

Distributed Network Monitoring using Mobile Agents Paradigm

Farhad Kamangar, David Levine, Gergely V. Záruba, and Navakiran Chitturi

Department of Computer Science and Engineering
The University of Texas at Arlington, Texas

{kamangar,levine,zaruba,chitturi}@cse.uta.edu

Abstract. Traditionally network monitoring and management has been done
using predominantly centralized techniques. Mobile agents have been proposed
as an alternative to this centralized approach. In this paper we propose a novel
approach for distributed and dynamic network monitoring, using mobile agents.
We use the IBM Aglets system and show how a Java-based distributed network
monitoring application can use this paradigm for efficient data collection and
analysis and adapt to variations in network characteristics.

Keywords: Network Monitoring, Network Management, Mobile Agent, Java, Distributed,
Dynamic, Network Modeling, Fault-tolerance and Delegation.

1. Introduction
Network monitoring and management has become necessary due to the proliferation of

computers and the immense growth of the Internet. Different paradigms have been

proposed for network management using mobile agents [1]-[4]. Sahai and Morin [1]

proposed an architecture comprising of managers, servers and management agents. The

network management load is equally distributed between managers and servers. The

servers have replicated databases. The framework uses MAGENTA environment to

provide the capability of sending, receiving and storing mobile agents. Gavalas [4]

suggests a framework for network monitoring applications using four components:

Manager application, Mobile Agent Server (MAS), Mobile Agent Generator (MAG) and

Mobile Agents (MA). The manager application co-ordinates monitoring of network

elements and has a GUI. The MAS receives, instantiates, executes and dispatches mobile

agents. The MAG constructs customized MAs in response to service requirements.

Puliafito [2] uses MAP, a platform for development and management for mobile agents,

for network management. MAP is MASIF (Mobile Agent System Interoperability Facility)

standard compliant. By using MAP services a management application for basic operations

of various agents is developed. These agents perform simple tasks but their combination

could be used to perform complex management actions. Kona [3] proposes the MAN

(Mobile Agent Based Network Management) framework that supports a number of areas

like code mobility infrastructure, network simulator and network management tools. The

Mobile Code Daemon (MCD) is a process that runs inside a Java Virtual Machine (JVM)

on every network element and listens on a UDP or TCP port for requests to receive Java

code. In this paper, we propose a new network management framework, which enables us

to develop a distributed, dynamic, scalable and fault-tolerant management tool.

2. Proposed Distributed Network Monitoring Architecture
We propose an architecture that is highly modular, distributed and fault-tolerant in nature.

It includes a GUI Module (GM), Web Access Module (WAM), Manager or Monitor

Module (MM) and various Dedicated Mobile Agents (DMA) for different monitoring or

management purposes. All these are built to work together in an agent execution

environment. We use Aglets, the IBM mobile agent system, for the agent environment.

The above modules are built in order to blend into the Tahiti server (Aglet Server – AS),

which is the Aglets execution environment. We use replicated databases and make the MM

itself network-aware thereby increasing flexibility and fault-tolerance. The language used

is Java [5] because it has some very useful features like platform independence, secure

execution, dynamic class loading, multithread programming, and object serialization.

2.1. How the architecture works

The user has access to the monitoring system through the web using the GUI Module

(GM). All the queries and management tasks are in the form of HTTP requests [6] and go

to the WAM of an agent server (Tahiti). This WAM has been designed to process the

HTTP requests and give out appropriate html pages or java applets and also interpret the

various monitoring and management requests. The MM has the primary responsibility of

monitoring the network. The DMAs are either made to reside on the same server or move

around to reside on another host with a Tahiti server according to user preference and

proximity to the monitored nodes. The DMAs are mobile and can be retracted from or

dispatched to other hosts, deactivated or activated and disposed according to the MM’s

discretion. Special DMAs are used to move through different machines to collect summary

information or do some local processing and take the results along to other hosts in their

itinerary. The MM is provided on a few (or all depending on the trade-offs) of the host

computers. At any particular instant of time only one MM is the Master MM and others are

more dormant in the sense that they are used only to check on the availability of the Tahiti

server hosts and do some local assessment of the network conditions. DMAs can be

located optimally in order to minimize network traffic incurred by monitoring and the

delay in obtaining monitoring data. The system is organized in a hierarchical or a non-

hierarchical fashion depending on the type of networks being monitored or managed. In the

case of networks consisting of sub-networks, monitoring tasks requiring first the collection

and then the aggregation of raw data from each sub-network can be implemented by

distributing agents at each intermediate level (co-operating with MMs).

