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Abstract One of the most important tasks in sensor

networks is to determine the physical location of sensory

nodes as they may not all be equipped with GPS receivers.

In this paper we propose a localization method for wireless

sensor networks (WSNs) using a single mobile beacon. The

sensor locations are maintained as probability distributions

that are sequentially updated using Monte Carlo sampling

as the mobile beacon moves over the deployment area. Our

method relieves much of the localization tasks from the

less powerful sensor nodes themselves and relies on the

more powerful beacon to perform the calculation. We

discuss the Monte Carlo sampling steps in the context of

the localization using a single beacon for various types of

observations such as ranging, Angle of Arrival (AoA),

connectivity and combinations of those. We also discuss

the communication protocol that relays the observation

data to the beacon and the localization result back to the

sensors. We consider security issues in the localization

process and the necessary steps to guard against the sce-

nario in which a small number of sensors are compromised.

Our simulation shows that our method is able to achieve

less than 50% localization error and over 80% coverage

with a very sparse network of degree less than 4 while

achieving significantly better results if network connec-

tivity increases.

Keywords Wireless sensor networks � Monte Carlo

sampling � Localization � Particle filter

1 Introduction

Wireless sensor networks (WSNs) are special types of

ad hoc networks, where large populations of small sensor-

enabled nodes form the network. Many researchers view

WSNs as ad hoc networks where energy efficiency is of

utmost importance. Generally, sensors are seen to be

spread over a target area, and the network is formed among

the sensors in an ad hoc manner. Once deployed the sen-

sors ubiquitously serve as the ‘‘eyes and ears’’ monitoring

the deployment area (e.g., for temperature, movement, or

pressure). WSNs have been attracting considerable

research interest due to the large number of military and

civilian applications already existing and foreseeable in the

near future.

Location discovery is emerging as one of the more

important tasks as application, transport, network, and data

link layers would all benefit from physical location infor-

mation. Researchers have observed and shown that (semi-)

accurate location information could greatly improve the

performance of tasks such as routing, energy conservation,

data aggregation, and maintaining network security. For

instance, algorithms such as LAR [10], GRID [15], and

GOAFR+ [12] rely on the location information to provide

more stable routes during unicast route discovery. The

availability of location information is also required for

geocast (multicast based on geographic information [9])

algorithms such as LBM [11], GeoGRID [16], and PBM

[17]. To minimize power consumption, the GAF algorithm

[27] uses location information to effectively tune the net-

work density by turning off certain nodes at particular
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instances. Furthermore, in [7], the authors have shown that

wormhole attacks can be effectively prevented when

location information is available.

A direct way of obtaining location information is to

install a global positioning system (GPS) receiver on each

sensor. However, this is impractical currently as GPS

receivers are still relatively expensive, power-hungry, and

require clear line of sight (i.e., restricted to unobstructed

outdoor scenarios) to several earth-bound satellites. WSN

devices are imagined as small as possible while operating

on restricted power budgets, thus it may not be feasible for

them to integrate GPS receivers.

2 Related works

The localization problem is commonly formulated as fol-

lows. Given a network graph G = (V,E) where a subset of

the nodes {V} are location aware anchor nodes (also called

beacons) {Vgps} such that jVgpsj � jVj; the objective of the

localization algorithm is to find the locations of non-anchor

nodes fVg � fVgpsg:
Localization methods can be classified based on the

sensory data required for their operation. The availability

(and of equal importance, the accuracy) of the sensory data

largely dictates how well the localization method performs

to an extent where it is pointless to compare different

localization methods when their sensory data are incom-

patible. The following classification can be made based on

the sensory data:

1. Range-free (or connectivity-only): At a minimum, a

deployed sensor can detect the connectivity to its

neighbors; a number of localization methods rely on

such connectivity information only. The Centroid

method [3] estimates the location of an unknown node

as the average of its neighbor’s locations. The APIT

method [6] estimates the node location by isolating the

area using various triangles formed by anchor nodes.

The DV-Hop method [18] counts the hop numbers to

anchors and uses them as crude estimates for distances.

Range-free methods require no additional hardware,

but they generally only work well when networks are

dense. Sparse networks by nature contain less connec-

tivity information and are thus more difficult to

localize accurately.

2. Range-based: A node can be localized if the distances

(i.e., the ranges) to three known locations are obtained.

The distances can be obtained, e.g., by measuring

RSSI (received signal strength indication) or TOA

(time of arrival). Some of range-based methods

include the ad hoc positioning system (APS) methods

such as DV-Distance and Euclidean proposed in

[18, 20]. In [23], ranging data are exchanged between

the neighbors to refine the initial location guess.

Comparing to range-free methods, range-based meth-

ods give more accurate location estimates when

ranging data is reliable. However, depending on the

deployment environment, ranging techniques based on

RSSI tend to be error-prone and strong filtering is

required. The ranging error could ultimately destroy

the localization accuracy if it is allowed to propagate

through the network unboundedly.

