

Mobile Agents for Pervasive Computing Using a
Novel Method of Message Passing

David Levine, Renjith Thomas, Farhad Kamangar, and Gergely V. Záruba
Department of Computer Science and Engineering,

The University of Texas at Arlington, Arlington, TX-76019

Abstract - Pervasive computing is an emerging
technology that brings new dimensions to distributed
computing; it uses a wide variety of smart, ubiquitous
devices throughout an individual’s working and living
environment. Mobile agents are software entities that can
migrate between servers or mobile agent environments of
the network accomplishing various tasks on the behalf of
their owners. The objective of this paper is to describe a
test and prototyping environment for experimenting with
mobile agents in pervasive environments. A prototype
environment for a novel proactive infrastructure is
described for mobile agent assisted pervasive computing.
In addition, a new message passing algorithm is provided
for mobile agent connection establishment and
management (CEMA).
Keywords: mobile agents, pervasive computing,
distributed computing, ubiquitous devices

1. Introduction
This paper introduces a new mobile agent

communication paradigm to be used in pervasive
computing [6] environments. Mobile agents are
software entities or programs that can migrate from
host to host in a network, at the instance and
destination of their own choosing. A host refers to a
computationally able ubiquitous node that provides
an execution environment for mobile agents. Hosts
can vary in size and computational power from a
small sensory device to a large server, typical
examples include workstations, desktops, laptops,
PDAs, and more sophisticated/dedicated devices
such as routers or database servers. There are some
well-known mobile agent environments in existence
today, including IBM Aglets [7] (Java byte-code
based), Tcl agents [8] and Telescripts [9] (both
script based); all of these methods are interpreted by
respective agent servers enabling code mobility.

Pervasive computing is a newly emerging
paradigm to provide users with anytime anywhere
access to information or computing resources.
Pervasive computing enables convenient access to
relevant information for users and applications
through a class of intelligent and ubiquitous
software and hardware entities that have the ability
to come alive and become available when and where
needed. Ubiquitous entities refer to small, mobile
computing devices like handhelds, portable and
wearable computers and appliances equipped with
intuitive user interfaces to enhance information
processing while being accessible by different
networking paradigms. Many research groups and
projects throughout the world are focusing on
various aspects of pervasive computing, e.g., the
Oxygen project at MIT [5].

The motivation behind this paper is to extend the
mobile agent paradigm to pervasive computing
environments, enabling the development of novel
ubiquitous applications. One of the features of
mobile agents is the asynchronous and autonomous
behavior of mobile agents. Mobile agents are
generally transport layer and architecture
independent depending only on the availability of
the execution environment. Mobile agents can be
designed to be robust and fault tolerant to
dynamically adapt to unfavorable conditions. After
careful analysis of mobile agents [12] the authors
propose a mobile agent systems architecture that can
be used in a pervasive computing environment for
ubiquitous devices.

The prototype design of the mobile agent
architecture as well as the server for the mobile
agent architecture are described in Section 2.
Section 3 outlines a novel Connection Establishment
and Management Algorithm CEMA for message
passing among mobile agents in heterogeneous

networks. Section 4 presents a simulation based
performance analysis of CEMA.

2. Prototype Architecture
One of the main research thrusts in the field of

pervasive computing is making the computations
and functional behavior the system invisible to users
while providing smart spaces [6] around ubiquitous
devices. The proposed software infrastructure relies
on the operating system to provide the execution
environment for mobile agents. The agent
environment consists of five software blocks as
outlined in Figure 1.

Execution Environment

DATA
ROUTER

DIRECTORY
SERVICES

MA
LOADER

Operating System / Network Protocol Stack

Operating System Support Layer

MA3 MA4

Physical Host (CPU, MEMORY, NETWORKING)

Other
Applications

A1 A2

Software InfrastructureMA1 MA2 MA1 MA2

Mobile Agents

Figure 1. Prototype architecture.
The Data Router is the central nerve of the

infrastructure. It is responsible for receiving,
interpreting and exchanging data between the
mobile agents and the outside world. The routing
functions are supported by the directory services.

Directory Services provide with the addressing
lookup for inter-host as well as intra-host data
transfer. Directory services implement three
directory-tables for communication services:
resource table, service table and lookup table:
• The resource table maintains information on

neighboring hosts.
• The service table stores information about mobile

agents residing in the neighboring hosts as well as
the native host.

• The lookup table implements a volatile cache of
mobile agent addresses enabling the routing of
messages among mobile agents.
The Mobile Agent Loader (MA Loader) provides

the execution environment for the mobile agents. It

maintains a process table with entries for each of the
currently running mobile agents in the host, while
tracking of the execution state of these agents.

