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Abstract— An interferometric ranging technique has been
recently proposed as a possible way to localize ad hoc and
sensor networks. Compared to the more common techniques
such as received signal strength, time of arrival, and angle of
arrival ranging, interferometric ranging has the advantage that
the measurement could be highly precise. However, localization
using interferometric ranging is difficult as it requires a large
number of measurement readings. In this paper, we provide a
formal proof of this difficulty in terms of algorithmic complexity.
Furthermore, we propose an iterative algorithm that calculates
node locations from a set of seeding anchors, gradually building a
more global localization solution. Compared to previous localiza-
tion algorithms, which treat localization as a global optimization
problem, the iterative algorithm is a distributed algorithm that
is simple to implement in larger networks. More importantly,
the iterative algorithm allows us to study the error propagation
behavior of localization using interferometric ranging. Using sim-
ulations, we validate the performance of the iterative algorithm
in terms of localization error and coverage.

I. INTRODUCTION

Location discovery is emerging as one of the more im-
portant tasks in ad hoc and sensor networks as it has been
observed and shown that (semi-) accurate location informa-
tion can greatly improve the performance of tasks such as
routing, energy conservation, or maintaining network security.
A direct way to obtain location information is to install
global positioning system (GPS) receivers on each node in
the network. However, this is currently impractical as GPS
receivers are still relatively bulky, expensive, power-hungry,
and require clear line of sight to several earth-bound satellites
(i.e., making indoor usage impossible). In sensor networks,
devices are imagined as small as possible and operating on
a very restricted power source; thus it may not be feasible
to install GPS receivers into all sensor nodes. Therefore, the
localization problem arises in that there is a need to determine
the location of all nodes based on the location of a limited
subset of localized nodes (also called anchors).

An excellent overview of the localization problem is given
in [1]. In general, the problem is often classified into sub-
problems based on the sensory data available between a pair
of nodes. Most common types of sensory data include received
signal strength indication (RSSI) [2]–[4], time of arrival (TOA)
ranging using ultrasound [5], angle of arrival (AOA) [6],
connectivity-only (or range-free) [7]–[9], or some combination
of the above [10], [11]. In most cases, the nodes collaborate

to derive the location based on the anchor locations and the
sensory data observed. Unfortunately, it has been shown that
the localization problem is NP-Complete when localized from
either ranging [12], angle [13] or unit-disk connectivity [14].
Thus, the localization problem is treated as an optimization
problem, for which a distributed solution is more desirable.

Other than those widely studied sensory types, a new
sensory type called interferometric ranging has recently been
proposed [15]. Interferometric ranging is a “widely used
technique in both radio and optical astronomy to determine
the precise angular position of celestial bodies as well as
objects on the ground [16].” Its original design is to work
with large scale systems where objects are thousands of miles
apart. However, there have been recent advances in hardware
design that allow interferometric ranging to be performed on
cheaper hardware, making it a promising new technique for
localizing ad hoc and sensor networks. Interferometric ranging
exploits the property that the relative phase offset between two
receivers determines the distances between the two senders.
By synchronizing the transmission at the two senders, the
distance difference (also called the q-range) can be measured
very accurately using interferometric ranging.

Definition 1.1: A q-range obtained from interferometric
ranging from two senders A and B, and two receivers C and
D is the distance difference dABCD = dAD − dBD + dBC −
dAC + e, where e is the measurement error (Figure 1).

Definition 1.2: Given a q-range dABCD, A, B, C and D
are also referred as the components of the q-range, in which
A and B are the senders and C and D are the receivers.

Note that based on the above definitions, within each q-
range A is interchangeable with B since both are senders, and
C is interchangeable with D since both are receivers. Thus,
dABCD = −dBACD = −dABDC = dBADC .

