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In the ubiquitous computing environment, devices are oftemnected to one another on the fly
to form an infrastructure-less networks called Mobile AdcHeetworks (MANETS). Since MANET
serves as an abstract model and concept that can be seen persesof diverse sub-areas such as
sensor networks, mesh networks or an enabler for pervasmgputing, it has attracted significant
research interests in the past several years. A major aayardf MANETS over regular wired or
wireless networks is in their infrastructure-less natwéhay can potentially be deployed more rapidly
and less expensively than infrastructure-based netwdtksvever, the lack of an underlying explicit
infrastructure also becomes a major disadvantage in adpliANETSs to a wider array of applications,
since existing network algorithms and protocols are naigph” solutions for such dynamic networks.
New algorithms need to be, and are being designed for sudafeantal network tasks as addressing,
topology discovery and routing.

Location discovery is emerging as one of the more importskd as it has been observed and shown

that (semi-) accurate location information can greatlyrove the performance of other MANET tasks

*- Chapter of Advances in Ubiquitous Computing: Future Pigrad and Directions
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such as routing, energy conservation, or maintaining nétwecurity. For instance, algorithms such
as Location Aided Routing (LAR) [1], GRID [3], and GOAFR+ [Ely on the location information to
provide more stable routes during unicast route discovEimg availability of location information is
also required for geocast (multicast based on geograptummation [6]) algorithms such as Location-
Based Multicast (LBM) [2], GeoGRID [4] and Position-Baseditast (PBM) [7]. To minimize the
power consumption, the Geographical Adaptive FidelityfpAalgorithm [8] uses the location infor-
mation to effectively modify the network density by turnioff certain nodes at particular instances.
Furthermore, in [9], the authors have shown that wormhdbeks can be effectively prevented when
location information is available. As more algorithms aegnlg proposed to exploit the location infor-
mation in the network, it is clear that obtaining such infatran efficiently and accurately becomes of
greater importance.

A direct way of obtaining location information is to inst&llobal Positioning System (GPS) re-
ceivers on each node. However, this is currently imprakcieaGPS receivers are still relatively ex-
pensive, power-hungry, and require clear line of sight,(imeaking indoor usage impossible) to several
earth-bound satellites. In sensor networks devices argiivad as small as possible and operating on a
very restricted power source, thus it may not be feasiblagtall GPS receivers onto all sensor nodes.
Localizationin MANET refers to the problem of finding the locations of tea®n-GPS enabled nodes
based on limited information such as some kndyacon(also referred to aanchor) locations and
measurements such emngingdistances oanglesamong the neighbors. The localization problem is

hard for a number of reasons:

1 Geometric limitationsTo pinpointits exact location in 2-D, a node needs to knowdhations of
at least three beacons together with its distance from efdtiese beacons. Alternatively, nodes
could calculate their own location based on a distance analsolute) angle measurement
from one beacon. Even if obtaining such measurements washp@and the measurements

were exact, guaranteeing that (several) beacons surraaidmede is impossible as MANETS
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may be randomly deployed and that in general only a smallep¢éage of nodes are indeed
beacons. Thus, a good localization algorithm needs to tdkardage of multi-hop information,

i.e., estimating node locations based on other nodes’itotastimates.

2 Availability of measurementgor localization algorithms that require distance or amggasure-
ments, certain sensory devices will need to be availabledeigle such readings. However, it is
likely that not all nodes have the same sensory capacitytHeravords, there is a need for the
localization algorithm to work in a heterogeneous envirentrwith different location sensory

capacities.

3 Measurement error and error propagatioBven when measurement devices are available, there
is a general consensus that those measurements are promersd d-or instance, a distance
measurement based on received signal strength indic&i®8I) reading is prone to multi-path
fading and far field scattering. The error can be especiadly When there is a significant amount
of obstacles in-between the sender and the receiver. Sinselatalization algorithms require
measurements from nodes several hops away, the measuremoens likely to aggregate along

the path and eventually completely throw off the locatictineate.