Each agent will be in charge of producing the required level of data aggregation for a

specific sub-network and providing high-level information to the other agents in the

hierarchy. Alternatively, a non-hierarchical MA organization can be used, which is

particularly suited to non-hierarchical networks and non-hierarchical monitoring tasks.

Using a variety of design patterns, we produce a robust and flexible network monitoring

implementation. We have to remember that the life span of a monitoring agent is

independent of the computing process that creates it. Figure 1 shows the overall framework

for the new distributed network monitoring system.

Mobile agents
moved here from
the active MM’s

server

Migrating
Manager

Module during
congestion

Web Browser

GUI
Module

Http Request/Response

Http Request/Response

Local DB
(Replicated)

Device …n

Applications
Server

Local DB
(Replicated)Device n

SNMP
Agent

Device n

Workstation

Device n

SNMP
Agent

Local DB
(Replicated)

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Device 1

SNMP
Agent

Device 1

SNMP
Agent

Mobile agents
moved here from
the active MM’s

server

Migrating
Manager

Module during
congestion

Web Browser

GUI
Module

Http Request/Response

Http Request/Response

Local DB
(Replicated)

Device …n

Applications
Server

Local DB
(Replicated)Device n

SNMP
Agent

Device n

SNMP
Agent

Device n

Workstation

Device n

Workstation

Device n

SNMP
Agent

Device n

SNMP
Agent

Local DB
(Replicated)

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Aglet Server

Web Access
Module
(WAM)

Manager
Module

DMA1

DMAn

Host Computer 1

Device 1

SNMP
Agent

Device 1

SNMP
Agent

Device 1

SNMP
Agent

Device 1

SNMP
Agent

Figure 1. Framework for the distributed network monitoring system.

2.2. Functionality

We provide a brief overview of the functionality of our monitor, which encompasses data

collection, statistics, trend analysis, report generation and distribution control.

2.2.1. Data Collection

If a network device has an SNMP daemon running on it then we use SNMP protocol to get

specific network performance measures. If a device or host doesn't have SNMP then we

make use of other methods (ping, trace route, etc.) to obtain performance measures. Data is

collected using Poisson sampling intervals with an upper bound on sampling interval of 3

minutes. This ensures better network state assessment than periodic sampling that is

predictable. For each sample collection, the time taken to make a particular query is

subtracted from the sample interval. Beyond the relatively raw data collection capability

our system will be able to perform statistical computations regularly and on demand. The

specific computations performed by any DMA will vary depending on the purpose for

which the agent was made initially. In some cases, the agent will perform all the required

computations using data collected locally (in its own sphere of control). In other cases an

agent may perform some computations, but forward some collected or computed

information to another component for additional computations. In yet other cases, the same

mobile agent will move over different locations and collect the necessary information

based on the user's querys.

2.2.2. Statistics

Statistical summaries can be requested for nodes and/or ports of a node. Simple statistics

include utilization, throughput, and error rate computations for SNMP enabled device.

Measures such as availability, packet loss, and delay are used for non-SNMP devices. The

data collected is stored along with the date/time value of when it was collected. Counts or

values per unit time and averages per set of unit times are computed. The user may query

based on various time units - in seconds, minutes, hours or days. Measurement periods of

basic time units, weeks or months are utilized. This aids in summary and report production.

Statistical gathering has an optional start and stop time. Peak value of measure and time

during measurement period is noted and based on the option a report is generated after

each measurement period.

2.2.3. Trend Analysis

It is critical to do long term trend analysis so that the need for costly or complex network

upgrades can be predicted well in advance. To properly provide input for trend analysis,

the data computed via the methods specified must be collected in a consistent manner over

the specified period of time. It is possible to perform trend analysis on utilization,

throughput, and error rate at a port or availability at a node. A periodic report is generated

which may be specified by the administrator (privileged). Also, thresholds can be specified

to cause alarms, for example if utilization reaches a certain level or the rate of utilization

increase changes dramatically. A marked increase in error rate or decrease in availability

may also trigger an alarm.