The Operating System Support Layer abstracts
low-level services to the other blocks in the
infrastructure; it maintains information about the
host system and provides communication channels
and basic input and output primitives.

2.1. Mobile agent architecture
In our prototype, mobile agents inherit all

properties of threads; they are able to spawn parallel
thread on their own, sleep, suspend, stop and resume
like any normal thread. A UML representation of a
mobile agent is given in Figure 2. In order to enable
migration, mobile agents have to have a serializable
interface to suspend parallel behavior for the
duration of the migration. Mobile agents should also
have a uniform MA interface with a standard
framework for mobile agent communication.

MA 1

THREAD SERIALIZABLE
INTERFACE

MA 2 MA 3

Mobile
Agent

MA
INTERFACE

MA 1

THREAD SERIALIZABLE
INTERFACE

MA 2 MA 3

Mobile
Agent

MA
INTERFACE

Figure 2. UML representation of mobile agents.

A general mobile agent template is provided
based of the previously outlined UML. All other
mobile agent instances are inherited from this base
template. The basic architecture of a mobile agent is
depicted in Figure 3. Mobile agents consist of three
modules: functional module, control module and
communication module:
• The functional module contains the functions the

mobile agent should perform; the functions can
receive input from the host, or from other agents.

• The control module consists of three sub-modules
maintaining information about the mobile agent.
The ID sub-module is responsible to carry the
MA identity. The Peer sub-module maintains a
list of peer mobile agents. The Stat sub-module
stores the state information of the MA

The communication module maintains a common
framework for communication with the software
architecture. The MA Interface sub-module allows
simultaneous reception and transmission of
messages between agents. The input buffer provides
buffering for incoming data, while the output buffer
does the same for outgoing data. The serializable
interface serves the agent in preparing for migration
to another host by suspending all parallelism.

FUNCTIONS

PEER MA

STATE
INFORMATION

ID

SERIALIZABLE
INTERFACE

FUNCTIONAL
MODULE

CONTROL
MODULE

COMMUNICATION
MODULE

INPUT
BUFFER

OUTPUT
BUFFER

MA
INTERFACE

Figure 3. Basic mobile agent architecture.

3. CEMA
CEMA (Connection Establishment and

Management Algorithm) is used to establish and
manage connections between mobile agents. CEMA
ensures that all mobile agents are able to
communicate with peer agents even in sparsely
connected pervasive networks. Previous research
addressing communication among mobile agents has
concentrated on fully connected networks, in which
any two hosts can communicate with each other
directly [10]. While an active message approach
[11] uses an agent to route messages on-the-fly,
CEMA calculates routes on demand.

3.1. Design components
The network between hosts is represented by an

undirected graph G = (V, E) where V is the set of
vertices representing the hosts, while E is the set of
edges representing a communication link between
two hosts. Exy denotes a connection between vertices
Vx and Vy implying a full duplex communication
channel. Cx represents the set of vertices connected
directly to Vx. Communication between two hosts
not directly connected with each other requires

messages relayed by other intermediate nodes. A
sample multihop network is depicted in Figure 4.
 C1={V2, V3, V4}

C2={V1, V3, V5}
C3={V1, V2, V5}
C4={V1}
C5={ V2, V3}

G = (V, E)
V= {V1, V2, V3, V4, V5}
E= {V1V2 ,V1V3 ,V1V4,, V2V5 , V3V2 , V3V5,}

V5

V1

V4

V3

V2

Figure 4. A sample network.

Key parameters of messages relayed from one
host to another are: mode, sid (sender mobile agent
id – the unique identifier of the originating MA),
shid (sender host id – the unique identifier of the
originating host), rid (receiver agent id – the unique
identifier of the destination MA), ts (timestamp),
info (the body of the message), current (the unique
identifier of the host currently running CEMA on
the message). Depending on the mode parameter,
messages are divided into three categories:
1. Control messages (mode=0): contain routing

information and they dispatched when an agent is
launched in the agent loader. When an agent
migrates, it will transmit control messages to its
peer mobile agents

2. Normal messages (mode=1): contain user data
to be relayed between mobile agents.

3. Acknowledgement messages (mode=2): contain
acknowledgments for messages..

As described in Section 2, each host maintains
three tables in the directory services that help in
sending messages. A more comprehensive
description is given in the next paragraphs:
1. Resource table: is a hash table maintaining

information on the physical neighbors of a
specific host with unique identifier hid (host id).
The hids are used as keys associated with
corresponding values (values) (communication
parameters).