Despite the difficulties listed above, there have been asng amount research effort spent into the
localization problem in the recent years. The amount ofreflowell justified because localization
is considered an enabling technology that needs to be egb@lith the best possible outcome upon
which other location-dependent technologies for MANETis loa successfully employed. Researchers
have been working on problem in both hardware (i.e., imprgthe devices measurement accuracy)
and software (i.e, improving the localization algorithm).

This chapter will cover the latest advances in this fieldludimg the following topics:

1 The need for localizationn this section, we will establish the need for better |azatiion tech-

niques by surveying a number of proposed algorithms for MABIEhat rely on localization.
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2 Hardware devices.In this section, we will cover the latest advances in haréwgesign that
enables localization on the smaller devices commonly se#reiubiquitous computing environ-
ment, including the devices that measure distance rangirgle of arrival (AoA) and interfero-

metric ranging.

3 Survey of localization algorithm3ne will survey some of the most popular localization algo-
rithms, including those that use connectivity informatianging and angle information. We will
study the pros and cons of each algorithm and suggest th@ioapate applications in ubiquitous

computing.

4 Localization theoryWe will cover the theoretic basis of localization technigug/e will study
the necessary and sufficient conditions for a network to balived based on the latest results
from graph theory. We will show that the localization prahblen general is NP-Complete. We
will also introduce the Cramer Rao Bound (CRB) that is ofteedito analyze the hardness of

different localization scenarios.

5 Future directionsWe will look into a number of promising future directions fitwe localization

techniques.

1 Applicationsof Localization

There have been numerous algorithms proposed for MANETisréthaon localization data. In this
section, we provide a brief survey of them; we divided theto fiour categories based on their func-

tionalities: unicast routing, multicast routing, energynsideration, and network security.

1.1 Unicast Routing

Routing is a specially challenging task for MANETSs becatmsgrtfrequent topology change implies the

underlying instability of any established routes. As suolies are needed to be frequently rediscov-
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ered, reestablished, and repaired. In general, routiag (aute discovery and repair) involves flooding
the routing control packets throughout the network. Flagdian often be quite expensive in terms of
delay and bandwidth usage it incurs, both of which can gredtéct the network performance. Thus,
there is a strong incentive to design efficient routing dtpars that minimize the overhead caused
by any unnecessary flooding. Unicast routing based on tmcatformation, often callegeometric
routing or location based routinghas shown to be a viable solution to this problem.

Location-Aided Routing (LAR) [1] protocol is the first MANEuting algorithm proposed that uses
location data. In LAR, every node is assumed to know its oveation, and each individual location
is then broadcast throughout the network. Thus, at any tjreeery node knows the locations of any
other nodes at some previous tired. Based on this location information and an estimated viloci
a node can derive an estimated location range, called “éagpgone”, of a target node at the current
time. Instead of flooding the entire network, the routinguest packets can be directed to search for
the target node only at this expected zone. Global floodipgrormed only after the location based
routing request has failed. Limiting route discovery to aller expected zone with LAR reduces the
number of routing requests compared to the standard flocaingme.

GRID [3] protocol uses location information as a way to foreographical clusters within the net-
work. Based on node locations and their residency withireadatermined grid system, nodes within
the same grid block are grouped into a cluster. A cluster ifeathateway” in [3]) is then selected
for each grid block. The cluster head is responsible foriseny the routing packets. Furthermore, the
cluster head can monitor the status of existing routes amodite packets as deemed necessary. Since
the cluster formation effectively simplifies the networlpédogy, the routing overhead is reduced. A
critical requirement of forming such geographical-baskters is the availability of node location
information.

In [5], the authors provided some theoretical bound to tloeggdric routing problem and proposed an
algorithm called GOAFR+. Assuming that node locations a@¥n using some localization technique,

GOAFRH+ first tries to greedily route the packet by forwarditip the neighbor located closest to the
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destination. However, such greedy selection does not gtesranessage delivery since the intermediate
node closest to the destination might not have a route tonitsuch cases, GOAFR+ explores the
boundaries of the faces of a planarized network graph by @&mg the local right hand rule (i.e.,
always turn right) to escape the local minimum. This methbeszaping local minima is also called
“parameter routing,” which is used in a number of other lamrabased routing protocols as well.
Performance-wise, simulations performed by [1] and [3]ehaliown up to 50% of reduction in
routing packets when using geometric routing comparedaiodstrd flooding. Since the overhead of
flooding is proportional to network density, it has been obse that the amount of this performance
increase becomes more significant when network densitgisased. Furthermore, although the rout-
ing performance is impacted by the localization error, smgpact is observed to be minimal. This
indicates that in the case of routing, highly precise laratata is not required. After all, location data
is used by routing algorithms to give a direction that guithesrouting packets; imprecise location data

can still be used as long as the general direction is valid.