2.2.4. Report Generation

A report is generated at a specified rate or at specific times as specified by the user. The

user may specify the location where the report will be delivered using a mobile agent for

this purpose.

2.2.5. Configuration Change Control

A peer aglet host is able to take over the responsibility of another aglet server if the

primary component, or the system in which it resides, become unavailable. This will be

facilitated by periodic handshake between the Aglet servers. Also at each server, we

monitor utilization of the system’s resources on which they reside. If the resource is over-

utilized, the MM will be notified so that alternate server may be assigned.

2.2.6. Alarm Management

An alarm occurs when a processing node becomes irresponsive or resource used by a

specific AS exceeds threshold values. This is done by programming a DMA in such a way

that it sends an alarm (in the form of a message) whenever a particular threshold value is

compromised. It is also possible to disable the alarm temporarily. The administrator will

have control over setting up alarms. The DMA can be configured to listen for traps issued

by SNMP agents.

2.2.7. Graphs

Packets are sent periodically or as a Poisson stream. Lost packets are treated as having an

infinite delay. Records consisting of <fromipaddress, toipaddress, performance_measure1,

performance_measure2, … performance_measureN, time> are constantly stored in the

local database. Figure 2 shows the graph generated for the roundtrip time taken for a

packet from one place to another against time units (a round trip time of 100 signifies that

the host is unreachable). If the device is SNMP enabled then we can plot the utilization of

a particular interface/port against time or errors against time as shown in Figure 3.

0

20

40

60

80

100

120

0:00 4:48 9:36 14:24 19:12 0:00
Time

R
ou

nd
tr

ip
 T

im
e-

 m
ill

ise
co

nd
s

Figure 2. Average roundtrip packet travel time between two machines.

0
20
40
60
80

100
120

14:00 15:12 16:24 17:36 18:48 20:00

Time (14.00 to 20.00 hrs)

In
pu

t %
 U

til
iz

at
io

n
-

m
ill

ise
co

nd
s

Figure 3. Percentage input utilization of a port.

2.3. Special Scenarios

Special scenarios are: congestion, station down, and link down are analyzed in this section.

2.3.1. Congestion

If a particular host is seen as a bottleneck then, the MM can dispatch a few or all of the

DMAs which are running on that host to other hosts and the devices can be monitored

from there. This would decrease the amount of traffic at that host thereby eliminating the

bottleneck. We implemented one more feature to increase the distributed nature of the

overall system, that is, to make the manager module mobile. During periods of extreme

congestion at the MM’s local machine, and when other MMs are not available to take up

the responsibility, the Master MM would move to a new place and start its managing

process from there after informing all the concerned hosts and agents.

2.3.2. Monitoring Station Down

When a monitoring station (i.e., a host) goes down, the MM detects the loss through

periodic handshake between the various MMs and inventory. The MMs communicate with

each other every few minutes to check connectivity to the various hosts. If there is a

problem it is reported and stored in the database. An email (or paging) alert is sent to the

administrator. If the host is not being able to be accessed from any other host then, the MM

obtains the local information about the various devices that were being monitored by the

down host and prepares appropriate mobile agents to monitor from its own location or

from other nearby host and dispatches them accordingly. To check whether the host is up

and it’s the Tahiti sever that is not responding we use the ordinary Internet ping command.

2.3.3. Link Down

If the host is accessible from a nearby host then the MM sends an email alert indicating

that the link between the MM and the host in discussion is down. It then sends a message

to the nearby host’s manager module to take over the handling of the host in question.

3. Monitoring using SNMP and some standard procedures

3.1. For SNMP enabled devices

In network monitoring, ‘polling’ is a frequent operation. In order to indicate a system state,

most often an aggregation of multiple variables is required, known as a health function

(HF). For example to define the input percentage utilization of an interface we use a

broadcast model, namely generate mobile agents with the specific goal and sending them

to the AS from where they would monitor the device under discussion. We program the

DMA in such way as to sample (all in one packet exchange) the values of ifInOctects,

ifOutOctects, and sysUptime.