2. Service table: is a hash table maintaining
information of mobile agents residing in the
physical neighbors of hosts. A typical key in a
service table is the unique identifier of mobile
agents residing at the neighbors while the
corresponding values are the unique identifiers
of the serving hosts.

3. Lookup table: is a hash table maintaining
routing information on mobile agents in a host
with unique identifier hid.

3.2. CEMA Primitives
The following list contains the CEMA primitives:

• CEMA-RESOURCES (res (hid)) is called to retrieve
the unique identifiers of all the physical neighbors
of a host hid. It has a complexity of Ο(N) where N
is the number of hosts in the network.

• CEMA-CONTAINS-MOBILE-AGENT-SERVICE
(ser(hid), id) determines whether there is an entry
key for an agent in service table of the host with
unique identifier hid. It has a complexity of O(N).

• CEMA-FIND-ADDRESS-SERVICE(ser (hid), keys)
returns the unique identifier of the host where the
mobile agent exists. It has a complexity of O(1).

• CEMA-CONTAINS-MOBILE-AGENT-LOOKUP
(lookup(hid), keys) determines if there is an entry
for an agent in the lookup table of host with unique
identifier hid. It has a complexity of O(M) where
M is the number of mobile agents in the network.

• CEMA-FIND-ADDRESS-LOOKUP(ser (hid), keys)
returns the unique identifier of the host where the
mobile agent is presumed to exist. It has a
complexity of O(1).

• CEMA-VERIFY-MESSAGE-LOOKUP
(lookup(hid),keys, newts) verifies if a message it
received is an old message; if so then the message
should be discarded. It has a complexity of O(M).

• CEMA-UPDATE-LOOKUP
(lookup(hid),keys,newts,level) is used to add/update
entries in the lookup table hid when it receives a
message from an. It has a complexity of O(M).

3.3. Description of CEMA
The CEMA algorithm is given in Table 1. CEMA
runs in the data router module of each host. It

consults with the directory services to determine
what function should be performed on each message
it receives. The current parameter refers to a unique
identifier of the host where the algorithm is
currently executing. The output of CEMA is the
most optimal neighbor to route the message to. The
variable level refers to the host from where the
message was received.

Lines 1–4 initialize the variables that are being
used in CEMA. The Boolean variable found is set to
true when the location of the destination agent rid is
found in the directory services during the execution
of the algorithm. Control messages (mode = 0) do
not rely on the lookup table (lookup(current)) to
route from the source mobile agent to the destination
agent. Control messages are used to build the lookup
table, so they consult only the service table
(ser(current)) and the resource table (res(current)).
Line 5 ensures that the lookup table is consulted
only if the message is not a control message.

In line 8, CEMA checks whether the message is
an old message; if the message is old then it is
discarded. When a message is received, only the
information regarding the sender mobile agent (sid)
is updated. It has to be ensured that no entry for sid
is added in the lookup of the host where sid is
residing (implemented by lines 11-14). An update is
made for the location of sid along with the
timestamp (ts) of the received message in line 15.

When mobile agents are dispatched to a pervasive
network the first task they perform is to transmit
control messages to their peer mobile agents. These
control messages populate the lookup tables
initially. The resource tables are populated when the
network is formed. The service table is populated
when the host receives the mobile agent. Figure 5
shows how the data in various tables are affected by
the various events.

RESOURCE
TABLE

SERVICE
TABLE

LOOKUP
TABLE

Link
Failure

Migration
of Mobile

agents

Network
formed

Mobile
agent

received

Control Messages/
Normal Messages/
Acknowledgements

Affect indirectly

Affect directly

RESOURCE
TABLE

SERVICE
TABLE

LOOKUP
TABLE

Link
Failure

Migration
of Mobile

agents

Network
formed

Mobile
agent

received

Control Messages/
Normal Messages/
Acknowledgements

RESOURCE
TABLE

SERVICE
TABLE

LOOKUP
TABLE

Link
Failure

Migration
of Mobile

agents

Network
formed

Mobile
agent

received

Control Messages/
Normal Messages/
Acknowledgements

Affect indirectly

Affect directly

Affect indirectly

Affect directly

Figure 5. Events affecting tables in a host.

If a message is a control message (mode = 0),
CEMA first checks if the message is outdated. It
then updates the information in the lookup table for
the originating agent. The service table is queried to
determine the location of the destination agent. If the
query is unsuccessful then CEMA will multicast the

message to all of its neighbors, except for the
neighbor from which it has received the message.