A major advantage of interferometric ranging is that the
measurement could be extremely accurate compared to noise-
prone RSSI readings. In a recent experiment [15], in which
16 nodes are deployed in a 4x4 grid over a 18x18 meters flat
grassy area with no obstruction, the maximum q-range error
was shown to be around 0.1 meters while the medium error
was less than 0.04 meters. However, interferometric ranging
is more difficult to implement partially due to the following
reasons:

1) Precise time synchronization is needed at all four com-
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Fig. 1. The interferometric ranging measurement of the q-range dABCD =
dAD − dBD + dBC − dAC . Here, node A and B are the senders, and node
C and D are the receivers.

ponents of a q-range.
2) Frequencies of the transmissions need to be precisely

calibrated.
3) A significantly larger number of measurements are

needed for localization than using direct ranging tech-
niques.

4) Since each measurement involves four nodes, more
collaboration is required between nodes.

Those difficulties rooted in the physical characteristics of
interferometric ranging devices affect the algorithmic design
of the localization algorithm. In this paper, we concentrate on
the algorithmic aspects of the problem, and in particular, the
last two difficulties. In other words, we only consider how
to localize the network from a set of given q-ranges, and we
do not consider how those q-ranges are obtained. A detailed
overview of the physical characteristics of interferometric
ranging is given in [15].

We will start by reviewing some fundamental complexity
results on localization using interferometric ranging. We show
in Section III that there is a polynomial time algorithm that
checks for a necessary condition under which a network can
be localized. We also show that the localization problem itself
is NP-Complete when using interferometric ranging as the
measurement. In Section IV, we further derive a sufficient con-
dition that guarantees a unique localization of a node based on
local interferometric readings. Using the condition, we propose
an iterative localization algorithm that localizes the network
from a small number of seeding anchors. The performance of
the localization algorithm and its error propagation behavior
are validated using simulations in Section V.

II. PREVIOUS WORKS

The large number of measurements required for localization
using interferometric ranging are illustrated by the following
theorem (and proof) given in [16].

Theorem 2.1: In a network of n nodes, there is a maximum
of n(n− 3)/2 independent interferometric measurements that
can be obtained.

Theorem 2.1 shows the number of measurements avail-
able using interferometric measurements is O(n2), which is
significant higher than with RSSI and AOA ranging (O(n)).
Considering the localization problem in relative coordinates,

for a network of n nodes there are 2n − 3 unknowns in 2
dimensions and 3n−6 unknowns in 3 dimensions 1. Thus, the
smallest network that can be localized using interferometric
measurements is a fully-connected network with a population
of n = 6, where there are 9 independent measurements
available to cover 9 unknowns.

Furthermore, for interferometric ranging not all measure-
ments are useful. Some measurements are dependent on others,
and only independent measurements are useful in localization.
For instance, for the four nodes A, B, C and D in Figure 1,
if all nodes are completely connected (i.e., any two can be the
senders or the receivers), then there are only two independent
q-ranges, e.g., dABCD = dAD − dBD + dBC − dAC (when A
and B are the senders) and dADBC = dAC−dDC+dDB−dAB

(when A and D are the senders). All other q-ranges are
dependent upon those two, that is, they can be expressed as
linear combinations of those two.

Given a set of interferometric measurements (i.e., q-ranges),
a localization algorithm attempts to find the sensor locations
that satisfy the measurements. There have been a limited
number of localization algorithms proposed for interferometric
ranging. A generic algorithm approach was taken in [15]. An
algorithm was proposed in [17] that uses both interferometric
and RSSI ranging. Both algorithms try to optimize for a global
solution given an entire set of interferometric measurements.
Intuitively, finding a global solution to the localization prob-
lem is often difficult because of the large search space and
the large number of constraints given by the interferometric
measurements. Thus, it is desirable to find the solutions in
some subspaces first and then incrementally build up to the
global solution. This paper makes use of an iterative approach
to localize the network, which was first introduced in [12].

III. COMPLEXITY RESULTS

In this section, we provide some complexity results on
localization using interferometric ranging. We will show when
using interferometric readings as the measurement the com-
plexity of the localization problem is NP-Complete. In the
remainder of this section dealing with the complexity, we
assume that the q-range measurement error e is insignificant,
and all q-ranges give the precise distance difference. We will
reconsider the measurement error in the subsequent sections.