3. Bearing-based (or angle of arrival): Simulation studies

in [4] show that when Angle of Arrival (AoA) of

signals can be computed in addition to distance

measurements, the localization accuracy and coverage

can be drastically improved. An enhancement of the

APS algorithm is proposed in [19] and [21] that works

with AoA readings.

4. Hybrid: A combination of the above techniques can be

employed to form a hybrid method. For instance, a

hybrid method is proposed in [1] that uses both APS

and MDS (multi-dimensional scaling).

The earlier localization algorithms have primarily tar-

geted both static and mobile ad hoc networks (MANETs).

A comparison between more well-known algorithms such

as DV-Hop, Euclidean and Multi-lateralization is per-

formed in [13]. The comparison is done in the context of

specific constraints of sensor networks, such as error tol-

erance and energy efficiency; results indicate that there is

no single algorithm that performs ‘‘best’’ and that there is

room of further improvement.

A number of centralized localization methods have also

been proposed based on semidefinite programming (SDP)

[2] and linear programming (LP) [14]. In these algorithms,

sensory data between the neighbors such as distance and

angle are collected into a centralized place. Such data is

then used as constraints to a global optimization problem to

be solved using SDP or LP. These algorithms give the best

possible localization result simply because they assume

that the entire constraint set is available. However, such

centralized approach can be difficult to implement in a

distributed environment like WSNs.

Since WSNs are special cases of MANETs, localization

algorithms designed for MANETs work in WSNs as well.

However, many characteristics unique to WSNs make it

practically infeasible to apply MANET localization algo-

rithms; some of the WSN specific challenges include:

1. Limited computing capacity: Sensor networks consist

of nodes with very limited computing capacity. In

addition, sensors are likely to have restricted and

limited energy sources further restricting the total

amount the computation that can be performed by

them. This limited local computing capacity of sensor
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networks precludes any localization algorithms that

require extensive computation at the sensor nodes.

2. Limited sensory capacity: Studies have shown that

more accurate localization can be performed if nodes

are capable of measuring distances and angles to their

neighbors. However for such operations additional

hardware might be required (e.g., to obtain the distance

readings from neighbors, nodes have to be equipped

with sensors that measure RSSI or TOA). AoA sensors

are currently technologically infeasible as they mostly

rely on programmable directional antennas. Availabil-

ity of these sensory capacities just for the localization

purpose may increase the complexity and the cost of

sensor nodes. Above and beyond, it may be a strong

and restricting assumption that all sensor nodes have

the same sensory capacity; thus, it is desirable to

devise localization algorithms with less reliance on a

particular sensory capacity.

3. Stricter security requirements: One of the driving

applications of sensor networks is to monitor hostile

battlefields for enemy activities. In such adversary

environments, it is essential for localization algorithms

to perform their tasks securely. For localization

algorithms that rely on sensor collaboration, it is

important that the results are not drastically skewed

when a small number of sensors are compromised.

Unfortunately, most existing localization algorithms

do not consider such security requirement.

4. Deployment requirement: WSN nodes are generally

deployed in an ad hoc manner; when sensors are

‘‘spread’’ over a battlefield, it is often difficult to

exercise any control over the resulting topology. Thus,

in the context of localization it is difficult to obtain an

ideal beacon placement strategy. For instance, it is

well-known that most algorithms perform better when

anchors are placed around the edge of the network.

However, such beacon deployment is often difficult to

achieve. Network mobility is another factor; unlike

MANETs, sensor networks are generally viewed as

stationary once deployed (although some researchers

envision mobile WSNs). Thus, it is often sufficient for

the localization algorithms to ignore the mobility

requirement of MANETs.

An alternative method is to localize sensors using a

mobile beacon. In this method, a mobile beacon travels

through the deployment area while broadcasting its loca-

tion along the way. Sensors localize themselves by

monitoring information coming from the beacon. A

straight-forward technique using the above method is

described in [25], where sensors are required to receive at

least three communications with the same RSSI reading

from the beacon. Given that the same RSSI readings imply

similar distances to the beacon locations, the physical

sensor location can be derived using simple geometric

functions. Computation-wise, this method is simple making

it suitable for resource-limited sensors. However, it

requires the beacon to directly pass by the ranging area of

the sensor. In addition, in most cases, the beacon has to

pass by the sensor twice because the sampling positions of

the beacon where the three RSSI readings are taken should

not be on the same line. This method also assumes that

errors are insignificant in the RSSI to distance translation.

Instead of computing the location directly, a probabi-

listic approach may be taken; here sensor location is

viewed as a probability distribution over the deployment

area. In [24], sensors measure a series of RSSI readings

from the mobile beacons and localize themselves by a

sequential update process to the probability distributions of

their locations. Each sensor starts with a uniform distri-

bution covering the entire deployment area. As the beacon

passes through, the distribution is updated to fit the

received RSSI readings (using a propagation model). The

method is further improved in [22] by adding the negative

informdation (that is, the information that the beacon is out

of range) as well as RSSI readings from the neighbors.

