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In the ubiquitous computing environment, devices are oftenconnected to one another on the fly

to form an infrastructure-less networks called Mobile Ad Hoc Networks (MANETs). Since MANET

serves as an abstract model and concept that can be seen as a superset of diverse sub-areas such as

sensor networks, mesh networks or an enabler for pervasive computing, it has attracted significant

research interests in the past several years. A major advantage of MANETs over regular wired or

wireless networks is in their infrastructure-less nature as they can potentially be deployed more rapidly

and less expensively than infrastructure-based networks.However, the lack of an underlying explicit

infrastructure also becomes a major disadvantage in adapting MANETs to a wider array of applications,

since existing network algorithms and protocols are not “plug-in” solutions for such dynamic networks.

New algorithms need to be, and are being designed for such fundamental network tasks as addressing,

topology discovery and routing.

Location discovery is emerging as one of the more important tasks as it has been observed and shown

that (semi-) accurate location information can greatly improve the performance of other MANET tasks
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such as routing, energy conservation, or maintaining network security. For instance, algorithms such

as Location Aided Routing (LAR) [1], GRID [3], and GOAFR+ [5]rely on the location information to

provide more stable routes during unicast route discovery.The availability of location information is

also required for geocast (multicast based on geographic information [6]) algorithms such as Location-

Based Multicast (LBM) [2], GeoGRID [4] and Position-Based Multicast (PBM) [7]. To minimize the

power consumption, the Geographical Adaptive Fidelity(GAF) algorithm [8] uses the location infor-

mation to effectively modify the network density by turningoff certain nodes at particular instances.

Furthermore, in [9], the authors have shown that wormhole attacks can be effectively prevented when

location information is available. As more algorithms are being proposed to exploit the location infor-

mation in the network, it is clear that obtaining such information efficiently and accurately becomes of

greater importance.

A direct way of obtaining location information is to installGlobal Positioning System (GPS) re-

ceivers on each node. However, this is currently impractical as GPS receivers are still relatively ex-

pensive, power-hungry, and require clear line of sight (i.e., making indoor usage impossible) to several

earth-bound satellites. In sensor networks devices are imagined as small as possible and operating on a

very restricted power source, thus it may not be feasible to install GPS receivers onto all sensor nodes.

Localizationin MANET refers to the problem of finding the locations of those non-GPS enabled nodes

based on limited information such as some knownbeacon(also referred to asanchor) locations and

measurements such asrangingdistances oranglesamong the neighbors. The localization problem is

hard for a number of reasons:

1 Geometric limitations.To pinpoint its exact location in 2-D, a node needs to know thelocations of

at least three beacons together with its distance from each of these beacons. Alternatively, nodes

could calculate their own location based on a distance and an(absolute) angle measurement

from one beacon. Even if obtaining such measurements was possible and the measurements

were exact, guaranteeing that (several) beacons surround each node is impossible as MANETs
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may be randomly deployed and that in general only a small percentage of nodes are indeed

beacons. Thus, a good localization algorithm needs to take advantage of multi-hop information,

i.e., estimating node locations based on other nodes’ location estimates.

2 Availability of measurements.For localization algorithms that require distance or anglemeasure-

ments, certain sensory devices will need to be available to provide such readings. However, it is

likely that not all nodes have the same sensory capacity. In other words, there is a need for the

localization algorithm to work in a heterogeneous environment with different location sensory

capacities.

3 Measurement error and error propagation.Even when measurement devices are available, there

is a general consensus that those measurements are prone to errors. For instance, a distance

measurement based on received signal strength indication (RSSI) reading is prone to multi-path

fading and far field scattering. The error can be especially high when there is a significant amount

of obstacles in-between the sender and the receiver. Since most localization algorithms require

measurements from nodes several hops away, the measurementerror is likely to aggregate along

the path and eventually completely throw off the location estimate.

Despite the difficulties listed above, there have been increasing amount research effort spent into the

localization problem in the recent years. The amount of effort is well justified because localization

is considered an enabling technology that needs to be resolved with the best possible outcome upon

which other location-dependent technologies for MANETs can be successfully employed. Researchers

have been working on problem in both hardware (i.e., improving the devices measurement accuracy)

and software (i.e, improving the localization algorithm).

This chapter will cover the latest advances in this field, including the following topics:

1 The need for localization.In this section, we will establish the need for better localization tech-

niques by surveying a number of proposed algorithms for MANETs that rely on localization.
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2 Hardware devices.In this section, we will cover the latest advances in hardware design that

enables localization on the smaller devices commonly seen in the ubiquitous computing environ-

ment, including the devices that measure distance ranging,angle of arrival (AoA) and interfero-

metric ranging.

3 Survey of localization algorithms.We will survey some of the most popular localization algo-

rithms, including those that use connectivity information, ranging and angle information. We will

study the pros and cons of each algorithm and suggest their appropriate applications in ubiquitous

computing.

4 Localization theory.We will cover the theoretic basis of localization techniques. We will study

the necessary and sufficient conditions for a network to be localized based on the latest results

from graph theory. We will show that the localization problem in general is NP-Complete. We

will also introduce the Cramer Rao Bound (CRB) that is often used to analyze the hardness of

different localization scenarios.

5 Future directions.We will look into a number of promising future directions forthe localization

techniques.

1 Applications of Localization

There have been numerous algorithms proposed for MANETs that rely on localization data. In this

section, we provide a brief survey of them; we divided them into four categories based on their func-

tionalities: unicast routing, multicast routing, energy consideration, and network security.

1.1 Unicast Routing

Routing is a specially challenging task for MANETs because their frequent topology change implies the

underlying instability of any established routes. As such,routes are needed to be frequently rediscov-
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ered, reestablished, and repaired. In general, routing (i.e., route discovery and repair) involves flooding

the routing control packets throughout the network. Flooding can often be quite expensive in terms of

delay and bandwidth usage it incurs, both of which can greatly affect the network performance. Thus,

there is a strong incentive to design efficient routing algorithms that minimize the overhead caused

by any unnecessary flooding. Unicast routing based on location information, often calledgeometric

routingor location based routing, has shown to be a viable solution to this problem.

Location-Aided Routing (LAR) [1] protocol is the first MANETrouting algorithm proposed that uses

location data. In LAR, every node is assumed to know its own location, and each individual location

is then broadcast throughout the network. Thus, at any timet, every node knows the locations of any

other nodes at some previous time< t. Based on this location information and an estimated velocity,

a node can derive an estimated location range, called “expected zone”, of a target node at the current

time. Instead of flooding the entire network, the routing request packets can be directed to search for

the target node only at this expected zone. Global flooding isperformed only after the location based

routing request has failed. Limiting route discovery to a smaller expected zone with LAR reduces the

number of routing requests compared to the standard floodingscheme.