First, we extend Theorem 2.1 to give a polynomial time
algorithm that determines the number of independent interfer-
ometric readings.

Theorem 3.1: Given a network of n nodes and a set of
interferometric readings (q-ranges), there is a polynomial time
algorithm that determines how many of them are independent
(the set’s dimension).

Proof: We start by denoting each node in the network
with an integer ID starting from 0 to n − 1, and let A, B,
C and D be variables containing a unique ID. Considering a

1This is because the relative coordinates are invariant under translation,
rotation and reflection. Thus, in 2 dimensions, we have 2n − 3 degrees of
freedom, where translation, rotation and reflection each reduce one degree of
freedom.
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vector space consisting of all possible q-ranges, the algorithm
needs to identify the total number of independent q-ranges
from a given set of vectors {dABCD}. To do this, one can use
the Gaussian elimination method if the given vectors can be
written as some linear combination of a set of basis vectors.
The classification algorithm given in [16] provides a way to
accomplish this, as follows.

Given a vector dABCD = dAD − dBD + dBC − dAC in
a vector space, it has been shown in [16] that any vector
dABCD should satisfy the condition A < B,A < C <
D,B �= C,B �= D in order to be independent since dABCD +
dBACD = 0 and dABCD−dCDAB = 0. Thus, we can convert
any q-ranges not satisfying the above condition to a q-range
that does. Furthermore, any such vector dABCD that satisfies
the above condition belongs to one of the following six classes:

• Class 0: {012D|2 < D}
• Class 1: {0B1D|1 < B < D}
• Class 2: {01CD|2 < C < D}
• Class 3: {0B1D|1 < D < B}
• Class 4: {0BCD|1 < B, 1 < C < D,B �= C,B �= D}
• Class 5: {ABCD|0 < A < B,A < C < D,B �=

C,B �= D}
Among the six classes, Class 0 and Class 1 form a basis

set that only contains independent vectors. Vectors in Class 2
through 5 can be written as linear combinations of those in
the first two classes as follows:

• Class 2: d01CD = −d012C + d012D

• Class 3: d0B1D = −d01DB + d0D1B

• Class 4: d0BCD = −d0B1C + d0B1D

• Class 5: dABCD = −d0ACD + d0BCD

Using the above algorithm, any given q-range in the set
{dABCD} can be written as a linear combination of the q-
ranges in Class 0 and Class 1 (i.e., a basis set), with −1, 1,
or 0 as the coefficient at each term.

Given a set of N q-range vectors, we construct a M -by-N
matrix A, where M is the total number of Class 0 and Class
1 vectors. For every q-range i, we run the above reduction
algorithm to reduce it to a linear combination of Class 0 and
Class 1, and then insert the coefficients (−1, 1, or 0) into
the ith column of the matrix A. We can then use Gaussian
elimination on matrix A (or some other techniques in linear
algebra to find the rank), which will indicate the number of
independent columns of A. Since for a network of n nodes
there are 2n − 3 unknowns in 2 dimensions and 3n − 6
unknowns in 3 dimensions, we can compare the total count
with 2n − 3 or 3n − 6 to determine whether the network is
localizable in 2 dimensions or 3 dimensions.

For each q-range in a total of N q-ranges, the algorithm
to find the coefficients in a column of A runs in constant
time. The complexity of constructing the matrix A is therefore
O(N). From the constructed matrix A, the complexity of
running Gaussian elimination is O(N3). Thus, the overall
complexity is O(N + N3) = O(N3), polynomial time.