These probabilistic methods provide much improved

location estimates when compared to deterministic

approaches due to the fact that they explicitly consider the

impreciseness of location estimates. For each sensor,

probabilistic methods do not output a single estimated

location; instead, they give an area where a sensor might

reside along with the likelihood of such estimate. On the

other hand, probabilistic methods have the drawback of

being complex. For a deployment grid of n by n units, the

time and space complexity is O(n2). As the sensors at

present time have very limited resources it is difficult to

implement these methods directly for the large deploy-

ment. Indeed, the experimental results shown in [24] are

performed on pocket PCs, which are much more powerful

than common sensors.

A similar method of localizing the networks using a

mobile beacon is presented in [5]. Instead of the actual

probability distribution, the possible sensor locations are

represented with a bounding box. As the beacon passes by,

the area contained by the bounding box is progressively

reduced as positive and negative information are processed.

The bounding box method drastically simplifies the prob-

ability computation, making it possible to implement this

method on sensors. However, such large simplification has

its side-effects in that it sacrifices the preciseness of the

distribution for its simplicity as it is not possible to describe

multiple possible locations with a single box. There is also

an additional problem when noise from the ranging sensors

is considered. This method may work well when ranging

error is minimal, however when erratic errors are present
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(which is inevitable when using RSSI ranging), there might

be situations where no bounding box exists to satisfy all

readings.

Recognizing various drawbacks of previous methods, in

this paper we propose a hybrid approach that uses a single

mobile beacon to localize nodes in WSNs. We propose a

probabilistic framework where sensory readings are pro-

cessed using a Monte Carlo filtering technique to compute

the probability distributions as densities of particle sam-

ples. In our method, the localization is performed entirely

at the mobile beacon instead of the sensors. During local-

ization, the sensors are only responsible for relaying the

sensory data and localization results. For a sensor deploy-

ment over a large area, unmanned vehicles or airplanes can

serve as mobile beacons. Localization can be performed by

a computer onboard or at the base station after the mobile

beacon relaying the sensory data back via a secure channel.

Our method also supports sensors of different sensory

capacity such as ranging, AoA or connectivity only, and

allows them to co-exist in the same network. Our Monte

Carlo filtering technique allows those different types of

sensors to collaborate during localization.

3 Monte Carlo sampling framework for WSN location

estimation

By sampling a random process with a random variable and

maintaining the outcomes (samples) of the random variable,

the probability density of the random process can be

approximated. In our case the random variable is two

dimensional and takes a value according to the probability

of a node’s physical location. For instance, when a node is

not yet localized, the best estimate about its location’s

random variable is that it is uniformly distributed and thus

the location distribution can be approximated as a set of

randomly placed samples over the entire deployment area.

When a node receives a transmission from the mobile

beacon, it will obtain a distance reading d from the beacon

as well as the beacon’s location; the random variable now is

modified to a uniform distribution over a circle around the

beacon and thus samples will be placed on a ring around the

beacon with radius d. When a second distance reading from

the beacon (residing at a different location) is overheard, the

random variable (optimally) becomes a discrete random

variable with two equal probabilities at the intersection

points of two rings (the sample set will concentrate on the

intersection points of two rings). The exact location can be

found when the third broadcast is overheard, assuming all

three beacon locations are not collinear. Overall, there are

advantages and disadvantages of using sample points to

represent probability densities. While preciseness of actual

distributions is somewhat lost by approximating them with

sample points, the real advantage of using sample points is

that we free ourselves from the complexity of individual

distributions (as all distributions would have to be described

by mathematical formulas even in the presence of errors).

To represent more complex distributions, or to represent

distributions more precisely, only the population of the

sample set has to be increased. Compared to the bounding

box method in [5], sample sets give much better resolution

and can deal with distributions with several significant

‘‘modes’’. (For instance, the bounding box cannot precisely

describe the actual distribution of the two intersecting rings

as described above.)

3.1 Localization using a mobile beacon

Without the loss of generality in the following discussion

we will assume that all sensors and the mobile beacon have

the same transmission range. (Our model is easily extended

to cases where this is not true; however for the sake of a

simple discussion we will keep the previous assumption.)

A pair of sensors or a sensor and the beacon can overhear

each other if they are in each other’s range, i.e., when they

are neighbors.

Algorithm 1 presents a pseudo-code for our localiza-

tion algorithm. Sensors are responsible for collecting the

range sensory data from neighbors, i.e., this data contains

at least one-hop connectivity information. The same data

will also include the range or AoA readings from the

neighbors if such sensors are available. Such data can be

easily collected by observing ‘‘Hello’’ messages from

neighbors. The sensors will await the arrival of the

beacon, and transmit the collected one-hop sensory data

to the beacon. All localization processing is done at the

beacon and the result is transmitted back when a sensor is

successfully localized.