Then, we sample all three again (after some interval) and use the three deltas (differences)

to compute this HF for a T1 line [7]:

2*154*)(
8*)(%

sysUptimeDelta
sifInOctectDeltanutilizatioInput =

We compute likewise for the output percentage utilization. Also, in the traditional model,

the 3 Object Identifiers (OIDs) are grouped into a single ‘get’ request packet. This takes a

lot of space and a lot of overhead to be passed over the network, while on the other hand

we use DMAs, which would compute HFs and pass over only the necessary details,

thereby acting as a semantic compressor of large amounts of data.

Another major drawback with SNMP is involving ‘bulk transfer’ of data, like transfer of

large SNMP tables. Traditionally, get-next requests are used that adversely impact network

resources. With the increase in management information that needs to be transferred, the

get-bulk operation could be used, but this has the intricacy of selecting max-repetitions

(i.e., the number of rows to be retrieved). Finally the OID scheme contributes to this high

overhead of information exchange. Therefore acquiring SNMP table locally (through

successive get-next requests) and then encapsulating it before moving to the next host or

returning to the manager would be far more efficient [4]. This can be done by strategic

placement of the DMAs. We could also apply a filtering function on the selected SNMP

tables according to our needs. In addition we could use domain or global level filtering

(using the DMAs’ multi-node itineraries). This is achieved by comparing/merging the

results already collected with those that have been just obtained or processed. This way we

can prevent processing bottlenecks at the manager and also control the DMA’s size from

growing rapidly. Regarding the DMA interaction with the SNMP agent, we have used the

AdventNet SNMPv1 package freely available on the Internet [8].

For detecting a congestion problem, we simply calculate the discard rate. Similarly

detecting interface errors gives us an idea of hardware, cable, or line problems. Using

IpGroup and ICMPGroup variables we can detect routing problems. Similarly using TCP

Group and UDP group we could find the corresponding applications or connections

running on the system under consideration.

If monitoring of percentage error rates for interfaces of multiple machines is needed an

itinerary based DMA is dispatched, which sequentially visits all the machines, interacting

with SNMP agents at each individual node. It does local calculations and returns after

completing the tour. If conventional centralized SNMP application were used, calculation

of the above health functions introduces processing burden at the monitoring station and

network traffic overhead.

3.2. Application Monitoring

DMAs are effectively used for system monitoring where large amount of system related

data are to be collected for analysis later on. DMAs are equipped with the names of hosts

to be visited, their pattern of migration through systems and the time frame in which they

would be monitoring the visited hosts.

We can also monitor the availability of various services such as like HTTP, FTP, SMTP,

Telnet, SSH, and IMAP by using standard probes on well-known ports and also calculate

transmission delay and other parameters using public domain software like ping and trace

route [9].

3.3. Data Design and Distribution

We store information obtained while monitoring along with the time value. Information is

stored in various places depending on its type – in the agent itself, at a local storage pool,

or at remote site to which agents may have access. We use database replication [9][11] for

our framework along with information contained within agents in order to provide fault-

tolerance. In our approach, agents have access to all the data available, via each other.

Each agent extracts information from other agents and the database as necessary.

Appropriate privileges are implemented to access and modify the required local databases

in the agents’ itinerary and also to access other agents’ information.

4. Experiments and Results
Our major concern is the viability of using mobile agents (i.e., aglets) for a network

monitoring application. For this purpose, Aglet latency is measured in an itinerary pattern.

Comparison of our approach with the client-server technique is made and the results are

shown.

We monitor a campus network with multiple LANs. Multiple manager (monitoring) hosts

situated in various LANs are provided. The network administrator selects one or more

devices and the agent server (i.e., agent host), from where he wishes to conduct the

monitoring. The monitoring agent server selection for each particular device is done so that

we could minimize the network traffic generated by periodic exchange of management

information (requests by the monitoring agent and responses from the devices).

Another consideration is the latency involved in moving agents around the network. This is

very important when it comes to practical application of a distributed network monitor.

Depending on the job, aglet size may vary from very small (lines of code in the order of

10^n where n <=2) to large (number of lines of code = 10^n, n > 2). Dedicated Mobile

Agents (DMAs) used for monitoring specific devices over a sample (periodic or based on

Poisson distribution) interval are rather small in size where as itinerary (or summary)

agents that travel around for collecting requested information are comparatively larger.

Therefore the size of an agent is an important factor to consider for efficient design of any

application.

Latency is influenced by the size of an aglet in two ways. First is the time taken for the

movement of the aglet across the network over to other agent servers. The time taken is

also influenced by other external factors like geographic location and network congestion.