GRID [3] protocol uses location information as a way to form geographical clusters within the net-

work. Based on node locations and their residency within a pre-determined grid system, nodes within

the same grid block are grouped into a cluster. A cluster head(or “gateway” in [3]) is then selected

for each grid block. The cluster head is responsible for servicing the routing packets. Furthermore, the

cluster head can monitor the status of existing routes and reroute packets as deemed necessary. Since

the cluster formation effectively simplifies the network topology, the routing overhead is reduced. A

critical requirement of forming such geographical-based clusters is the availability of node location

information.

In [5], the authors provided some theoretical bound to the geometric routing problem and proposed an

algorithm called GOAFR+. Assuming that node locations are known using some localization technique,

GOAFR+ first tries to greedily route the packet by forwardingit to the neighbor located closest to the
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destination. However, such greedy selection does not guarantee message delivery since the intermediate

node closest to the destination might not have a route to it. In such cases, GOAFR+ explores the

boundaries of the faces of a planarized network graph by employing the local right hand rule (i.e.,

always turn right) to escape the local minimum. This method of escaping local minima is also called

“parameter routing,” which is used in a number of other location based routing protocols as well.

Performance-wise, simulations performed by [1] and [3] have shown up to 50% of reduction in

routing packets when using geometric routing compared to standard flooding. Since the overhead of

flooding is proportional to network density, it has been observed that the amount of this performance

increase becomes more significant when network density is increased. Furthermore, although the rout-

ing performance is impacted by the localization error, suchimpact is observed to be minimal. This

indicates that in the case of routing, highly precise location data is not required. After all, location data

is used by routing algorithms to give a direction that guidesthe routing packets; imprecise location data

can still be used as long as the general direction is valid.

1.2 Multicast Routing

Similar to unicast routing, multicast routing can also benefit from location data. Multicast routing

using geometric information is often referred to in the literature asgeocast routing. The Location-

Based Multicast (LBM) algorithm [2] is a multicast extension to the unicast Location-Aided Routing

(LAR). Like LAR, which forwards the routing requests according to the location of the destination

node, LBM forwards the requests according to the direction of the geocast region that contains all the

multicast destinations. GeoGRID [4] is the multicast extension to GRID [3]. Like in GRID, location

information is used by GeoGRID to identify the grid block where nodes reside. Multicast is done

through the gateway node selected at each grid block. Based on the location of the source node and the

geocast region, LBM and GeoGRID define a “forwarding region”that contains the intermediate nodes

responsible for forwarding requests. The size and shape of the forwarding region have a direct impact
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on the overall performance. Shapes such as rectangles and cones have been proposed in [2].

While the standard shapes such as rectangles and cones work well in most cases, there are situations

where viable routes exist only outside the forwarding region. For instance, a network can be parti-

tioned into two sub-networks connected only through a narrow linkage due to some obstacles (e.g., two

islands connected by a bridge). When the source and the destination are in separate partitions, a geo-

metrically defined forwarding region is unlikely to cover the linkage. To prevent routing failure in such

case, a routing zone based on Voronoi diagrams was proposed in [10], which partitions the network

graph based on the proximity of the nodes. Again, the proximity information relies on localization

information.

The Position-Based Multicast (PBM) protocol proposed in [7] attempts to optimize the multicast

tree it generates by minimizing the overall path length and the overall bandwidth usage; two often

contradictory objectives. To minimize the overall path length, PMB takes a greedy approach using

location information. At each intermediate node, the packet is forwarded to a set of neighbors based

on their overall distances to the multicast destinations. In particular, a set of the neighbors with the

minimum overall distance to every destination is selected as the next set of forwarding nodes. To take

in account of the bandwidth usage, the greedy selection alsoweighs in the size of the forwarding set

in order to minimize that as well. PBM also uses parameter routing to deal with local minima. Both

greedy routing and parameter routing employed by PBM rely onthe location information.

1.3 Power Management

MANET is often being used as the model for sensor networks. Due to the recent emergence of interest

in pervasive computing, sensor networks have been receiving significant research efforts. One of the

major challenges of sensor networks is power management. Since sensors are commonly small in size

and battery powered, conserving the energy would prolong their service time and thus the lifespan of

the entire network. The Geographical Adaptive Fidelity (GAF) algorithm [8] is a network topology
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management algorithm with reduced energy consumption as its primary objective. The idea behind

GAF is that there are often a large number of nodes that are redundant during packet routing in MANET.

If the redundant nodes can be identified, they can then turn off their radio to save energy. For GAF,

the identification of redundant nodes is accomplished by analyzing the relative location information

among the neighboring nodes. More specifically, GAF dividesthe network into virtual grids such that

all nodes in grid blockA are the neighbors of all nodes in grid blockB. This way, all nodes within the

same virtual grid block can be considered equivalent. To conserve energy during packet routing, GAF

only turns on the radio for one of nodes in each grid block. Theactive node is periodically “round-

robinned” to achieve load-balancing. Analysis and simulations performed in [8] show that GAF can

reduce overall energy consumption by 40% to 60%.

1.4 Security

In [9], the authors proposed a technique called “packet leashes” to defend against wormhole attacks

in MANETs. A wormhole attack is a type of security breach where an adversary intercepts incoming

packets and tunnels them to another part of the network via a single long-range directional wireless link

or through a direct wired link. From there, the adversary canretransmit the packets to the network. Note

that this type of “capture-and-retransmit” attack can be immune to common packet encryption methods,

since the adversary does not need to read the packet content.Wormhole attacks can severely disrupt

ad hoc routing protocols such as Ad hoc On-Demand Distance Vector Routing (AODV) or Dynamic

Source Routing (DSR), and cause a denial of service to the network. The core of “packet leashes” is

based on two assumptions: i) all nodes know their own locations, and ii) all nodes are synchronized.

To enable packet leashes, the sender node encloses its location and transmission time-stamp within

the packet. At the receiver node, the packet leash is validated against the receiver’s own location and

clock. In particular, the sender location information gives the distance from the original sender to the

receiver, and the time-stamp gives the transmission duration of the packet. Based on the transmission
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duration and signal propagation model, factored in some error tolerance, the receiver can validate the

estimated distance the packet has traveled against the truedistance to tell if the packet is indeed coming

from the original sender or an imposer at some other location. Thus, the location information and time-

stamp provide a virtual leash to limit the effective range ofthe packet so that it cannot be exploited by

wormhole attackers.