Algorithm 1 Localization procedure executed at each sensor

form a observation set Rv = (...rw...), where rw is an observation from

neighbor w

send Rv to beacon upon request

receive localization result (id, x, y, var)

if id = v then

(x, y) is the location of the sensor, and var is the variance

else

forward (id, x, y, var) to the neighbor id

end if

The localization algorithm at the mobile beacon is listed

as Algorithm 2. Location distributions for sensors are

stored as sample sets at the mobile beacon. We assume that
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the movement of the beacon is defined by a bacon move-

ment model. For each new location of the beacon, there are

two types of observations that are useful to localize the

sensor: (i) positive observations in which a sensor can hear

the beacon; (ii) negative observations where a sensor is out

of range. The beacon updates the localization distributions

for both positive and negative observations. To reduce the

amount of processing, we define a critical region for each

sensor v, so that the location distribution will only be

updated when the beacon arrives at the critical region. For

connectivity-only observations, it is more useful to update

the distribution as the beacon just enters or is about to leave

the sensor range. Range-based observations are useful

when the movement trajectory is not collinear. AoA-based

observations do not have many restrictions as long as the

beacon does not pass directly over the sensor. Based on the

above observations, we define the critical region as a pre-

defined outer ring of the maximum transmission range of

the beacon. The location distribution will be updated when

a sensor just ‘‘arrives’’ in the critical region or when the

beacon changes its moving direction.

Algorithm 2 Localization procedure executed at the mobile beacon

R̂ storage of all observation sets

Xv / sample set of sensor v, initialized uniformly

Xbeacon / sample set of the beacon reflecting the current location

move over the deployment area based on a movement model

for all sensor v in R̂ such that there is new negative observation Nv do

Xv / FilterUpdate(Xv, Xbeacon, Nv)

end for

if the current location is in the critical area of sensor v OR beacon just

changed direction then

request Rv from v

update Rv in R̂

Xv / FilterUpdate(Xv, Xbeacon, Rv)

if var(Xv) \ Tvar then

send localization result (v, x, y, var) to v, where (x, y) is the

expected location

end if

for all v’s neighbor w do

Xw / FilterUpdate(Xw, Xv, Rw)

if var(Xw) \ Tvar then

send localization result (w, x, y, var) to v, where (x, y) is the

expected location

end if

end for

end if

The beacon calls the UpdateFilter procedure to update

the location distribution of sensor v based on the sensor’s

latest observation data Rv as well as a reference distribution

Xbeacon. The reference distribution Xbeacon is simply the

current location of the beacon. After the location distri-

bution of sensor v is updated, the beacon will also update

the location distribution of v’s neighbors based on the one-

hop observation data between the pair of neighbors. Here,

we use Xv as the reference distribution. This later step helps

to increase the localization performance as it allows the

sensors to be localized even when the beacon does not pass

by them directly. Our simulations show that using the one-

hop observation data reduces the average estimation error

up to 50% when the beacon can only spend limited amount

of time over the deployment area.

The beacon decides whether a sensor is localized based

on the variance of the location distribution. If the variance

reduces below a pre-define threshold Tvar (as defined by

the user or the application), the sensor is considered

localized. The mode of the particle density distribution is

used as the estimated location, which is transmitted back

to the sensor. The variance of its particle distribution can

also be sent back to serve as an indicator of the estima-

tion quality, with smaller variances indicating better

estimates. Note that the threshold Tvar could vary

depending on the application that utilizes the location

information. It has been previously noted that precise

locations are not essential for some applications [26]. In

those cases, a larger threshold can be chosen so that better

localization coverage can be obtained.

3.2 Classic Monte Carlo sampling-based Bayesian

filtering

For each of the sensors, starting from a uniform distribution

of randomly-place samples, the sample distribution is

progressively updated using Bayesian filtering. This sec-

tion outlines the theoretical background behind Bayesian

filtering. Let us envision a grid system superimposed over

the entire tracking area, and let the state st be the location

of the node to be tracked in the grid system at the time t.

Our goal is to estimate the posterior probability distribu-

tion, p(st|d1,...,dt), of potential states—st, using certain

measurements, d1,...,dt. The calculation of the distribution

is performed recursively using a Bayes filter:

pðstjd1; . . .; dtÞ ¼
pðdtjstÞ � pðstjd1; . . .; dt�1Þ

pðdtjd1; . . .; dt�1Þ

Assuming that the Markov assumption holds, i.e.,

pðstjst�1; . . .; s0; dt�1; . . .; d1Þ ¼ pðstjst�1Þ; the above

equation can be transformed into the recursive form:

pðstjd1; . . .; dtÞ

¼ pðdtjstÞ �
R

pðstjst�1Þ � pðst�1jd1; . . .; dt�1Þdst�1

pðdtjd1; . . .; dt�1Þ
;
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where pðdtjd1; . . .; dt�1Þ is a normalization constant. In the

case of localizing a mobile node from RSSI measure-

ments, the Markov assumption requires that the state

contains all available information that could assist in

predicting the next state and thus, an estimate of the non-

random motion parameters of the nodes is required as part

of the state description. Starting with an initial, prior

probability distribution, p(s0), a system model, pðstjst�1Þ;
representing the motion of the mobile node (the mobility

model), and the measurement model, p(d|s), it is then

possible to drive new estimates of the probability distri-

bution over time, integrating one new measurement at a

time. Each recursive update of the filter can be broken

into two stages:

Prediction: Use the system model to predict the state

distribution based on previous readings

pðstjd1; . . .; dt�1Þ ¼
Z

pðstjst�1Þ � pðst�1jd1; . . .; dt�1Þdst�1

Update: Use the measurement model to update the estimate

pðstjd1; . . .; dtÞ ¼
pðdtjstÞ

pðdtjd1; . . .; dt�1Þ
pðstjd1; . . .; dt�1Þ

To address the complexity of the integration step and the

problem of representing and updating a probability

function defined on a continuous state space (which

therefore has an infinite number of states), the approach

presented here uses a sequential Monte Carlo filter to

perform Bayesian filtering on a sample representation. The

distribution is represented by a set of weighted random

samples and all filtering steps are performed using Monte

Carlo sampling operations. Since we have no prior

knowledge of the state we are in, the initial sample

distribution, pN(s0), is represented by a set of uniformly

distributed samples with equal weights, fðsðiÞ0 ;w
ðiÞ
0 Þji 2

½1;N�;wðiÞ0 ¼ 1=Ng and the filtering steps are performed as

follows:

Prediction: For each sample, ðsðiÞt�1;w
ðiÞ
t�1Þ; in the sample

set, generate a random replacement sample according to

the system (mobility) model pðstjst�1Þ: This results in a

new set of samples corresponding to pðstjd1; . . .; dtÞ:

fð~sðiÞt ;w
ðiÞ
t Þji 2 ½1;N�;w

ðiÞ
t ¼ 1=Ng

Update: For each sample, ð~sðiÞt ;w
ðiÞ
t Þ; set the importance

weight to the measurement probability of the actual

measurement, ~w
ðiÞ
t ¼ pðdtj~sðiÞt Þ: Normalize the weights

such that
P

i g � ~w
ðiÞ
t ¼ 1:0; and draw N random samples

for the sample set fð~sðiÞt ; g � wðiÞt Þji 2 ½1;N�g according to

the normalized weight distribution. Set the weights of the

new samples to 1/N, resulting in a new set of samples

fðsðiÞt ;w
ðiÞ
t Þji 2 ½1;N�;wðiÞt ¼ 1=Ng corresponding to the

posterior distribution pðstjd1; . . .; dtÞ:

3.3 System model

To apply the classic Monte Carlo sampling-based Bayesian

filtering approach described in the previous section, we

need to provide a system model and a measurement model.

For the system model, we simply assume that at any point

in time the node moves with a random velocity drawn from

a Normal distribution with a mean of 0 m/s and a fixed

standard deviation r. No information about the environ-

ment is included in this model, and as a consequence, the

filter permits the estimates to move along arbitrary paths.

Although we know that in the system sensor nodes do not

move, we still have to assign a movement model to enable

particles to move closer to the actual location. Thus, our

system model is simply pðstjst�1Þ ¼ Nð0; rÞ; where N

denotes the Normal distribution.

In summary, using the above system model, at every

iteration each particle s
ðiÞ
t�1 within the sample set Xv will be

randomly moved from its original location based on the

Normal distribution, resulting into particle ~s
ðiÞ
t : The time

complexity of this step is O(N), where N = |X| is the size of

the sample set; the space complexity is also O(N).

3.4 Measurement model

The measurement model is used to modify the initial par-

ticle ~s
ðiÞ
t to fit into the latest observation. Consequently, the

measurement model depends on the observation data Rv as

well as the reference distribution Xw. Here, we consider the

following four types of observation data: (i) connectivity

only, (ii) exact ranging, (iii) bounded ranging and (iv)

AoA. Regardless of the observation data, the original

particle ~s
ðiÞ
t is updated by comparing its location to the

observation data using each particle in the distribution Xw

as its reference. More weights are awarded to the particles

that are more consistent with the observation. For every

particle in Xv and Xw, the procedure AssignWeight is called

to award the weight according to the observation data, Rv,

as follows:

1. Connectivity Only: There are two types of connectivity

only observations: positive and negative. We assume

that all sensors are able to make connectivity obser-

vation at the very minimum. When Rv is a positive

reading, it means nodes v and w are in the range of

each other. Therefore, AssignWeight returns 1 if the

distance between the two samples dð~sðiÞt ; s
ðjÞ
t Þ� dmax;

where dmax is the maximum range possible. Otherwise,

AssignWeight returns 0. Conversely, when Rv is

negative, it means that the two nodes are out of range;

thus AssignWeight returns 0 if dð~sðiÞt ; s
ðjÞ
t Þ� dmax; and 1

otherwise:
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AssignWeightð~sðiÞt ; s
ðjÞ
t ;RvÞ

¼

1; Rv isþ and dð~sðiÞt ; s
ðjÞ
t Þ� dmax;

or Rv is negative and dð~sðiÞt ; s
ðjÞ
t Þ[ dmax

0; Rv is positive and dð~sðiÞt ; s
ðjÞ
t Þ[ dmax;

or Rv is negative and dð~sðiÞt ; s
ðjÞ
t Þ� dmax

8
>>>>><

>>>>>:

2. Exact Ranging: When relatively reliable ranging data

can be observed using methods like TOA, the ranging

observation can be used directly to update the weights.