If a message is a normal message (mode = 1),
then the lookup table is queried for the location of
the destination host. CEMA then proceeds the same
way as in the case of control messages. A fallback to
search the service table is made only if CEMA fails
to find the location of the destination host in the
lookup table. Acknowledgement messages are
generated for every normal message.
Acknowledgement messages (mode = 2) are similar
to normal messages except that they do not require
an acknowledgement

3.4. Link Failure and Migration of Agents
Formally, if MAz wants to migrate from Vx to Vy

then it has to remove itself from ser(Vx) before
moving to Vy to ensure proper working of the
routing algorithm. After MAz reaches the destination,
it adds/updates an entry for itself in ser (Vy), as well
as adds/updates an entry for itself in the service
table(ser) of each element in Cy. It also removes all
entries in lookup(Vy) referring to MAz. In the next
step MAz transmits control messages to all of its peer
mobile agents. Failure of edge Exy mandates Vx and
Vy to remove entries corresponding to Vy and Vx,

Table 1. CEMA algorithm

CEMA(current, lookup(current), service(current),resource(current), sid ,rid, mode, ts, level)

1 destination NULL
2 found FALSE
3 continue FALSE
4 temp NULL
5 if CEMA-CONTAINS-MOBILE AGENT-LOOKUP(lookup(current),rid)) = TRUE and mode ≠ 0
6 then found = TRUE
7 destination CEMA-FIND-ADDRESS-LOOKUP(lookup(current), rid)
8 if CEMA-VERIFY-MESSAGE-LOOKUP(lookup(current),sid))
9 then continue = TRUE
10 if continue = TRUE and level ≠ current
11 then if CEMA-CONTAINS-MOBILE AGENT-SERVICE(ser(current), sid) = TRUE
12 then temp CEMA-FIND-ADDRESS-SERVICE(ser(current), sid)
13 if temp ≠ current
14 then CEMA-UPDATE-LOOKUP(lookup(current), sid ,ts, level)
15 if continue = TRUE and found = FALSE
16 then if CEMA-CONTAINS-MOBILE AGENT-SERVICE(ser(current), rid) = TRUE
17 then found = TRUE
18 destination CEMA-FIND-ADDRESS-SERVICE(ser(current), rid)
19 if continue = TRUE and found = TRUE
20 then if current = destination
21 then if mode = 1 or mode = 2 or mode = 0
22 then print “Destination reached”
23 if mode = 1
24 then send an acknowledgement for the received message
25 else
26 send the message towards destination
27 if continue = TRUE and found = FALSE
28 then for each element in keys in CEMA-RESOURCES(res(current))
29 do if element ≠ level
30 then send the message towards element.

from their resource-, service-, and lookup tables.
Changing the route of a message if a new link is not
handled by CEMA; the path remains undiscovered
until a mobile agent migrates and sends out the
control messages using (and detecting) the new link.

4. Analysis of CEMA
This section presents a performance analysis of

CEMA. The following assumptions are made for the
analysis:
1. The communication channel remains duplex at all

times
2. All link bandwidths and power sources of devices

are infinite.
3. The cost of each link is uniformly one.
4. There is equal delay on all links and there is no

loss during transmissions.
5. Graph G remains connected at all times.
6. Vx and Vy. are notified if Exy is removed.

In a time interval τ, if n agents are launched then
total number of control messages generated is equal
to n*(n-1). If in time internal τ, there are m
migrations of mobile agents then the total number of
control messages generated due to the migrations is:
m*(n-1). If x number of messages are transmitted in
a time interval τ, then the total number of normal
messages is x and the total number of
acknowledgement messages is x. Therefore in a time
interval τ, if n mobile agents are launched followed
by m number of migration and they send x messages
among themselves, the total number of messages is:
n*(n-1) + m*(n-1) + 2x.

The algorithm has a message complexity of
O(N+M) where N is the number of hosts in the
network and M is the number of mobile agents in
the network. Messages in CEMA traverse the
network in a breadth-first fashion; T is a breadth-
first generated spanning-tree of nodes from Vx to Vy.
The maximum number of hops a message (normal
message) can take to reach its destination depends
on the number of levels in T (the location of the
mobile agent).

The algorithm allows only forward movement of
messages and does not allow a message to revisit an
edge it has already visited. Thus, the numbers of
levels in T denoted by x determine the average
number of hops a message takes to reach from a

source to a destination. The worst-case scenario
occurs when the graph G is a linear graph having a
worst-case complexity of O(⏐V⏐). In such a case,
the number of levels in T is equal to the number of
edges. The best-case scenario is when all the mobile
agents are concentrated on a single host, while in a
fully connected G, to reach the destination the
message has to take either zero or one hop.