From the previous discussion on the location-dependent algorithms that encompass a wide range

of domains, it is quite obvious that providing location information (i.e., localization) to MANET is

becoming an increasingly important task. In fact, localization is now widely regarded as an “enabling

technology” for MANET that needs to be addressed before other location-dependent techniques can be

realized in the real world [11].

2 Hardware Devices for Localization

In this section, we study a number of hardware devices that enable localization in MANETs for ubiq-

uitous computing environments. A Global Positioning System (GPS) [12] receiver can provide the

absolute location. However, its cost, size and power requirement prevent it from being installed at ev-

ery network node. Thus, those non-GPS nodes have to be localized using measurements provided by

alternative hardware devices. There are five general types of measurements as follows: i) connectiv-

ity only, ii) RSSI (radio signal strength indicator) ranging, iii) ToA (time of arrival) ranging, iv) AoA

(angle of arrival), and v) interferometric ranging.

2.1 Connectivity Only Measurement

At a minimum, a node can detect connectivity to its neighbors, i.e., its one-hop neighborhood. The

connectivity only measurement is a binary reading between two nodes of either “true” or “false” indi-

cating whether they are neighbors. Based on this connectivity information, one can derive the general
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proximity of the nodes and use it as a way to localize the network.

2.2 RSSI Ranging Measurement

A node can be localized using multilateration if the distances (i.e., the ranges) to three or more known

locations are obtained. The distances can be obtained, e.g., by measuring RSSI or ToA. In RSSI, the

receiver measures the received signal strength and compares it with the transmitted signal strength.

The difference (in dB) is then applied to the inverse of the signal propagation model to provide with

a distance measurement. Sensors that measure RSSI are widely available to mobile devices. Indeed,

most off-the-shelf technologies implicitly provide such information (e.g., most WiFi, Bluetooth and

IEEE802.15.4 chipsets do). The drawback of RSSI based measurements is that they can be very in-

accurate because an exact model of the propagation environment is often unavailable. Experiments in

[24] have shown that when no obstacle exists between the sender and the receiver, RSSI can provide a

distance estimate with an accuracy of a few meters. However,at a less than deal environment, the result

is often unpredictable. Furthermore, low cost RSSI receivers are often variable in their transmission

power due to the lack of calibration.

In the outdoor environment with minimum obstacles, signal propagation decay is proportional todnp,

whered is the distance the signal has traveled. However, in the actual environment where obstacles

exist, multipath signals and shadowing become two major sources of noises that impact the actual RSSI.

In general, those noises are commonly modeled as a random process during localization. LetPi, j be

the RSSI (in dB) obtained at the receiver nodej from the sender nodei. Pi, j is commonly modeled as

a Normal distribution [11]

Pi, j = N(P̄i, j ,σ2
dB) (1)

whereP̄i, j is the mean power in dB andσ2
dB is the variance caused by noise factor such as shadowing.
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P̄i, j is further defined as the power reduction from a reference location:

P̄i, j = P0−10nplog10(di, j/d0) (2)

where P0 is the power at a reference location at the distanced0 (commonlyd0 = 1m). np is an

environment-dependent path loss exponent that is assumed to be known from prior measurements (the-

oreticallynp = 2). di, j is the Euclidean distance between nodesi and j.

2.3 ToA Ranging Measurement

Although ToA is used for radio signals in GPS, it is mostly used in the context of acoustic or ultrasonic

signals in inexpensive ToA tracking (as propagation speedsare five orders of magnitude less). For

instance, the Medusa node in [24] is an implementation of ToAranging using ultrasonic signals. ToA

measures the time signals travel from the sender to the receiver. The distance between nodes is obtained

by multiplying this time with the signal propagation speed.In spite of the additive noise and multipath,

in general distance measures based on ToA are more accurate than RSSI based measures. However,

special acoustic transceivers have to be employed on each node and synchronization among the nodes

needs to be established. Sensor network clock synchronization algorithms accurate to the order of 10µs

have been reported [17]. As mentioned earlier, ToA may also be used together with radio signals, but

current technology is not mature enough to provide with a satisfactory precision over smaller distances

inexpensively.

Let i be the sender node andj be the receiver node, ToA measurementTi, j is often modeled as a

Normal distribution [11]:

Ti, j = N(di, j/c,σ2
T)

wheredi, j is the Euclidean distance betweeni and j, c is the signal propagation speed, andσ2
T is the

variance caused by noises.
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2.4 AoA Measurement

A node can be localized if the angles between itself and two beacons are known. Thus, it is possible to

localize the network based on the angle information (i.e., bearing, or angle of arrival (AoA). Currently,

there is no off-the-self device that offers AoA sensing capability. However, a number of prototype

devices are available. For instance, Cricket Compass [18] is a small form device that uses ultrasonic

measurements and fixed beacons to obtain acoustic signal orientations. In [19], a rotating directional

antenna is attached to an 801.11b base station. By measuringthe maximum received signal strength, a

median error of 22◦ can be obtained from the sensor. The challenge here is to design the AoA sensing

device that has small form factor and low energy consumption. In [20], the authors outline a solution

with a ring of charge-coupled devices (CCDs) to measure AoA with relatively low energy consumption.

In general, AoA is also modeled as a Normal distribution. Letthe true angle between the senderi

and j beai, j , the AoA measurement betweeni and j is therefore

Ai, j = N(ai, j ,σ2
a)

whereσ2
a is the angle variance. Theoretical results for acoustic-based AoA estimation show standard

deviationσa is between 2◦ to 6◦, depending on range [13]. RSSI based AoA method withσa on the

order of 3◦ has been reported in [14].

2.5 Interferometric Ranging Measurement

Interferometric ranging is a “widely used technique in bothradio and optical astronomy to determine

the precise angular position of celestial bodies as well as objects on the ground [15].” Interferomet-

ric ranging exploits the property that the relative phase offset between two receivers determines their

distances to the two simultaneous senders. Due to the recentadvancement in hardware, it is now pos-

sible to implement interferometric ranging sensors in muchsmaller form factor so that it can be used
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Figure 1: The interferometric ranging measurement of the q-rangedABCD = dAD−dBD + dBC−dAC.
Here, nodeA andB are the senders, and nodeC andD are the receivers.

for localization [16]. By synchronizing the transmission at the two senders, each of which sends a

signal at a slightly different frequency, the receivers canderive the relative phase offset of the two

signals by comparing the RSSI readings. The distance difference (also called theq-range) can then

be calculated from the relative phase offset with high accuracy. A q-rangeobtained from interfer-

ometric ranging from two sendersA and B, and two receiversC and D is the distance difference

dABCD= dAD−dBD +dBC−dAC+e, wheree is the measurement error (Figure 1).