Second, serialization is influenced by the aglet size. Serialization converts a Java object to

bytecodes and transmission occurs in the form of a byte stream. Because aglets use object

serialization mechanism to prepare for transportation over the network, there is an obvious

overhead with increasing size.

For these reasons we conducted the following experiments:

We measure an agent’s time to complete a round-trip around the various agent servers.

This provides us a measure for estimating the time required for summary information

collection.

We also measure the effect of increasing agent size on aglet latency.

4.1. Experiment Setup

We have chosen four servers. All servers run Windows 2000 and have the Aglets Software

Development Kit (aglets1.1.0) and the Java Virtual Machine (in JDK1.1.8) installed.

The first experiment obtained round-trip times of agents traveling around in the network

over the various servers. We measure the hop time between various servers to obtain the

relevant information over repeated trials. Tables 8.1 shows the results with maximum,

minimum and mean hop times over the various trials between different servers in the

itinerary.

Table 1. Roundtrip time between servers

Travel Between Maximum
Hop Time
(milliseconds)

Minimum
Hop Time
(milliseconds)

Mean
Hop Time
(milliseconds)

Server A and Server B 530 180 320.25
Server B and Server C 1100 210 330.90
Server C and Server D 1200 300 428.30
Server D and Server A 1080 189 390.45

The second experiment deals with increasing the aglet size proportionally (in steps of 100

lines of code) and each time measure its effect on the aglets travel time and thus the

latency. We regard server A as the machine from which we dispatch the Mover agents

using a TimeServer agent. As we stated, server B is in the same LAN that provides for one-

hop reference measurements. Servers C and D are each located on different networks.

In the experiment the TimerServer aglet is created on server A. This aglet spawns a Mover

agent and dispatches the mover to server B. The mover aglet moves from the source host to

the destination host and back. The TimerServer aglet is responsible for maintaining

communication with the mover agent. The Mover agent is disposed off upon its return. The

data collected involves two values of time (in milliseconds), one collected at the time of

dispatching the mover agent and the other collected just after it returns. By obtaining both

the timestamps on the same server (server A) we are able to eliminate any synchronization

problems of the system clocks. Similar experiments are carried on for the other servers C

and D separately with server A as the reference host. The round-trip time is calculated as

an average of the values obtained over 10 trials (this constitutes one run). We now increase

the size of the Mover agent in steps and perform the same experiment. We add additional

code in such a way that it does not constitute to increase in processing time at the

destination. This is done by having a conditional expression evaluated at run-time and

placing the extra code inside the if loop of the condition. This condition is used in such a

way that it always evaluates to false. Figure 4 shows the roundtrip time from server A to

other servers plotted against the aglet size.

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000
Number of Lines of Code

R
ou

nd
tr

ip
 T

im
e

-m
ill

i s
ec

on
ds

Server B

Server C

Server D

Figure 4. Aglet size Vs roundtrip times from server A to servers B, C and D.

4.2. Comparison with Client-Server Techniques

In order to show that mobile agents are applicable and also efficient for use in performing

basic network management/monitoring functionality, we have compared our system with

the basic client-server mechanism. The response times between C/S and mobile agent

paradigms are compared as shown in Figure 5. From the machine where the manager is

running a DMA is dispatched to retrieve a given number of samples (ranging from 1 to

700) from the router. This DMA resides on an agent server which is one hop away from

the router. This way the DMA locally collects the required number of samples and comes

back to the agent server where the manager is running. In the client-server technique,

SNMP requests are sent continuously from the manager site to the router directly for the

desired number of samples and the response packets are received at the manager site

continuously. The time taken for both the DMA and the client-server technique to obtain

the given number of samples is plotted in Figure 5. These times are calculated from the

manager site. We find that the response time for retrieving smaller number of samples is

almost similar. But as the number of samples increases, there is a clear advantage of the

mobile agent technique. This corroborates that using mobile agents could minimize

network latency by reducing the exchange of management information beyond various

LANs.

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500 600 700
Number of samples

R
es

po
ns

e
T

im
e-

m
ill

ise
co

nd
s

C/S
MA

Figure 5. Response times for various samples using C/S and mobile agents.