As argued in the previous section, the problem of localizing
a network of n nodes in 2 dimensions involves 2n − 3
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Fig. 2. In a randomly placed unit disk graph of size n, the number of
independent q-ranges increase linearly to the network connectivity (average
node degree).

unknowns. Therefore, if there are at least 2n− 3 independent
q-ranges, then we will have a system of 2n − 3 independent
equations to sufficiently solve for the 2n−3 unknowns. Thus,
the polynomial time algorithm enables us to check for a nec-
essary condition of network localizablity under interferometric
readings. However, since each q-range is not a linear but
a quadratic equation, having 2n − 3 independent q-ranges
is only a necessary but not sufficient condition of network
localizablity. Since testing the network localizablity using edge
weights (distances) is a known NP-Complete problem [18],
it is likely that network localizablity using interferometric
ranging is also NP-Complete.

The results above assume a general graph. In reality, ad
hoc and sensor networks resemble unit disk graphs. How
many independent q-ranges are we expecting in unit disk
graphs then? Simulation on randomly deployed unit disk
graphs show that the number of independent q-ranges increases
linearly with the network connectivity (average nodal degree)
as depicted in Figure 2.

The following theorem shows that even with a known
localizable network, the localization itself is NP-Complete
when using interferometric ranging as the measurement.

Theorem 3.2: Given a network that is localizable using a set
of interferometric readings (q-ranges), the actual localization
of the network is an NP-Complete problem.

Proof: It is obvious that when a solution instance
(certificate) is given (i.e., when all node locations are known),
there is a polynomial time algorithm to validate such an
instance against the q-ranges. Thus, the localization problem
is in NP. We now show the problem is NP-Complete.

We reduce from the realization problem of wheel graphs.
A wheel graph, Wn, is a graph of n nodes in which (without
losing generality due to node numbering) nodes 1 through n−1
form a cycle (not necessarily on a circle), and node 0 (hub)
is connected to all nodes. The edges on the cycle are called
the rim edges, and edges connecting from the hub are called
spokes. Figure 3(a) shows such a graph with n = 6.

It has been shown in [12] that it is NP-Complete to localize
the wheel graph Wn when the edge weights (including spokes
and rim edges) are known. To show that it is also NP-Complete
to localize a network using interferometric readings (q-ranges),
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Fig. 3. Wheel graph and its reduction.

we construct a polynomial time reduction from Wn. We then
claim that the reduced graph, called Ŵn, is localizable using
the q-ranges obtainable from the edge weights of Wn. And
finally we show that such reduction leads to the conclusion
that localizing using q-ranges is NP-Complete.

The reduction from Wn to Ŵn works as follows. Observe
that Wn consists of a sequence of triangles formed by two
spokes and a rim edge. On every edge of each triangle, we
create an additional node equal distance away from both end
points. We then add additional edges to completely connect all
six nodes (three original nodes and three newly created nodes)
within the triangle. For instance, in Figure 3(b), we create three
new nodes D, E, and F within �ABC such that dAD =
dDB = dAB

2 , dBE = dEC = dBC

2 and dAF = dFC = dAC

2 .
The subgraph consisting of those six nodes are completely
connected. Clearly, the reduction step is polynomial in n.

We claim that the graph Ŵn is localizable in 2 dimensions
using interferometric ranging. To support our claim we need
to determine how many interferometric readings (q-ranges) are
present in Ŵn. First, observe that by our construction, the
weight of every newly created edge in the triangle subgraph
can be determined geometrically from three edge weights
dAB , dBC and dAC that are given by the original Wn graph.
Thus, within each triangle subgraph of n = 6, we have all
available q-ranges for a complete graph of n = 6. Conversely,
from those available q-ranges, we can derive the original edge
weights dAB , dBC and dAC . For instance, we can calculate
dAC from the following four q-ranges:

dAECB = dAB − dEB + dEC − dAC

= dAB − dBC

2
+

dBC

2
− dAC

= dAB − dAC (1)

dCDAB = dBC − dDB + dAD − dAC

= dBC − dAB

2
+

dAB

2
− dAC

= dBC − dAC (2)

dBADF = dBF − dAF + dAD − dBD

= dBF − dAC

2
+

dAB

2
− dAB

2

= dBF − dAC

2
(3)

dBECF = dBF − dEF + dEC − dBC

= dBF − dAB

2
+

dBC

2
− dBC

= dBF − dAB

2
− dBC

2
(4)