A major advantage of interferometric ranging is that the measurement could be extremely accurate

compared to noise-prone RSSI readings. In a recent experiment [16], in which 16 nodes are deployed

in a 4x4 grid over a 18x18 meters flat grassy area with no obstruction, the maximum q-range error

was shown to be around 0.1 meters while the medium error was less than 0.04 meters. However,

interferometric ranging is more difficult to implement partially due to the following reasons:

1. The measurement can be impacted by various sources of noise such as frequency drift, ground

multipath error, and time synchronization error [16]. Frequencies of the transmissions need to

be precisely calibrated, as any carrier frequency drift andphase noise would directly impact the

observed phase offset. Precise time synchronization is needed at the senders of a q-range. Thus,

there will be overhead to maintain clock synchronization.

2. A significantly larger number of measurements are needed for localization than using direct rang-
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ing techniques. While there are also a large number of measurements available (O(n4)) even for

a small network, only a small subset of them are independent of each other. The rest merely

provide redundant information. It has been shown in [15] that the number of independent mea-

surement using interferometric measurements isO(n2), which is significantly higher than with

RSSI and AOA ranging (O(n)). Considering the localization problem in relative coordinates, for

a network ofn nodes there are 2n−3 unknowns in two dimensions and 3n−6 unknowns in three

dimensions1. Thus, the smallest network that can be localized using interferometric measure-

ments is a fully-connected network with a population ofn = 6, where there are 9 independent

measurements available to cover 9 unknowns. The large number of q-ranges available/required

indicates a scalability issue for larger networks.

3. Since each measurement involves four nodes, more collaboration is required between nodes. Due

to the requirement of synchronized transmission, the senders have to collaborate in scheduling

their transmission. Also, the receivers have to collaborate to derive the relative phase offset. This

collaboration requires sophisticated protocols to be implemented so as to reduce the communi-

cation overhead.

Those difficulties rooted in the physical characteristics of interferometric ranging devices affect the

algorithmic design of the localization algorithm. As we will see in the following section, the localiza-

tion algorithms based on interferometric ranging measurements tend to be more difficult to design.

3 Localization Algorithms

Obtaining measurements such as distance ranging and angle of arrival is only the first step of local-

ization. To calculate the actual node location, we will haveto rely on localization algorithms. While

there are various ways of classifying localization algorithms, we feel it is more logical to classify them

1This is because the relative coordinates are invariant under translation, rotation and reflection. Thus, in two dimensions,
we have 2n−3 degrees of freedom, where translation, rotation and reflection each reduce one degree of freedom.
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according to the measurement assumptions as follows: i) connectivity-only, ii) range-based, iii) angle-

based, iv) interferometric ranging based, v) hybrid, and vi) mobility-based.

3.1 Connectivity-Based Algorithms

A number of localization methods rely on connectivity information only. These types of methods

are also referred to as “range-free” methods in the literature. For instance, the Centroid method [21]

estimates the location of an unknown node as the average of its neighboring beacon locations. To

provide sufficient localization coverage, the Centroid method requires more powerful beacons with a

large transmission range.

The APIT (Approximated Point-In-Triangulation) method [22] estimates the node location by iso-

lating the area using various triangles formed by beacons. For each triangle formed by three beacons,

the node is either in or out of the triangle. For instance in Figure 2(a), if it can be determined the node

G is inside△ABCand△DEF, then its location can be isolated to the shaded overlappingarea of the

two triangles. To determine whether a node is inside or outside the triangle, APIT compares the RSSI

readings from the beacons at the node with those at its neighbors. Intuitively, smaller RSSI reading

means a shorter distance (i.e., closer to the beacon) and vice versa. If there does not exist a neighbor

that is further from (or closer to) all beacons simultaneously, then the node is inside triangle with high

probability. For instance in Figure 2(b), a neighbor ofD, E, can be measured to be further away from

the beaconA, B andC because it has smaller RSSI readings comparing toD. Thus,D is considered as

to be outside△ABC. Conversely, ifD is inside△ABC (Figure 2(c)), then it is likely that its neighbors

will be closer to (or further away from)some(but notall) of the triangle points. Clearly, this test does

not guarantee correctness every time. However, since thereare a large number of triangles available

for the test (O(n3) for n beacons), error can be effectively controlled. Indeed, simulations performed in

[22] indicated that APIT gives more accurate localization than the Centroid method when the beacon

density is higher. Note that although APIT makes use of RSSI,it is only used to derive the relative
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Figure 2: APIT.

proximity, but not the absolute distance. Thus, we classifyit as a connectivity-based algorithm.

Both the Centroid and APIT methods try to localize the node directly from the beacons 1 hop away.

Thus, to provide better localization coverage, they require either a large number of beacons or a large

beacon transmission range. The DV-Hop method [23] relaxes such requirement by providing a way to

localize from the beacons several hops away. In DV-Hop, eachbeacon floods its location to the entire

network much like the distance vector (DV) routing protocol. Each node maintains a DV table of the

beacon locations it has heard along with the shortest hop count to them. A node will only forward

the location broadcast if it has a shorter hop count than the current one in its table. In addition, when

a beacon has heard the broadcast originated from another beacon, it can derive the distance-per-hop

information based on the physical distance between the two beacons and the hop count accumulated

along the path. The distance-per-hop information is then broadcast to other nodes. To localize, a node

extracts the hop counts to the beacons from its DV table and converts them into distances using the

average distance-per-hop information it has received. Thenode can then estimate its location using

multilateration based on the distances to the beacons. For instance in Figure 3, the nodeD can tri-

angulate based on the location broadcast from the beaconsA, B, andC stored in its DV table. The

distance-per-hop is calculated as the average of the distances per hop among all the beacons. Com-

pared to Centroid and APIT, DV-Hop requires much less numberof beacons. It does however have

greater communication overhead since it requires multiplemessage flooding.

The above connectivity-based localization methods assumethe nodes are stationary. The MCL
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ID 

Hop 
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Location Distance 

A 3 (100, 100) distance-
per-hop * 
3 

B 4 (0, 0) distance-
per-hop * 
4 

C 3 (200, 10) distance-
per-hop * 
3 

A 

B C 

distance-per-hop = (|BC|/6 + |AB|/6 + |AC|/6)/3 

D 

Figure 3: DV-Hop.

(Monte Carlo localization) method [27] takes a novel approach by making use of the node mobil-

ity. As a node moves, it becomes connected or disconnected toother nodes. Based on the connectivity

observation, a unit-disk connectivity model, and a simple random movement model of the node, MCL

updates the probability distribution of the possible node location. Simulation in [27] has reported as

much as three times of localization accuracy when compared to the Centroid method.

