
y components of the absolute velocity. Rt can be calculated
as the sum of the portions from all four velocity segments as
Rt = vx0cos(θx0)+vy0cos(θy0)+vx1cos(θx1)+vy1cos(θy1).

For the Kalman filter design, we denote the state variables
to be (Dt, Rt). Note that in reality Rt is not constant over
time (even at a constant velocity) since both nodes move
simultaneously. Nevertheless, the process model maintains that
R is a constant, resulting in the following process update
function: Dt+1 = Dt + Rt∆t. The state transition matrix is
therefore [

1 ∆t
0 1

]

To assess the error that this assumption incurs, it is important
to note that as the change to Rt decreases Dt increases. Be-
cause a link longevity estimate is more useful when the nodes
are further away (i.e., when Dt is large), this assumption,
though incorrect, should have minimal impact on the overall
result (as it was verified by our simulation studies).
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Fig. 1. Calculating Rt from velocity segments.

C. Design III

The third design - similarly to the second - requires only the
availability of RSSI sensors at nodes. However, in this case
we derive the new distance estimates based on a history of
previous estimates. Since our underlying assumption is that the
nodes move at constant speeds and headings, it is possible to
derive the new distance estimate based on previous estimates.
For the filter based on k previous states, where k > 1, the state
space consists of the following variables: (D2

t−k, . . . , D2
t−1,

D2
t , S2). The variables Dt−k, . . . , Dt−1, Dt are the distance

estimates at time t−k, . . . , t−1, and t, respectively, while S
is the relative speed between the two nodes. Given the relative
velocity as vx and vy, S is simply

√
v2

x + v2
y . The new state

is derived under the assumption that vx and vy are constant.
The new state is calculated from the previous state as

follows. A new estimate D̂2
t+1 can be calculated from each

historical reading D2
t−i(1 ≤ i ≤ k) as well as the latest read-

ing D2
t . Since relative velocities are assumed to be constant,

we can envision the receiver as stationary while the sender is
moving at S to a fixed direction. From Figure 2, let A be the
stationary location of the receiver, and B, C and D be the
relative location of the sender at the time of t− i, t and t + 1
respectively. Thus, Dt−i = AB, Dt = AC, and D̂t+1 = AD.
BC and CD can be derived from the assumption that S is
constant and that the filter runs with a period of ∆t. By solving
the triangulation in Figure 2, a new estimate of D̂2

t+1 can be
found as

D̂2
t+1 = −D2

t−i

i
+

i + 1
i

D2
t + (i + i)S2∆t2

Note that the above estimate D̂2
t+1 is obtained from D2

t

and a single previous reading of D2
t−i. We can then repeat

the above calculation for all D2
t−i(1 ≤ i ≤ k) and average a

total number of k estimates. The new distance estimate D2
t+1

is therefore the following:

D2
t+1 =

k−1∑
i=0

−D2
t−k+i

k(k − i)
+

D2
t

k
·
k−1∑
i=0

k + 1 − i

k − i
+

S2∆t2

k
·
k−1∑
i=0

(k+1−i)
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Fig. 2. Calculating D2
t+1 based on previous calculation of D2

t and D2
t−i.

The above equation translates to following state transition
matrix: 



0 1 0 . . . . . . 0
... 0 1 . . . . . .

...
...

...
...

Tk−1 . . . . T0 V W
0 . . . . . . . . . 0 1




Here, Ti = −1
k(k−i) , V = 1

k · ∑k−1
i=0

k+1−i
k−i , and W = ∆t2

k ·∑k−1
i=0 (k + 1 − i).
By averaging the estimates from all k previous values, we

expect the estimator be less prone to abnormal sensor readings.
Meanwhile, it will takes longer to adapt to the change of
movement pattern. Variable k provides this design with an
additional parameter (besides the Kalman filter variances) to
adjust the filter to the environment. As verified by simulations,
the third design is expected to show better performance with a
larger k when the node movement pattern is more predictable
and the sensor reading is noisier.

III. SIMULATION

To evaluate the three link longevity estimators, we have
implemented them around our own C++ based discrete event
simulation engine. All our simulations involve two mobile
nodes moving within a 2000m side-length square. The node
movement model is based on the epoch model used in [1] with
the following properties:

1) The entire movement path of the node is defined by a
sequence of ”epoch,” i.e., (e1, e2, · · · , en).

2) The duration of each epoch is I.I.D. exponentially dis-
tributed with a mean of 1/λ.

3) Within each epoch, the node moves at a constant veloc-
ity.

4) At the end of each epoch, nodes randomly select a new
velocity vector. The direction of the movement is I.I.D.
randomly chosen from a uniform distribution between
0 and 2π. The absolute value of the velocity is I.I.D.
normally distributed with a mean µ of and a variance of
σ2.

Note that since immobile nodes do not cause any difficulties
for our system, we eliminate the idle time between epochs
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from the original model, and thus the nodes are always on the
move. For our simulations, we use µ = 10m/s and σ2 = 10.

When a node hits the border of the square, its bounces
back with the same angle much like a ping-pong ball. Of
the two mobile nodes simulated, one is designated as the
sender and the other as the receiver. The sender continuously
transmits signal, and the receiver continuously monitors the
incoming signal. The signal propagation model is given by
p = c · d−2, in which the power of the received signal p
is inversely proportional to the second power of the distance
d. Here, c is an arbitrary constant. When the received signal
power p is below a threshold pmin, it is considered too weak
to be captured by the receiver thus the link breaks. For our
simulations, we select c = 106 and pmin = 1. Note the c and
pmin selection does not affect the overall simulation results, as
long as the same values are used in the observation model of
the filters. In fact, the same can be said about all other signal
propagation models - all we require is a model that represents
the receiving power as a function of distance. Given our signal
model, the threshold pmin = 1 translates to a transmission
range of 1000m when noise is not considered. To estimate
the time when the link will be cut the receiver processes the
sensor data every 0.1 second. The sensor data is then feed into
all three estimators simultaneously to obtain their estimations
for comparison.