1.2 Multicast Routing

Similar to unicast routing, multicast routing can also Werfeom location data. Multicast routing
using geometric information is often referred to in therbteire asgeocast routing The Location-
Based Multicast (LBM) algorithm [2] is a multicast extensito the unicast Location-Aided Routing
(LAR). Like LAR, which forwards the routing requests acdoglto the location of the destination
node, LBM forwards the requests according to the directicih® geocast region that contains all the
multicast destinations. GeoGRID [4] is the multicast esten to GRID [3]. Like in GRID, location
information is used by GeoGRID to identify the grid block wéeodes reside. Multicast is done
through the gateway node selected at each grid block. Bas#tedocation of the source node and the
geocast region, LBM and GeoGRID define a “forwarding regithv@t contains the intermediate nodes

responsible for forwarding requests. The size and shagedbtwarding region have a direct impact
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on the overall performance. Shapes such as rectangles aad bave been proposed in [2].

While the standard shapes such as rectangles and cones @eibik most cases, there are situations
where viable routes exist only outside the forwarding regiéor instance, a network can be parti-
tioned into two sub-networks connected only through a mahikage due to some obstacles (e.g., two
islands connected by a bridge). When the source and thendisti are in separate partitions, a geo-
metrically defined forwarding region is unlikely to coveetlinkage. To prevent routing failure in such
case, a routing zone based on Voronoi diagrams was propongé@]i which partitions the network
graph based on the proximity of the nodes. Again, the prayimiformation relies on localization
information.

The Position-Based Multicast (PBM) protocol proposed ihgditempts to optimize the multicast
tree it generates by minimizing the overall path length areldverall bandwidth usage; two often
contradictory objectives. To minimize the overall pathgdn PMB takes a greedy approach using
location information. At each intermediate node, the packéorwarded to a set of neighbors based
on their overall distances to the multicast destinatiomspdrticular, a set of the neighbors with the
minimum overall distance to every destination is selectetha next set of forwarding nodes. To take
in account of the bandwidth usage, the greedy selectionvedsghs in the size of the forwarding set
in order to minimize that as well. PBM also uses parametetimguo deal with local minima. Both

greedy routing and parameter routing employed by PBM reltheriocation information.

1.3 Power Management

MANET is often being used as the model for sensor network® tiOuhe recent emergence of interest
in pervasive computing, sensor networks have been regesignificant research efforts. One of the
major challenges of sensor networks is power managemerde Sensors are commonly small in size
and battery powered, conserving the energy would proloaq #ervice time and thus the lifespan of

the entire network. The Geographical Adaptive Fidelity &Algorithm [8] is a network topology
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management algorithm with reduced energy consumptiorsgwiinary objective. The idea behind
GAF is that there are often a large number of nodes that atmdziht during packet routing in MANET.
If the redundant nodes can be identified, they can then tdrtheir radio to save energy. For GAF,
the identification of redundant nodes is accomplished byyamay the relative location information
among the neighboring nodes. More specifically, GAF divithesnetwork into virtual grids such that
all nodes in grid bloclA are the neighbors of all nodes in grid bloBk This way, all nodes within the
same virtual grid block can be considered equivalent. Teenre energy during packet routing, GAF
only turns on the radio for one of nodes in each grid block. &bttve node is periodically “round-
robinned” to achieve load-balancing. Analysis and simaiet performed in [8] show that GAF can

reduce overall energy consumption by 40% to 60%.