Combining (1) with (2), and (3) with (4), we have

dAECB + dCDAB = dAB + dBC − 2 · dAC (5)

dAC

2
= −dBECF + dBADF − dAB

2
− dBC

2
(6)

Combining (5) with (6), and solving for dAC , we have

dAC =
−2 · dBECF + 2 · dBADF − dAECB − dCDAB

3
It has been shown in [12] that Wn is localizable when all

of its edge weights are given. Since, using the q-ranges of Ŵn

available to us, we can drive every edge weight of Wn, Wn

is localizable using the q-ranges. If Wn is localizable using
q-ranges, so is Ŵn because by our reduction the location of
every newly added node in Ŵn can be uniquely determined
from the location of the existing nodes in Wn. Thus, Ŵn is
localizable using q-ranges.

If there is a polynomial time algorithm, A, that performs
the actual localization of Ŵn using q-ranges, the original
wheel graph Wn can then be localized under edge weights
by running our polynomial time reduction to produce Ŵn

and then running A to localize Ŵn, all in polynomial time.
However, since localizing the wheel graph Wn using edge
weights is NP-Complete as shown in [12], A does not exist.
Thus, localization using interferometric ranging (q-ranges) is
NP-Complete.

IV. ITERATIVE LOCALIZATION USING INTERFEROMETRIC

RANGING

Based on the above complexity result, it is clear that
localization using interferometric ranging is fundamentally
intractable. Any algorithm that solves this problem will need
to be some form of a heuristic (e.g., described as an opti-
mization process). However, even as an optimization problem,
the problem is difficult because of the large search space.
In this section, we try to provide an optimization solution
by localizing the nodes incrementally based on a sufficient
(but not necessary) condition of node-localizability in term of
interferometric ranging.

Lemma 4.1: A node i can be localized using interferometric
ranging under the following two conditions:
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1) i is a component of at least three mutually independent
q-ranges, and

2) all other three components in each q-range are localized.
Proof: Let node i be a component in the three q-ranges.

For each of the three q-ranges, let the other three components
be node A, B and C. Thus, the q-range is in one of the
following forms, depending on whether i is a sender or a
receiver:

• dABiC = dAC − dBC + dBi − dAi

• diABC = diC − dAC + dAB − diB

Since A, B and C are already localized, the distances dAB ,
dAC and dBC can be calculated from the node locations. Thus,
the q-range can be reduced to the following:

• c1 = dABiC + dBC − dAC = dBi − dAi

• c2 = diABC + dAC − dAB = −diB + diC

Here, c1 and c2 are two constant values. Thus, each q-range
reduces to a partial (either a left-side or a right-side) hyperbola
on which the location of node i resides. Since the three q-
ranges are mutually independent, each of the partial hyperbolas
they generate is unique. Ignoring the rare cases such as when
the hyperbolas overlap, the intersection of three unique partial
hyperbolas is a unique point. Thus, node i can be localized.

Lemma 4.2: Any three q-ranges with node i as a common
receiver (sender) are independent if

1) each q-range has a distinct pair of senders (receivers),
and

2) there are in total at least four distinct senders (receivers).
Proof: First consider the trivial case where the depen-

dency is in two q-ranges. Two types of dependencies exist in
this case: dABCD + dBACD = 0 and dABCD − dCDAB = 0.
Based on the condition given, dABCD + dBACD = 0 would
not happen because they do not have a distinct pair of senders.
dABCD − dCDAB = 0 would not happen due to the lack of a
common receiver (sender).

Now consider the case when the three q-ranges are de-
pendent. Since there are four distinct senders (receivers) in
the three q-ranges, not all of the four senders (receivers) can
appear multiple times in the q-ranges. Let j be the sender
(receiver) that appears only once in the q-ranges. Thus, there
is only one q-range that includes the distance between node i
and j, dij . However, since j only appears once, the other two
q-ranges do not include dij . Since dij is a unique term, the q-
range that includes j cannot be written as a linear combination
of the other two.