Noise is incorporated based on the noise model in [8].
The model considers the fact that radio signals hardly ever
propagate in line-of-sight path. Instead, they tend to bounce
off from nearby structures along the way due to multipath
fading and far field scattering. The actual distance of signal
propagation at time t is given by dt = d′t+mt, where d′t is the
geometric distance between the two nodes and mt the extra
distance covered due to signal reflection. mt is recursively
defined as

mt = mt−1 + P0N(0, σ0
2) + P1N(0, σ1

2),

where P0 and P1 are the probability of the whether or not
the signal bounces off a different structure, and N is a
Gaussian distribution with a zero mean. Since the distance can
change more drastically when the signal bounces off a different
(than before) structure, it can be assumed that σ0

2 >> σ1
2.

Furthermore, mt should be non-negative for all t. For our
simulations, we use P0 = 0.1 and P1 = 0.9.

A. Estimator Convergence

Figure 3 shows how the link longevity estimator of the
three different designs converges in a typical scenario when
the sender and receiver are pulling away from each other
at constant velocities. The figure shows the error of the
estimations as the filters analyze the incoming signals. Clearly,
the first design converges the quickest due to its extra signal
direction sensor. Of the estimators relying solely on the RSSI
sensor, the estimators based on the third design take longer
to converge than the estimator of the second design but they
provide better estimations (due to the availability of previous
estimates). Of the two different versions of the third design, the
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Fig. 3. Convergence of estimation error.

one that relies more on historical estimates (k = 8) converge
a little quicker than the other which relies on less available
previous estimates (k = 3).

B. Effect of Node Movement

Figure 4 and 5 show the effect of node mobility on the
estimators by varying the mean of the epoch duration (1/λ).
For this simulation, we keep the variances of the movement
model constant at σ0

2 = 50 and σ1
2 = 5. We let the sender

and receiver run for a duration of 106 seconds of simulation
time. For each simulation run, we obtain the results by varying
1/λ from 20 to 200. As the mean (1/λ) epoch length increases,
the node movement becomes more predictable, and thus the
link longevity becomes easier to predict. To qualify the results,
we define an estimation to be acceptable if it is within the
range of +/ − 10 seconds when the link actually breaks.
Furthermore, we denote Tsuccess to be the time before the
actual link breakage when the different estimators converge to
the acceptable range. There are also cases that the estimators
never manage to produce acceptable estimations before link
breakages. As such, we let Psuccess be the probability of an
acceptable estimation can be obtained in average. Essentially,
Tsuccess indicates how good the estimations are, and Psuccess

indicates how fast they are obtained.
Figure 4 and 5 show the effect of node movement on

Tsuccess and Psuccess. The figures indicate that the extra direc-
tion sensor in the first design greatly contributes to its superior
performance. The second is not far behind from the first in
terms of Psuccess. The two versions of the third design do
not have a great performance in terms of Psuccess. However,
they outperform the first design in Tsuccess, indicating that in
general the estimators based on the third design take longer to
adjust to the movement updates. The figures also indicate that
the more sensor data is processed the better the precision of
the estimate will be. Furthermore, the gap in term of Psuccess

between k = 8 and k = 3 of the third increases slightly
indicating that a larger k is better suited when node movement
is more predictable.

C. Effect of Signal Noise

The effect of sensor noise on Tsuccess and Psuccess is
captured in Figures 6 and 7. For these simulations we have
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Fig. 4. The effect of node movement on Tsuccess.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180 200

I

II

III(k=3)

III(k=8)

successP

λ/1
 

Fig. 5. The effect of node movement on Psuccess.

set the mean of the epoch duration to 1/λ = 50. We then vary
the variance σ0

2 of the noise model from 10 to 90. The other
variance σ1

2 is set to one tenth of the current σ0
2 value.

Figure 6 shows that the quality of the estimations varies little
as the noise increases. Meanwhile, Figure 7 indicates that it
takes longer for the estimators to converge to the acceptable
range with increasing noise. Since all of the estimator designs
are based on Kalman filters, it is not surprising that they are
rather resilient to noise, even though our noise model is not
Gaussian. However, noise does have an effect on the estimators
in that it takes longer to obtain acceptable estimations in a
noisier environment. Comparing the two cases of the third
design (where k = 3 and k = 8) we can observe that a larger
k is better suited for a noisier environment.

IV. CONCLUSION

This paper has presented three different estimators that
predict the link longevity in ad hoc mobile networks. These
extended Kalman filter based estimators obtain their estimation
by tracking the node movement by employing RSSI measure-
ments. Since Kalman filters are known to be light-weighted,
these estimators are especially suitable for mobile nodes with
strict resource constraints. Our simulation demonstrates that
all estimators are capable of producing useable estimations,
even though their performance is subjected to the underlying
predictability of the node movement and the sensor noise.
The simulations also indicate that estimators fed with a radio
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Fig. 6. The effect of noise on Tsuccess.
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Fig. 7. The effect of noise on Psuccess.

signal direction sensor provide only slightly better estimates
than estimators based solely on RSSI readings.
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