5. Conclusions
A scalable, fault-tolerant and dynamic network-monitoring tool using the proposed

framework was developed. Issues of distributed architectures were discussed and argument

that mobile agents are a good way to achieve distributed network monitoring against

client-server techniques was made. Experiments were conducted to verify the same. We

find that mobile agents are an efficient method of reducing the effects of network latency

on the network monitoring application. For collecting large number of network parameter

samples, the mobile agent technique was found to outperform the client-server technique

when the number of samples is large. We found that over a particular threshold size, the

aglet class fails to be loaded. This factor was taken into consideration when devising

itinerary agents that travel around the network collecting summary or statistics.

5.1. Future Work

Work on making the mobile agents more ‘network aware’ is in progress, namely, better

algorithms for the DMA’s to adapt to network variations like population variations

(number of nodes to be monitored), spatial variations (stable differences in the quality of

different links) and temporal variations (changes in the quality of a link over a period of

time). The mobile agents could possess dynamic decision making ability based on various

parameters whether to remain stationary, move through a set of machines sequentially or

spawn out child agents. Dynamic placement decisions for population and temporal

variations can be made based on the mobility policy presented by Brewington, Gray and

Moizmi. [12].

To make mobile agents more appealing for network monitoring/management purposes the

mobile agent systems should be more scalable, namely, the overhead of agent migration

and inter-agent communication could be reduced. In the long run, agent-tracking,

debugging and visualization issues could be tackled for improving scalability. Also

different services like network-sensing modules would be needed to collect and analyze the

host, repository and network conditions and make effective plans for accomplishing a

desired operation. More effective planning algorithms using artificial intelligence

techniques can be implemented into mobile agent based systems. Finally varied analysis

should be carried out in order to identify tradeoffs between scalability, fault-tolerance,

implementation complexity and functionality.

6. References
[1] A. Sahai, and C. Morin, “Towards Distributed and Dynamic Network Management,”

Proceedings of the 1998 IEEE Network Operations and Management Symposium, vol. 2,

pp. 455-464, New Orleans, USA, February 1998.

[2] A. Puliafito and O. Tomarchio, “Using Mobile Agents to Implement Flexible Network

Management Strategies,” Computer Communication Journal, vol. 23(8), pp. 708-719, April

2000.

[3] M.K. Kona, and C-Z. Xu, “A Framework for Network Management Using Mobile Agents,”

Proceedings of the First IEEE Int'l Workshop on Internet Computing and E-Commerce,

San Francisco, USA, April, 2001.

[4] D. Gavalas, D. Greenwood, M Ghanbari, M. O’Mabony, “Advanced Network Monitoring

Applications Based on Mobile/Intelligent Agent Technology,” Computer Communications

Journal, vol. 23, no. 8, pp. 720-730, April 2000.

http://snmp.cs.utwente.nl/bibliography/articles/general/gavalas-1.pdf

[5] H.M. Deitel, P.J. Deitel, “Java : How to Program, 4th Edition,” Prentice Hall Publishers,

August 2001.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk, “RFC 1945, Hypertext Transfer Protocol--

HTTP/1.0”, May 1996.http://www1.ics.uci.edu/pub/ietf/http/rfc1945.html.

[7] “FAQ-Simple Network Management Protocol Part 1”, November 2001.

http://www.snmp.com/FAQs/snmp-faq-part1.txt

[8] AdventNet, November 2001. http://www.adventnet.com/

[9] R. Siamwalla, R. Sharma, and S. Keshav, “Discovering Internet Topology,” Cornell

University Report, November 1998. http://www.cs.cornell.edu/skeshav/papers/discovery.pdf

[10] M. Wiesman, F. Pedone, A. Schiper, B. Kemme, and G. Alonso, “Understanding Replication

in Databases and Distributed Systems,” Proceedings of the International Conference on

Distributed Computing Systems (ICDCS’2000), pp. 262-274, Taipei, Taiwan, April 2000.

[11] R. Vlach, “Mobile Agents and Databases,” Proceedings of DATASEM'99, Masarykova

Univerzita, Brno, 1999. http://aglaja.ms.mff.cuni.cz/~vlach/

[12] B. Brewington, G. Gray, and K. Moizmi, “Mobile Agents in Distributed Information

Retrieval,” Intelligent Information Agents, M. Klusch Editor, Springer Verlag, ch. 12. 1999.