Thus, all three q-ranges must be independent.
Lemma 4.1 and 4.2 give the condition under which a

node can be localized using interferometric ranging from
its neighbors. If such condition is satisfied, the node can
be localized with only the local neighborhood information
without the complexity of a global optimization problem.
Once the node is localized, its location information can be
used to further localize other nodes. This gives an iterative
localization algorithm shown as Algorithm 1, which is similar

Algorithm 1 Iterative Localization Using Interferometric
Ranging
Require: every node knows its 1-hop neighbor

for all Localized nodes do
broadcast its location and 1-hop neighbor set

end for
for all Unlocalized nodes i do

Ssenders ← φ
Receive broadcasts and construct local connectivity map
Find nodes s1, s2 and r such that es1,i, es2,i, es1,r, and
es2,r exist in the local map
if (s1, s2) /∈ Ssenders and (s2, s1) /∈ Ssenders then

add (s1, s2) to Ssenders

end if
if Ssenders contains at least 3 pairs and at least 4 distinct
senders then

negotiate to obtain q-ranges using each pair as senders
or receivers
determine its location
broadcast its location and 1-hop neighbor set

end if
end for

to the iterative trilateration protocol (ITP) proposed in [12],
however with different conditions.

Algorithm 1 requires all nodes to have their 1-hop con-
nectivity information, which can be collected by observing
”Hello” messages from the neighbors. Before starting the lo-
calization process, a small number of localized nodes (anchors)
need to be deployed. Due to the condition listed in Lemma
4.1 and 4.2, those anchors need to be close to each other
such that the nearby unlocalized nodes can be localized. The
anchors then broadcast their locations and 1-hop connectivity
information. When an unlocalized node hears the broadcast, it
builds a local connectivity map, which is needed to validate the
condition required by Lemma 4.1 and 4.2. In particular, when
there are at least three distinct pairs of potential interferometric
senders (s1, s2), each of which shares a common receiver r,
then the node can be localized. When the node detects that
the localization condition is satisfied, it contacts the potential
sender pairs and the corresponding receiver to schedule an
interferometric reading. When at least three readings are
obtained, the node computes its location, and then broadcast
it to its neighbors so that the newly discovered location can
be used to localize the neighbors in the next round. The
localization algorithm continues until all nodes are localized
or the next round does not produce any newly localized node.

Simplicity is the real advantage of the above iterative
algorithm. Instead of trying to solve for a global solution for
all unlocalized nodes in the network at once, the algorithm
computes the locations based on the local information only
and then progressively builds up a global solution. The al-
gorithm is also distributed in nature and can be implemented
directly on each sensor. However, since the conditions dictated
by Lemmas 4.1 and 4.2 are not sufficient conditions for a
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node to be localized, the algorithm does not guarantee to
localize a node even though the node could be theoretically
localized. For a randomly deployed sensor network, the ratio
of the localizable nodes to the population using the iterative
algorithm is a function of the network density. Fortunately,
our simulations show that this ratio is reasonably high when
compared to the localization ratio of the iterative trilateration
protocol (ITP) in [12] that uses direct RSSI ranging.

To compute nodes’ locations after the sufficient number of
q-ranges are obtained, we run a simple simulated annealing
algorithm. The simulated annealing approach is taken because
i) in reality the system is often over-determined by multiple
q-ranges which contain errors, and ii) the location function
to be optimized is non-linear with multiple local minimums.
Since the localization is performed using local q-ranges only,
we are able to drastically limit the search space to be the
area within the range of all components involved in the
transmission. Simulations show that the simulated annealing
algorithm converges quickly to the correct solution.

V. SIMULATION RESULT

To evaluate the behavior of the iterative localization al-
gorithm using interferometric ranging, we have conducted a
number of simulations in various of settings. Our simulation
environment consists of a network of n sensors randomly
deployed in a square area of 1 unit square. The sensors are
assumed to be homogeneous, i.e., they all have the same
transmission range. To start the localization process, we deploy
four anchors to the center of the unit square (the anchors
have the same transmission range as the sensors). The results
obtained are the average of 30 independent runs.