In general, connectivity-based localization algorithms tend to be simple to implement, and they de-

pend less on special hardware. However, due to the lack of more precise measurement, the location

estimates they provide tend to be less accurate. A large number of beacons need to be deployed in order

to improve their accuracy. Sparse networks by nature contain less connectivity information, and thus

they are more difficult to localize accurately using connectivity-based localization methods.

3.2 RSSI and ToA Range-Based Algorithms

Many algorithms use the RSSI and ToA measurement to derive the distance to the senders. The DV-

Distance method [23] behaves much like the connectivity-based DV-Hop method. But instead of in-

crementing the hop count, DV-Distance increments the distance between from hop to hop as beacons

broadcast their locations. Since the distance at each hop can be quite different, DV-Distance can obtain

more accurate range to the beacons compared to DV-Hop, whichonly considers the average case. How-
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Figure 4: Multihop Distance Derivation in Euclidean.

ever, its performance becomes heavily dependent on the ranging measurement accuracy. The Euclidean

method [23] tries to derive the distance to a beacon that is several hops away by measuring RSSI or

ToA to its neighbors. For instance in Figure 4, the nodeD is several hops away from the beaconA. To

derive its distance toA, D obtains the distance using RSSI or ToA to two neighborsB andC, where

the distanceAB, AC andBC are known. The distanceAD is the second diagonal of the quadrilateral

ABDC. Depending on whetherABDC is convex or concave, two solutions ofAD exist. This ambiguity

can be solved by examining multiple quadrilaterals likeABDC. Once the distances to at least three

beacons have been obtained, both DV-Distance and Euclideanmethod estimate the node location using

mulitlateration.

The Collaborative Multilateration method [24] is also based on mulitlateration from ranging. How-

ever, it allows nodes being triangulated from non-beacon nodes. Initially, all non-beacon nodes are

assumed to be at some random locations. As a node receives itsneighbors’ estimated locations, it tries

to triangulate its new location with the least mean square error. The newly estimated location is then

sent back to the neighbors for their own mulitlateration. The process is iterated multiple times, and the

idea is that eventually the location information from the beacons will propagate to remote nodes via

collaborative multilateration. However, it is foreseeable that the nodes further away from the beacons

would be slow to converge. The Hop-TERRAIN method [25] makesan improvement in this regard

by using the DV-Hop method to derive an initial coarse location. It then runs the collaborative multi-
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Figure 5: Bounded Region in n-Hop Multilateration.

lateration to further refine the localization results from the distance and location information from the

neighbors. The n-Hop Multilateration method proposed in [28] uses a bounded box model instead of

DV-Hop to provide initial location estimates. For instancein Figure 5, while nodeD is two hops away

from the beaconB and one hop away from the beaconA, it is still bounded by the distance constraints.

The bound on thex coordinates is[xA−a,xB +b+c], wherea = |AD|, b = |BC| andc = |CD. Using

this kind of geometric bounding via multihops, an initial location of the node can be derived.

The iterative multilateration provides a way to deal with the difficult question of how to effectively

use the beacon information several hops away. However, since it treats location estimates from non-

beacons the same as beacons, the beacon information can be quickly watered down by the inaccuracy

of non-beacons. The probabilistic localization method in [26] explicitly considers the location uncer-

tainty of non-beacons by the means of probability distributions. In particular, each node location is not

represented by a singular value but a probability distribution in terms of particles. Initially, all non-

beacons have a uniformly distributed particle distributions. To localize, nodes exchange their particle

distributions among the neighbors and run Monte-Carlo filtering based on the RSSI or ToA measure-

ment data to update the particles. Eventually, the particles will be refined to the true location of where
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the node resides. The particle filtering method allows collaborative localization as shown in Figure 6.

Here, nodes 2, 3, and 4 are beacon nodes, while nodes 0 and 1 arenon-beacons. Of the beacons, node

0 can receive signals only from nodes 1 and 4, and node 1 can receive signals from only nodes 0, 2,

and 3. From the signal strength readings, non-beacons estimate their distances to their neighbors. The

probability distribution of the estimated location is represented by the particles (dots) in the graph. In

sub-figure (a), where node 1 is removed, node 0 can only receive signals from node 4; thus as the parti-

cle distribution indicates, the probability distributionwhere node 0 is most likely located concentrates

on a circle around node 4. In sub-figure (b), where node 0 is removed, node 1 can receive signals from

nodes 2 and 3; thus the most likely locations for node 1 centeraround two areas where “transmission

circles” around node 2 and 3 intersect. Intuitively, in order to localize itself, a node needs to receive

location information from a minimum of three beacons eitherdirectly or indirectly. In both case (a)

and case (b), the exact location of the nodes 0 and 1 cannot be deduced because they do not receive

location information from all three beacons. In (c) and (d),where all nodes are available, nodes 0 and 1

are able to communicate to each other and exchange their particle distributions. Thus, their probability

densities will represent their actual locations much closer even though neither node receives location

information from all three beacons directly.

Compared to range-free methods, range-based methods give more accurate location estimates when

ranging data is reliable. However, depending on the deployment environment, ranging techniques

based on RSSI tend to be error-prone and strong filtering is required. The ranging error could ulti-

mately destroy the localization accuracy if it is allowed topropagate through the network unbounded.

Furthermore, different methods generally exploit the trade-off between the estimation accuracy and the

estimation coverage. For instance, given the same network scenario, the Euclidean method is capable of

generating more accurate location estimates of a smaller subset of nodes, whereas the DV-Hop method

has better coverage but worse accuracy. Regardless of the tradeoff, a common characteristic shared by

distance-based localization algorithms is that they require a relatively high network density in order to

achieve better results. Based on the extensive simulation of DV-Distance, Euclidean and multilatera-
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(a) Particle distribution of
node 0 when node 1 isnot
present

(b) Particle distribution of
node 1 when node 0 isnot
present

(c) Particle distribution of
node 0 when node 1is
present

(d) Particle distribution of
node 1 when node 0is
present

Figure 6: Collaborative Localization Using Particle Filters.

tion methods performed in [20], it can be concluded that those distance-based localization algorithms

“require an average degree of 11-12 nodes within the rangingneighborhood in order to achieve 90%

localization coverage with 5% accuracy [20].”