Let the distance reading be d̂: We compare the

observed distance d̂ with the sample distance

dð~sðiÞt ; s
ðjÞ
t Þ: In this case, we use the following

evaluation equation

AssignWeightð~sðiÞt ; s
ðjÞ
t ;RvÞ

¼ 1� ðjdð~s
ðiÞ
t ;s

ðjÞ
t Þ�d̂j

dmax
Þ2; jdð~sðiÞt ; s

ðjÞ
t Þ � d̂j � dmax

0; otherwise

(

Comparing to the earlier case where only connectivity

data is available, the above equation will award more

weight to the particles more consistent with the

observed distance d̂: Also, the amount increases

quadratically as the distance difference decreases.

We note that more complex methods could be used;

however our simulations indicated that this simple

method works just as well as more complicated

models.

3. Bounded Ranging: Ranging readings using methods

such as RSSI are known to be unreliable due to

multipath fading and scattering. In reality, the

received signal strength would be usually weaker

than what is expected based on the signal propagation

model in the ideal environment. The distance esti-

mate derived from such RSSI reading would be

usually larger than the actual distance. In such cases,

using the exact distance reading could adversely

influence the location distribution. Thus, we use the

bounded ranging observation, in which we merely

regard the actual distance to be bounded by the

observed distance. Let the observed distance reading

be d̂: For the bounded ranging observation, Assign-

Weight returns 1 when dð~sðiÞt ; s
ðjÞ
t Þ� d̂; and 0

otherwise:

AssignWeightð~sðiÞt ; s
ðjÞ
t ;RvÞ ¼ 1; dð~sðiÞt ; s

ðjÞ
t Þ� d̂

0; otherwise

�

4. AoA: The AoA observation is similar to the exact

ranging. Let â be to observed AoA reading, and

að~sðiÞt ; s
ðjÞ
t Þ be the AoA between the two particles. We

use the following equation

AssignWeightð~sðiÞt ; s
ðjÞ
t ;RvÞ

¼ 1� jað~sðiÞt ;s
ðjÞ
t Þ�âj

p

� �2

; jdð~sðiÞt ; s
ðjÞ
t Þ � d̂j � dmax

0; otherwise

8
<

:

The above equation will only award weight to a particle

if its calculated distance to the reference particle is in

range. More weight is awarded to the particles that are

more consistent with the AoA reading.

When the weights of all particles in Xv have been

assigned, they are normalized so that the sum of all weights

becomes one. Then, particles are re-sampled with the

probability governed by the weight distribution. The new

particle is generated using a Normal distribution centered

at ~s
ðiÞ
t and a standard deviation being the average of Xv and

Xw. The average is used here because our measurement

model is influenced by both the original distribution Xv and

the reference distribution Xw. As a common technique to

avoid local minima, we also give a fixed p% (5% in our

simulation) to randomly placed particles.

Overall, the time complexity of the measurement step is

O(N � N), and the space complexity is O(N). Algorithm 3

shows the FilterUpdate procedure including both the sys-

tem model and measurement model. Notice that we

actually skip the sample update steps if the variance of the

reference distribution Xw is greater than the variance of the

current sample distribution. This can be justified by the

observation that it is unnecessary to update the current

location samples when the reference samples are worse.

Only when the reference samples are sounder than the

current location samples should we run the update. This

serves two purposes: (i) reducing the amount of unneces-

sary processing; and (ii) preventing the distribution to

diverge when the neighbors adversely influence each other.

Algorithm 3 FilterUpdate(Xv, Xw, Rv)

if var(Xv) \ var(Xw) then

returnXv

end if

Xv / sample set for node v to be updated

Xw / reference sample set for node w from which Rv is observed

Rv / observation data

for all particle ðsðiÞt�1;w
ðiÞ
t�1Þ 2 Xv do

generate ~s
ðiÞ
t  s

ðiÞ
t�1 � Nð0; rÞ

~w
ðiÞ
t  0

for all particle ðsðjÞt ;w
ðjÞ
t Þ 2 Xw do

~w
ðiÞ
t  ~w

ðiÞ
t þ AssignWeight(~s

ðiÞ
t ; s

ðjÞ
t ;Rv)

end for

end for
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Table c continued

Algorithm 3 FilterUpdate(Xv, Xw, Rv)

Normalize weights and resample s
ðiÞ
t based on the weights

Randomly generate p% particles returnnew sample
Xv :¼ fðsðiÞt ;w

ðiÞ
t Þji 2 ½1;N�;wðiÞt ¼ 1=Ng

3.5 Security concerns

Compared to pure distributed localization methods such as

APS, our method can be regarded as ‘‘semi-centralized.’’