A. Coverage and Rounds

We first look at the localization coverage of the iterative
algorithm and the number of rounds executed by the algorithm.
We compare the result against that of the iterative trilateration
protocol (ITP) proposed in [12]. The node localization con-
dition of the ITP is that an unlocalized node needs to be the
neighbor of at least three localized nodes. The localization
condition stated in Lemma 4.1 and 4.2 is stricter since it
requires three independent q-ranges. At the minimum, an
unlocalized node needs to neighbor with four localized nodes
to satisfy such a condition 2. Thus, it is expected that for
the same network the localization coverage produced by the
iterative algorithm for interferometric ranging is lower than
that of the trilateration.

As validated in Figure 4(a), for a fixed transmission range,
the number of nodes localized using the interferometric con-
dition is indeed smaller than that of the trilateration condition.
However, the difference is not particular great and can be
overcome by increasing the network density. As shown in
Figure 4(a), by increasing the node density (by increasing
the population to n = 160), the interferometric localization
condition can reach a coverage similar to what trilateration

2Three localized nodes, along with the unlocalized node, would generate a
maximum of two independent q-ranges instead of three.

reaches at n = 100. In term of density, the network of n = 100
has a degree of 12 when the transmission range is set to
0.2, which results in 90% coverage under the trilateration
condition. The equivalent coverage can be obtained under
the interferometric condition by increasing the density to 19
degrees when using n = 160 with the same transmission
range. The number of rounds required to complete the iterative
algorithm is shown in Figure 4(b).

B. Localization Error

The iterative localization algorithm allows us to study the er-
ror propagation behavior of interferometric ranging. In particu-
lar, we are interested in how the error from the interferometric
measurement affects the localization error and how the error
is aggregated and propagated through the network. Figure 5(a)
shows the average localization error at each round for a net-
work of 100 nodes using the iterative algorithm (transmission
range set to 0.25 units). A Gaussian noise of N(0, σ) is added
to the interferometric measurement. The standard deviation
are in the same range as derived by the actual hardware
devices in [15]. Figure 5(a) indicates a linear increase of the
localization error of the nodes localized at each additional
round. Thus, it is more desirable that most nodes are localized
with limited rounds. The number of nodes localized at each
round is shown in Figure 5(b). In our simulation scenario,
most nodes are localized within 5 rounds. Nevertheless, the
simulation indicates that the error propagation behavior poses
a significant constraint on how effectively the interferometric
measurement can be applied to the localization problem. In
order to achieve more precise localization, the effect of error
propagation has to be controlled.

VI. CONCLUSION

Interferometric ranging has been recently proposed as a
viable measurement type to solve the localization problem in
sensor networks. However, in addition to constraints imposed
to the hardware devices, interferometric ranging also imposes
new challenges to the algorithmic design of localization. In
this paper, we formally proved that localization using inter-
ferometric ranging is an NP-Complete problem. Compared
to heuristics on direct RSSI or TOA ranging (both of which
problems are also NP-Complete) it can be argued that heuris-
tics on localization using interferometric ranging are even
more difficult (however this added difficulty is polynomial).
Whereas each direct ranging measurement is a function of
two locations, the interferometric measurement is a function of
four. Thus, localization using interferometric ranging requires
a considerably larger set of measurements.

Previous interferometric localization algorithms try to opti-
mize the solution globally either by using a generic algorithm
approach [15] or by reducing the search space with additional
RSSI readings [17]. The difficulty of the problem still limits
their solutions to smaller networks (16 nodes in [15] and 25
nodes in [17]). The iterative algorithm proposed in this paper
allows networks of larger size to be localized using interfer-
ometric ranging. However, our simulation indicated that error
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Fig. 5. Localization error.

propagation can be a potentially significant problem. In order
to localize large networks using interferometric ranging from
a small set of anchors, future localization algorithms need to
find a way to effectively limit the error propagation.
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