3.3 Angle-Based Algorithms

Even though the future of AoA sensing devices is still unclear, some works have been published on lo-

calization using angle information. Simulation studies in[20] also show that when AoA of the signals

is used in addition to the distance measurement, the localization accuracy and coverage can be drasti-

cally improved. This should not come as a surprising conclusion, as nodes need to communicate with

only one neighbor to perform localization if they can obtainboth AoA and distance measurements. The

work in [20] also presents three variations of a weighted mean square error algorithm that localizes the

nodes, each of which is designed to work with one of the three measurement types: i) distance-only

measure, ii) distance plus a more accurate AoA measure (up to8◦ of precision) and iii) distance plus

a less accurate AoA measure (up to 60◦ of precision). The less accurate AoA measurement method

is sometimes referred to assectoring. Simulations in [20] show that the localization accuracy and
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Figure 7: Multihop Distance Derivation in AoA Triangulation.

coverage can be greatly improved with such coarse sectoringmeasurement as well.

In order to localize withonly AoA measurement, the AoA triangulation method proposed in [29]

can be used. The triangulation takes several AoA measurements from beacons and estimates the node

location with least square error. To propagate the AoA measurement for more than one hop, the AoA

triangulation method uses a approach calledorientation forwardingthat is similar to the Euclidean

method for distance ranging. For instance in Figure 7, let AoA measurement be the bearing against

South. For nodeD to derive its bearing to the beaconA (i.e., ∠SDDA), it can contact two neighbors,

B andC, with known AoA measurements from the beaconA (i.e., ∠SBBA and∠SCCA are known).

Furthermore,B, C andD can measure the AoA of each other to give the readings of∠SBBC, ∠SBBD,

∠SCCB, ∠SCCD, ∠SDDB and∠SDDC. From there, all angles in△ABCand△BCDcan be determined.

The bearing fromA to D can be derived as∠SDDA = ∠SDDC+ ∠CDA, where∠SDDC is known,

and∠CDA can be determined from△ABCand△BCD. Using the orientation forwarding method, the

bearing to beacons can be propagated through mutlitops, which can then be used to triangulate the

location. However, much like the case of distance propagation, measurement error becomes aggregated

at each hop. Simulations in [29] have reported a near linear error increase to the hop count.

Overall, due to the limited availability of AoA sensing devices, relatively few algorithms have been

proposed for AoA. However, it is conceivable that some localization algorithms originally proposed for
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RSSI or ToA ranging can be adapted to AoA. For instance, the probabilistic algorithm in [26] can be

updated to accept AoA measurements by simply providing an alternative measurement model for AoA

during particle filtering.

3.4 Interferometric-Based Algorithms

Due to the fact that interferometric sensing devices for localization are relatively new, there have been

only a limited number of localization algorithms proposed for this type of measurement. When com-

pared to RSSI/ToA ranging and AoA, all of which involve two nodes for each measurement, it is more

difficult for interferometric ranging to propagate the location information from the beacons since four

nodes are involved. To eliminate the multihop propagation issue, a simple genetic algorithm approach

was taken in [16], which propagatesall interferometric readings within the network to a centralized

location and runs a genetic algorithm to find the node locations that match the readings. Such approach

is more of theoretical interest than practical use, since any centralized method is not scalable to large

networks. A Pair-wise Distance method was proposed in [30] that uses both interferometric and RSSI

ranging. The method uses the interferometric ranging to derive pair-wise distances among the nodes.

The node locations can then be optimized using the least square error method from the pair-wise dis-

tances. The algorithm then repetitively applies the RSSI ranging measurements to fine-tune the location

estimates. Compared to the genetic algorithm, the Pair-wise Distance method is able to converge much

faster. However, it is currently still a centralized algorithm, which presents the same scalability issue

as the genetic algorithm.

Both of the above algorithms try to optimize for a global solution given an entire set of interferometric

measurements. Intuitively, finding a global solution to thelocalization problem is often difficult because

of the large search space and the large number of constraintsgiven by the interferometric measurements.

Thus, it is desirable to find the solutions in some subspaces first and then incrementally build up to the

global solution. For instance, an iterative approach has been proposed in [31] that localizes from a
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small set of seeding beacons. As additional nodes have been localized at each round , they act as

pseudo-beacons that allow other nodes to be localized at subsequent rounds. The iterative method is

fully distributed. However, error propagation can be an issue since any localization error at pseudo-

beacons would adversely affect the localization result at subsequent rounds. Simulation results in [31]

have shown a linear increase of localization error at each round.

3.5 Hybrid Algorithms

A combination of the above techniques can be employed to formhybrid methods. For instance, a hybrid

method is proposed in [32] that uses both DV-Distance [23] and Multi-Dimensional Scaling (MDS)

[49]. The algorithm contains three phases. In the first phase, a small subset of nodes are selected as

reference nodes. In the subsequent phase, the reference nodes are then localized in relative coordinates

using MDS. The final phase uses DV-Distance to localize the rest of the nodes in absolute coordinates.

The rational behind such hybrid algorithms is to exploit thetradeoff between different localization

algorithms. For example, MDS gives good localization accuracy, but as the network size is increased

MDS can be costly. Meanwhile, DV-Distance is less costly, but it only works well when beacon ratio

is high. With hybrid algorithms, the cost is minimized by only running MDS on the reference nodes,

and the reference nodes are used as beacons for DV-Distance.

3.6 Localization Using Mobility

While most previous methods assume stationary beacon locations, an alternative method is to localize

devices using a mobile beacon. In this method, a mobile beacon travels through the deployment area

while broadcasting its location along the way. Devices localize themselves by monitoring information

coming from the beacon. A straight-forward technique usingthe above method is described in [46],

where devices are required to receive at least three communications with the same RSSI reading from

the beacon. Given that the same RSSI readings imply similar distances to the beacon locations, the



Device Localization in Ubiquitous Computing Environments 25

physical device location can be derived using simple geometric functions. Computation-wise, this

method is simple making it suitable for resource-limited sensors. However, it requires the beacon to

directly pass by the ranging area of the device. In addition,in most cases, the beacon has to pass by

the device twice because the sampling positions of the beacon when the three RSSI readings are taken

should not be on the same line. This method also assumes that errors are insignificant in the RSSI to

distance translation.

Instead of computing the location directly, a probabilistic approach may be taken; here device loca-

tion is viewed as a probability distribution over the deployment area. In [45], devices measure a series

of RSSI readings from the mobile beacons and localize themselves by a sequential update process to

the probability distributions of their locations. Each device starts with a uniform distribution covering

the entire deployment area. As the beacon passes through, the distribution is updated to fit the received

RSSI readings (using a propagation model). The method is further improved in [47] by adding the neg-

ative information (that is, the information that the beaconis out of range) as well as RSSI readings from

the neighbors. These probabilistic methods provide with much improved location estimates, but have

the drawback of being complex. For a deployment grid ofn by n units, the time and space complexity

is O(n2). As the devices such as sensors at present time have very limited resources it is difficult to

implement these methods directly for the large deployment.Indeed, the experimental results shown in

[45] are performed on pocket PCs, which are much more powerful than common devices such as cheap

sensors.