However, unlike typical centralized algorithms which

require the presence of all observation data, our method

works more like an online algorithm, in which all compu-

tation is done at the beacon. While we will not provide

detailed analysis and simulation due to page limit, it is easy to

see that this model would make it easier to secure the

localization process simply by securing the beacon itself. Let

us assume that the beacon cannot be compromised, but the

individual sensors can. A compromised sensor could attack

the localization process in two ways: (i) reporting false

observations to the beacon and (ii) interrupting the locali-

zation result. The report of false observations would affect

the localization of the compromised sensor itself and more

importantly those of the neighboring sensors one-hop away.

However, given time the beacon would eventually move into

the range of the neighbors and thus bypass the compromised

sensor. Since the Monte Carlo sampling method is designed

to work under uncertain observations, the false observations

would eventually be filtered out as more direct observations

are made. To help preventing the second type of attack, we

require all messages sent by the beacon that contain the

localization result to be encrypted with the receiver’s unique

key (or public key) and signed with the beacon’s signature.

This way, the compromised sensor will not be able to falsify

the localization result. Although the decryption process can

be expensive considering the limited capacity of the sensors,

it needs to be performed one time only. A compromised

sensor may still elect not to forward the localization result,

however such attack can be countered by sending the

localization results via multiple paths.

4 Simulation results

We have built a custom C++ discrete event simulation to

evaluate the performance of our method. While our particle

filter framework has no such restriction, we model all nodes

in our simulation to have an identical transmission power.

Thus, we can effectively control the network density

(average degree) by varying the transmission range. When a

node is located within the transmission range of another

node, we assume that it is capable of receiving signal from

the sender. We use a sensor network consisting of 49 nodes

randomly deployed in a 1,000 m by 1,000 m square. A

single mobile beacon flies through the deployment area. An

epoch-based model controls the beacon movement. Starting

from a random initial location, the beacon randomly choo-

ses a velocity based on Normal distribution with a means of

20 m/s and a standard deviation of 20. The beacon proceeds

to move at the chosen velocity for an epoch of time that is

exponentially distributed with an expected value of 20 s. At

the end of the epoch, the beacon chooses a new velocity and

time. When the beacon reaches the boundary of the

deployment area, it bounces back at the same incidence

angle (much like a ping pong ball). While this model is

much more realistic than a random motion model, we

acknowledge that it still lacks many features of real beacon

movement. For instance, airplanes or vehicles tend to make

a smooth directional changes instead of a sudden turns.

Our simulation considers the following network

parameters: the network connectivity is d, the signal to

noise ratio is rnoise, the number of particles used is N. For

each new network scenario, we record the average esti-

mation error and coverage, based on availability of four

different types of location sensory data: (i) connectivity

only, (ii) exact ranging, (iii) bounded ranging and (iv)

AoA. We also consider the scenario where mixed types of

sensory data co-exist in the same network. The final results

shown in the figures are the average of 50 independent runs

of different network topologies (calculated to provide 95%

confidence with 5% relative error or better). We consider a

sensor localized when its sample variance is less than a

threshold Tvar. Here we use Tvar ¼ ðdmax=2Þ2, that is, the

standard deviation of the sample is less than half of the

sensor range; this coverage criterion is rather arbitrary, as

we can adjust to either a looser or a stricter threshold based

on the actual application requirement. We also note, that

the estimation error shown in the figures is the average of

all nodes, including those not being localized.

4.1 Base scenario

First, our simulations concentrate on a basic scenario so

that we have a benchmark to compare against other sce-

narios. For the basic scenario, we pick the average degree

to be c = 3.63, the noise ratio to be rnoise = 0 and the

particle population to be N = 200. Figure 1 shows one

such network. Networks of such low connectivity are

highly likely to be disconnected. Previous research indi-

cates that it can be very difficult to localize sparse networks

using collaborative localization methods such as APS [4].

However, we will show that it is still possible to obtain

reasonably good localization results using a mobile beacon.
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Figure 2 shows the estimation error of every sensors in the

same network of Fig. 1 after the beacon has traveled over

the deployment area for 500 s; we assume that AoA sen-

sory data is used. The lines originated from the nodes point

to the estimated locations.

The average estimation error and the coverage for each

of the four types of availability of sensory data are shown

in Fig. 3. As the beacon spends more time over the

deployment area, the estimation error decreases while the

coverage increases, indicating that more nodes are being

localized. After 200 s, the average estimation error is

reduced below the set threshold. Since the basic scenario

does not include any noise, sensory data based on exact

ranging and AoA are accurate and thus we expect these

results to be better. The best result is obtained using the

AoA data. AoA data has an advantage over exact ranging

because it takes only two (versus three) known locations to

localize the sensor. Also note that the improvement of the

estimation results slows down with time progressing. This

is expected because of the (semi-) random beacon move-

ment. As time advances it becomes less and less likely for

the beacon to reach a previously unvisited area. Further-

more, the sensors that are the most difficult to localize

reside at the boundary of the network, where they are less

likely to be visited by the beacon.