1.4 Security

In [9], the authors proposed a technique called “packethiesisto defend against wormhole attacks
in MANETSs. A wormhole attack is a type of security breach vehan adversary intercepts incoming
packets and tunnels them to another part of the network vragéedong-range directional wireless link
or through a direct wired link. From there, the adversaryretitmansmit the packets to the network. Note
that this type of “capture-and-retransmit” attack can beaime to common packet encryption methods,
since the adversary does not need to read the packet colfenmhole attacks can severely disrupt
ad hoc routing protocols such as Ad hoc On-Demand DistanceoM&outing (AODV) or Dynamic
Source Routing (DSR), and cause a denial of service to thveonlet The core of “packet leashes” is
based on two assumptions: i) all nodes know their own lonatiand ii) all nodes are synchronized.
To enable packet leashes, the sender node encloses it®foaat transmission time-stamp within
the packet. At the receiver node, the packet leash is validagjainst the receiver’s own location and
clock. In particular, the sender location information githe distance from the original sender to the

receiver, and the time-stamp gives the transmission durati the packet. Based on the transmission
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duration and signal propagation model, factored in somar ¢éoterance, the receiver can validate the
estimated distance the packet has traveled against theistaece to tell if the packet is indeed coming
from the original sender or an imposer at some other locafibns, the location information and time-

stamp provide a virtual leash to limit the effective rangé¢haf packet so that it cannot be exploited by

wormhole attackers.

From the previous discussion on the location-dependeutighigns that encompass a wide range
of domains, it is quite obvious that providing location infation (i.e., localization) to MANET is
becoming an increasingly important task. In fact, locai@ais now widely regarded as an “enabling
technology” for MANET that needs to be addressed beforerdtieation-dependent techniques can be

realized in the real world [11].

2 Hardware Devicesfor Localization

In this section, we study a number of hardware devices thattlerlocalization in MANETS for ubig-
uitous computing environments. A Global Positioning Sys{&PS) [12] receiver can provide the
absolute location. However, its cost, size and power requént prevent it from being installed at ev-
ery network node. Thus, those non-GPS nodes have to beZedalsing measurements provided by
alternative hardware devices. There are five general typesasurements as follows: i) connectiv-
ity only, ii) RSSI (radio signal strength indicator) rangiriii) TOA (time of arrival) ranging, iv) AOA

(angle of arrival), and v) interferometric ranging.

2.1 Connectivity Only Measurement

At a minimum, a node can detect connectivity to its neighpbes, its one-hop neighborhood. The
connectivity only measurement is a binary reading betweemtodes of either “true” or “false” indi-

cating whether they are neighbors. Based on this conngcinformation, one can derive the general
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proximity of the nodes and use it as a way to localize the netwo

2.2 RSS|I Ranging M easurement

A node can be localized using multilateration if the dises(.e., the ranges) to three or more known
locations are obtained. The distances can be obtainedpg.gieasuring RSSI or ToA. In RSSI, the
receiver measures the received signal strength and comppasgth the transmitted signal strength.
The difference (in dB) is then applied to the inverse of tlgmnal propagation model to provide with
a distance measurement. Sensors that measure RSSI arg awdghble to mobile devices. Indeed,
most off-the-shelf technologies implicitly provide sugtfarmation (e.g., most WiFi, Bluetooth and
IEEE802.15.4 chipsets do). The drawback of RSSI based mexasuts is that they can be very in-
accurate because an exact model of the propagation enwrdrismoften unavailable. Experiments in
[24] have shown that when no obstacle exists between theesand the receiver, RSSI can provide a
distance estimate with an accuracy of a few meters. Howavaress than deal environment, the result
is often unpredictable. Furthermore, low cost RSSI recsiage often variable in their transmission
power due to the lack of calibration.

In the outdoor environment with minimum obstacles, sigmappgation decay is proportionald8r,
whered is the distance the signal has traveled. However, in theabetwwvironment where obstacles
exist, multipath signals and shadowing become two majarcesLof noises that impact the actual RSSI.
In general, those noises are commonly modeled as a randaragsrduring localization. L&t j be
the RSSI (in dB) obtained at the receiver ngdeom the sender node P, j is commonly modeled as
a Normal distribution [11]

P.j=N(P.j,03s) (1)

whereR | is the mean power in dB arafj is the variance caused by noise factor such as shadowing.
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FT,J is further defined as the power reduction from a referencatilog:

R.j = Po— 10nplogio(di j/do) (2)

where Py is the power at a reference location at the distagg€commonlydy = 1m). np is an
environment-dependent path loss exponent that is assunteckinown from prior measurements (the-

oreticallyny = 2). d j is the Euclidean distance between nodasd j.