A similar method of localizing the networks using a mobile beacon is presented in [48]. Instead

of the actual probability distribution, the possible device locations are represented with a bounding

box. As the beacon passes by, the area contained by the bounding box is progressively reduced as

positive and negative information are processed. The bounding box method drastically simplifies the

probability computation, making it possible to implement this method on devices. However, such large

simplification has its side-effects in that it sacrifices thepreciseness of the distribution for its simplicity

as it is not possible to describe multiple possible locations with a single box. There is also an additional
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problem when noise from the ranging devices is considered. This method may work well when ranging

error is minimal, however when noise is present (which is inevitable when using RSSI ranging), there

might be situations where no bounding box exists to satisfy all readings.

In summary, different measurement types and their unique properties to a large degree dictate the

design of localization algorithms. For instance, connectivity-based measurements can only provide

coarse localization without a higher beacon percentage or nodal degrees. Range and AoA-based mea-

surements can provide much finer localization results but they are more prone to measurement error. A

quantative comparison between the more well-known algorithms such as DV-Hop, Euclidean and mul-

tilateralization can be obtained from [33], in which the comparison is done in the context of specific

constraints of sensor networks, such as error tolerance andenergy efficiency. Their results indicate that

there is no single algorithm that performs “best” and that there is room of further improvement.

4 Theoretic Results

While there have been many localization algorithms proposed for various scenarios, it is only recent

that the theoretic aspects of the localization problem havebeen explored. We are particularly interested

in the following three theoretic problems with regard to localization: i) localizablity, ii) complexity of

localization, and iii) error bound.

First of all, we would like to know that given a network scenario (i.e., the nodes and their relative

measurements such as ranging and angling) whether it is theoretically possible to uniquely localize the

network. Such knowledge oflocalizablity is important to us because if we can easily identify that the

scenario is impossible to localize uniquely, then it would be pointless to run any localization algorithm

on it. Instead, we would have to request additional nodes or measurement data to be available (by pos-

sibly deploying more nodes or beacons) so that the localizablity requirement is satisfied. The following

theorem gives the necessary and sufficient condition for distance-constrained network localizability in
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two dimensions.

Theorem 4.1. The network is localizable in two dimensions if and only if the network graph is redun-

dantly rigid and triconnected [36, 35].

Theorem 4.1 holds only for two dimensions. The sufficient condition for higher dimension is cur-

rently unknown. To test the localizability, there exists a polynomial time algorithm (O(n2), wheren is

the number of vertices) that tests for the first-order rigidity (see [36] for one implementation). However,

it is a known NP-Complete problem to test for the second-order rigidity of a graph [37]. A related but

even more difficult problem is thenode localizability, which asks if a particular node (instead of the

entire network) is localizable. No sufficient condition of node localizability is currently known even in

the two dimensional case, and thus no deterministic algorithm currently exists.

A second problem asks for the theoretic complexity of localization itself. In particular, we would

like to know that given a network scenario that satisfies localizablity whether there exists a deter-

ministic polynomial time algorithm that would localize thenetwork. This problem deals with the

NP-Completeness of localization. Unfortunately, the hardness of graph realization has been shown as

NP-Hard under the measurement of distance [38], angle [40],connectivity [39, 41], and interferometric

ranging [31].

The above theoretical results indicate the general intractability of the localization problem even in

the ideal case where measurements (such as edge distances) are 100% accurate. Unfortunately, mea-

surements in the real world are a far-cry from being accurate, and any optimization method has to deal

with not only different measurement types but also noise. The localization inaccuracy attributed to the

measurement types and noise can be mathematically qualifiedusing Cramer-Rao Bounds (CRB) [13].

The CRB is a lower bound on the covariance of any unbiased location estimator that uses measurements

such as RSSI, ToA, or AoA. Thus, the CRB indicates a lower bound of the estimation accuracy of a

given network scenario regardless of the localization algorithm. In other words, with CRB we have a

way to tell the bestanylocalization algorithm can do given a particular network, measurement type and
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measurement noise scenario. CRB formulas of individual measurement types such as RSSI, ToA and

AoA under most common noise models (mostly Gaussian) are currently known.

The CRB of the localization error for a sample network is shown in Figure 8 as rings of radius

= σi . Here, the square nodes are the beacons and the circle nodes are to be localized using RSSI

ranging. The edges indicate the communication links available to measure RSSI readings. We assume

the measurement model to be RSSI with the path loss exponentnp = 2 and the standard deviation of the

noiseσdB = 0.7. A ring with smaller radius (i.e., a smaller CRB) signals that more accurate localization

result can be theoretically obtained. Conversely, a largerring indicates a larger localization variance

and thus a less accurate result. In the figure, two types of nodes do not have rings. First, all beacons

have a CRB of 0. There are also regular nodes that have infiniteCRB indicating that those nodes are

theoretically impossible to localize. The latter case can be seen at nodes 38, 48, 49 and 78 in the top

left corner. At the minimum, three beacons are needed to localize a connected network. However, those

nodes in the top left corner are isolated to a different partition. Since they are connected to only one

beacon (node 91), those nodes clearly cannot be localized. Other than those cases, the CRB rings at

the main network partition clearly show the level of localization difficulty under various scenarios. In

general, we observe that nodes closer to the beacons tend to have a smaller CRB than the ones that are

several hops away. Even smaller CRB can be obtained when a node is closer to more than one beacon.

All of the above observations match our common intuition about localization difficulty.

It is important to note that CRB is essentially a theoretic bound that depends on the measurement

model. In the real world, its usefulness is limited by how accurate the measurement model reflects the

reality. Nevertheless, CRB can be a useful tool in comparingvarious localization algorithms. It can be

used to validate how close a particular algorithm can come tothis theoretic lower bound and to see if

there is any room for improvement in the algorithm design.
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Figure 8: The CRB of the sample network is depicted as rings ofthe radius= σi . There are two
exceptions: 1) beacons, depicted as squares, have 0 CRB, and2) some regular nodes have infinite CRB
(such as node 38, 48, 49 and 78 at the top left corner) indicating that they cannot be localized
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5 Future Directions

Device localization within ubiquitous computing environment has been an active research field in the

past several years. Much work has been done in the area of hardware design (in particular, reducing the

form factor and power consumption of sensory devices), algorithmic design and theoretical analysis.