4.2 One-hop neighbor observations

As stated in Algorithm 2, the localization algorithm does

not only consider direct readings from the beacon to the

sensor, it also considers one-hop neighbor observations

among sensors. Figure 4 shows results when one-hop

neighbor observations are not used. In this case only the

sensors that could directly overhear the beacon can be

localized, which has been the traditional method of local-

ization using a mobile beacon as proposed in [24].

However, as shown in Fig. 4, in such case the localization

results are inferior compared to our basic case as the esti-

mation error increases and the coverage decreases. In

particular, the difference of the estimation error peaks

between 200 s and 300 s, where up to 50% performance

increase can be obtained by adding the one-hop neighbor

observations. The advantage of using one-hop neighbor

observations becomes less significant as time advances

because the beacon will cover more and more previously

not visited areas. Nevertheless, this experiment demon-

strates the advantage of using one-hop neighbor

observations especially when the beacon can only spend

limited time over the deployment area.

4.3 Connectivity

Figure 5 contains the result when the average degree is

increased from 3.63 to 5.47. We can observe that the

change within the first 100 s is rather large; this can be

credited to the fact that fewer sensors are localized during

that time, which skews the result heavily. The change

stabilizes as time advances and more sensors are localized.

At the end of the 500 s simulation, we observe a decrease

of estimation error by 25–50% and an increase of coverage
Fig. 1 Base scenario of a network of connectivity = 3.63. Two

sensors are connected if a link exists in between

Fig. 2 Estimation error at the end of a 500 second run. The lines

point to the estimated locations
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Fig. 4 Result when 1-hop neighbor observations are not used
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Fig. 5 Result of a denser network
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by 15–30% when the connectivity increases to 5.47. This is

to be expected as most localization methods work better on

denser networks.

4.4 Noise

All of our previous experiments assumed an ideal scenario

where location sensory data are not influenced by noise.

Here we will consider a noisy environment with the ran-

dom noise added to measurements. In the case of ranging,

when the actual distance is D, the measured distance will

be D + D � Uniform(0, rnoise). In this case, we consider a

situation where noise always adds to the actual distance (as

described in the previous sections). The noise to AoA, on

the other hand, is two-sided as it could either be added to or

be subtracted from the actual angle. Thus, if the actual

angle is A, the measured angle will be Aþ A �
Uniformð�arcsinðrnoiseÞ; arcsinðrnoiseÞÞ [8]. This makes

the noise ratio comparable to ranging and AoA in that for

the same noise ratio rnoise, the amount of noise for AoA is

about twice as much as that of ranging.

Figure 6 shows results when the noise ratio rnoise is set

to 0.5 (i.e., 50% noise). In all cases, the estimate’s error

increases and the coverage decreases when compared to the

basic scenario. The increase is less significant for the

bounded ranging and connectivity type scenarios because

they rely less on the exact sensory readings. But exact

ranging and AoA suffer up to 40% performance loss. As

expected from the noise model, AoA degrades about twice

as much as ranging.

4.5 Mixed sensory data

Since the same Monte Carlo localization framework can be

applied to different sensory data, we also simulate the

scenario where nodes are heterogeneous in their location

sensory capabilities. We randomly assign a certain per-

centage of sensors to one of three location sensor types:

exact ranging, AoA or connectivity-only; Fig.7 shows the

results. It is interesting to note that adding AoA sensors

helps to increase the localization performance. In particu-

lar, similar performance can be achieved using 1/3 of AoA

and 1/3 of ranging when compared to the scenario where

all sensors have ranging capacity.

5 Conclusions

In this paper, we proposed a localization method for

wireless sensor networks using a probabilistic technique

employing Monte Carlo sampling. We considered a sce-

nario where a single mobile beacon passes through the

deployment area. Location of nodes is computed on the

beacon instead of the sensors. Possible sensor locations are

represented by particle samples for each node, which are

updated as the beacon passes through the network. The

only tasks related to localization performed directly on the

sensors are monitoring the sensory data from the neighbors

and relaying localization results. This arrangement relieves

the sensors of the heavy processing needed for accurate

localization. At the same time, the use of sample sets

allows us to maintain more complex localization distribu-

tions without sacrificing the resolution. Furthermore, since

all computation is done at the beacon, the localization

process can be more easily secured. Our method also

allows sensors of different sensory capacities, such as

ranging and AoA, to collaborate in the same network.

Simulations show that our method is able to obtain less

than 50% localization error and over 80% coverage on very

sparse networks of degrees less than 4. Better result can be

obtained by increasing the network connectivity.
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Our current simulation assumes that the beacon moves

based on a random movement profile. The movement profile

can be improved such that the beacon would take an optimal

path to increase the localization accuracy and minimize the

localization time. In fact, the sample variances can be used

as the guidance so that the beacon would move to the area

where the overall variances are high. Furthermore, our

method only deals with localization using a mobile beacon.

Inter-sensor localization methods can be used after the

mobile beacon exits the deployment area. Thus, the sensors

that were unable to take advantage of the mobile beacon

may still localize themselves by observing their neighbors.
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