4.1. Experimental setup and results
In order to investigate the performance of CEMA,

a simulator was implemented in Java. Two distinct
sets of experiments were performed:

Figure 6. Graph of number of hops vs. number of hosts.

1. The simulator parameter was the population of
hosts, n (n =5, 10, …, 50). Six different
experiments were performed for each instance
of n, changing the number of mobile agents m
(m=10, 20, …, 50, 60) (mobile agents are
distributed uniformly between nodes). Figure 6
shows the graph for the number of hops versus
number of hosts.

2. The simulator was run with a fixed number (20)
of hosts keeping m as a factor (m=5, 10, 15, 20,
25, 30). Mobile agents were randomly picked to
migrate between devices (with a uniform
random distribution of destinations). The
number of migrations was varied at 10, 20, and
30 migrations during the transmission of 100
randomly generated normal messages

Figure 7. Graph of number of mobile agents vs. total

hops.

4.2. Limitations of CEMA
The CEMA algorithm cannot automatically detect

link failures. If a link fails the updates to the tables
have to be done by an external entity. Work is
underway to extend CEMA for these scenarios.

Another limitation of CEMA is that it may lose
messages under the following circumstances.
Messages can only move forward from the source to
the destination due to the timestamp and due to the
multicast restriction towards the originator. If a
message crosses a bridge, it will not be able to return
across the bridge; if meanwhile the destination
mobile agent happens to migrate to the other side of
the bridge, then the message is lost since it cannot
go back across the bridge. This situations cannot be
handled by the current algorithm and will be
addressed in a subsequent paper.

5. Conclusions
This paper presented the design of a prototype

software infrastructure for pervasive computing
utilizing mobile agents. Architectural components of
the software infrastructure were described as well as
a novel algorithm (CEMA) for establishing
connections between mobile agents in a pervasive
network was presented. A Java based simulator was
designed to evaluate the message complexity
performance of CEMA. Various experiments
conducted by the simulator have shown the

scalability of the infrastructure as well as the
limitations of the infrastructure. Ongoing work is
addressing the limitations of CEMA to design real-
life pervasive computing systems.

6. References
[1] A. Silberschatz, J. Peterson, and P. Galvin,

“Operating System Concepts, 3rd Edition,” Addison-
Wesley Publishers, 1991.

[2] G.H. Forman, and J. Zahorjan, “The Challenges of
Mobile Computing,” IEEE Computer, vol. 27, nr. 6,
April 1994.

[3] M. Satyanarayanan, “Pervasive Computing: Visions
and Challenges,” IEEE Personal Communications,
2001.

[4] T.C. Agoston, T. Ueda, and Y. Nishimura,
“Pervasive Computing in the Networked World,”
Proceedings of INET2000, Yokohama, Japan, 2000.

[5] MIT Oxygen project, 2001.
http://oxygen.lcs.mit.edu

[6] A.C. Huang, B. Ling, S. Ponnekanti, and A. Fox,
“Pervasive Computing: What Is It Good For?,”
Proceedings of the Workshop on Mobile Data
Management (MobiDE) in conjunction with ACM
MobiCom, 1999.

[7] D. Lange, and M. Oshima, “Programming and
Deploying Java Mobile Agents with Aglets,”
Addison-Wesley Publishers, 1998.

[8] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawla, and
G. Cybenko, “AGENT TCL: Targeting the Needs of
Mobile Computers,” IEEE Internet Computing, vol.
1, nr. 4, pp. 58–67, 1997.

[9] W. Cockayne, and M. Zyda, “Mobile Agents,”
Manning Publications, 1998.

[10] K. Paul, and S. Bandyopadhyay, “Evaluating The
Performance of Mobile Agent Based Message
Communication Among Mobile Hosts In Large Ad-
Hoc Wireless Networks,” Proceedings of the
Second ACM International Workshop on Modeling
and Simulation of Wireless and Mobile Systems (In
conjunction with IEEE/ACM MobiCom'99), Seattle,
WA, August 1999.

[11] C. Okino, and G. Cybenko, “Modeling and Analysis
of Active Messages in Volatile Networks,”
Proceedings of the 37th Allerton Conference on
Communication Control & Computing, Monticello,
IL, September 1999.

[12] R. Thomas, “Mobile Agents for Pervasive
Computing,” Master’s Thesis, The
University of Texas at Arlington,
shameless self-advertising, May 2002.