However, like many areas of ubiquitous computing, localization is still a relatively new front with much

of the work yet to be done. In this section, we will briefly discuss a few directions which we feel that

would produce fruitful results in the near future on the localization problem. We hope our discussion

would serve the purpose to motivate the readers to actively participate and contribute their own ideas

to this field.

5.1 Implementation and Testing Environment

When reviewing the previous works on localization, one cannot help but noticing a disturbing trend: a

majority of works on localization have been based on either theoretical models or simulations, while

works based on the result of actual hardware implementationhave been relatively few. It is not difficult

to project that the primary reason for such trend is the hardware cost. To perform meaningful exper-

iments for localization, especially for those collaborative localization methods such as DV-Distance

and Euclidean, one would normally need a large number (100+)of devices. Although mobile ad hoc

network devices (for instance, sensors) are becoming cheaper by the day, it is still quite costly to im-

plement them on physical devices in such large scale. In addition, the sensing capacities of the current

devices are usually limited to RSSI. Currently, there is no cheap hardware that implements AoA, ToA,

or interferometric ranging, and thus most works using thosemeasurement types are all based on simula-

tions. In a sense, the advances in algorithmic work on the localization problem are currently outgrowing

the advances in hardware. Future work needs to be done to significantly improve the hardware design

to fill this gap.

Another issue related to the testing environment is that there is no common localization testbed.
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While large scale network simulators such as NS2 [42] has a module for simulating mobile ad hoc

networks, the module does not contain localization. Smaller simulators for sensor networks such as

SENSE [43] usually lack features on localization as well. Another simulator SENS [44] does explic-

itly implement localization, but it uses a rather primitiveCentroid method and lacks more sophisticated

methods. Since NS2 is the most widely-used network simulator, it would be very helpful for researchers

to implement an interface to NS2 that allows a “plug-in” for future localization algorithms. This would

give a common testbed for different localization schemes. More importantly, it would also allow those

location-depended algorithms (such as location-aided routing methods) to be implemented and com-

pared based on the result of localization. The localizationmodule should also implement the Cramer

Rao Bounds(CRB) so that the theoretic error bound can be calculated for different localization scenar-

ios.

5.2 Interferometric Ranging

Since interferometric ranging is a relatively new type of measurement available to the localization

problem, there are still many open problems in this area. Of the localization algorithms proposed

for interferometric ranging, all but the iterative algorithm proposed in [31] are centralized. There

is a definite need to design distributed localization algorithms for interferometric ranging so that it

can be implemented with reasonable efficiency and scalability. To reduce the number of beacons, the

distributed algorithms should make use of multi-hop location information, which unfortunately is much

more difficult for interferometric ranging because each measurement involves four nodes. For instance,

there is a scheduling issue, both at a high level and low level, of when a device should be scheduled

to send or receive interferometric readings. At a high level, since not all q-ranges are independent, it

is more desirable to schedule the senders and receivers in order to generate more independent q-ranges

instead of dependent ones. At the low level, after the senders and receivers are selected, they have to

be scheduled to coordinate the signal transmission becausethe transmission needs to be synchronized.
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The design of the scheduling algorithm can have a substantial impact on the overall performance of the

localization algorithm, in terms of the localization accuracy and communication overhead.

Furthermore, simulation study in [31] has shown that the multi-hop error propagation has a big

impact on interferometric ranging, which increases almostlinearly as the localization results are prop-

agated at each hop. Therefore, the control of the error propagation is another issue. There is also a

need for an algorithmic independent theoretic error bound (like CRB) for interferometric ranging. The

bound would be more difficult to derive than those for distance ranging and angling because more than

two nodes are involved in each measurement. Thus, the inter-dependence between the error and the

relative locations of senders and receivers becomes more challenging to characterize mathematically.

However, the payoff of obtaining such bound is that it would allow us to ultimately compare interfer-

ometric ranging with other measurement types and identify the scenarios that are preferable for each

measurement type.

5.3 Collaborative Localization of Multiple Measurement Types

Previous localization algorithms often assume that the entire networks are to be localized using the

same type of measurement (such as connectivity-only, RSSI,ToA, AoA, or interferometric ranging).

However, to be true to the spirit of ubiquitous computing, itis foreseeable that future networks will

be consisted of devices of vastly different capacities in terms of i) different transmission coverage, ii)

power requirement, and iii) measurement sensors. Thus, during localization it is often desirable to

explicitly consider varied devices capacities in such heterogeneous networks. For instance, in terms

of varied power requirement, the localization algorithm should exploit the devices with more power

capacity and try to minimize the calculation performed on less powerful devices. Furthermore, differ-

ent measurement types have different error characteristics. It would be interesting to investigate how

to collaborate multiple measurement types during localization, and in particular how the collaboration

would impact the localization error. Intuitively, incorporating multiple measurement types in the same
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localization scenario should improve performance since such collaboration can potentially cover the

drawbacks of individual measurement types for each other. Unfortunately, such collaboration could

mean an increased complexity of the localization algorithms since heterogeneous networks would in-

validate some assumptions often made by simple localization algorithms (such as uniform transmission

range). Thus, while it is worthwhile to consider collaborative localization algorithms, it is equally

imperative to keep the localization overhead under control.

6 Summary

In this chapter, we studied the localization problem in ubiquitous computing environment. Localiza-

tion in general refer to the problem of identifying the physical location of the devices from a limited

amount available measurement data. The most common measurement types include device connectiv-

ity (i.e., whether two devices are neighbors), ranging using RSSI and ToA, angle of arrival (AoA) and

interferometric ranging. Given a small number of nodes withaccurate geometric location using GPS

receivers, localization algorithms try to derive the location of those devices that are not GPS-enabled.

The motivation of localization can be justified by the large number of algorithms proposed for ubiqui-

tous computing that rely on (semi-)accurate location information and the fact that current technology

prevents GPS to be installed on all network devices due to power constraints and form factors. It has

been shown that localization in general, regardless of the measurement types used, is an NP-Hard prob-

lem. Thus, current effort in solving it relies on some sort ofstochastic optimization. Meanwhile, as

with other network-related problems in ubiquitous computing environment, the ideal solution calls for

a distributed but efficient implementation, which leads to additional challenges.

Like other aspects of ubiquitous computing, the localization problem is relatively new. The prob-

lem is also conceptually straight-forward to characterize, and many results from other disciplines such

as graph theory, optimization theory, online algorithms can be readily applied to this problem. Thus,

researchers from other area can provide valuable insight that could lead to better solutions to the prob-
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lem. It is our hope that this brief introduction would provide the readers motivations and inspirations

to research in this field.
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