2.3 ToA Ranging M easurement

Although ToA is used for radio signals in GPS, it is mostlydigethe context of acoustic or ultrasonic
signals in inexpensive ToA tracking (as propagation speeddive orders of magnitude less). For
instance, the Medusa node in [24] is an implementation of fla#ging using ultrasonic signals. ToA
measures the time signals travel from the sender to thevexcdihe distance between nodes is obtained
by multiplying this time with the signal propagation spebuspite of the additive noise and multipath,
in general distance measures based on ToA are more acduwat®ESI| based measures. However,
special acoustic transceivers have to be employed on eatshara synchronization among the nodes
needs to be established. Sensor network clock synchramzagorithms accurate to the order oft0
have been reported [17]. As mentioned earlier, TOA may a¢soded together with radio signals, but
current technology is not mature enough to provide with sfsatory precision over smaller distances
inexpensively.

Leti be the sender node arjdoe the receiver node, ToOA measurem@ntis often modeled as a
Normal distribution [11]:

Ti.j = N(di/c,0%)

whered, j is the Euclidean distance betweleand j, c is the signal propagation speed, amﬁdis the

variance caused by noises.
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2.4 AO0A Measurement

A node can be localized if the angles between itself and tvectes are known. Thus, it is possible to
localize the network based on the angle information (i.earimg, or angle of arrival (AoA). Currently,
there is no off-the-self device that offers AoA sensing ¢alfg. However, a number of prototype
devices are available. For instance, Cricket Compass El&]dmall form device that uses ultrasonic
measurements and fixed beacons to obtain acoustic sigeatations. In [19], a rotating directional
antenna is attached to an 801.11b base station. By measheimgaximum received signal strength, a
median error of 22can be obtained from the sensor. The challenge here is tgrots AoA sensing
device that has small form factor and low energy consumpfiofi20], the authors outline a solution
with a ring of charge-coupled devices (CCDs) to measure AdA relatively low energy consumption.
In general, AoA is also modeled as a Normal distribution. thettrue angle between the sender

andj bea; j, the AoA measurement betweeandj is therefore

wherea? is the angle variance. Theoretical results for acoustaetialoA estimation show standard
deviationg, is between 2to 6°, depending on range [13]. RSSI based AoA method wilon the

order of 3 has been reported in [14].

2.5 Interferometric Ranging M easurement

Interferometric ranging is a “widely used technique in batio and optical astronomy to determine
the precise angular position of celestial bodies as wellbgscts on the ground [15].” Interferomet-

ric ranging exploits the property that the relative phagsetfbetween two receivers determines their
distances to the two simultaneous senders. Due to the radeahcement in hardware, it is now pos-

sible to implement interferometric ranging sensors in mswkaller form factor so that it can be used
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Figure 1: The interferometric ranging measurement of tmargedascp = dap — dsp + dsc — dac.
Here, nodeA andB are the senders, and nodendD are the receivers.

for localization [16]. By synchronizing the transmissiantlae two senders, each of which sends a
signal at a slightly different frequency, the receivers danive the relative phase offset of the two
signals by comparing the RSSI readings. The distance diftar (also called thg-rangg can then
be calculated from the relative phase offset with high aacyr A g-rangeobtained from interfer-
ometric ranging from two sende#s and B, and two receiver€ andD is the distance difference
dascp = dap — dgp + dgc — dac + €, wheree is the measurement error (Figure 1).

A major advantage of interferometric ranging is that the sne@ment could be extremely accurate
compared to noise-prone RSSI readings. In a recent expetrii@, in which 16 nodes are deployed
in a 4x4 grid over a 18x18 meters flat grassy area with no ottstny the maximum g-range error
was shown to be around 0.1 meters while the medium error veastlean 0.04 meters. However,

interferometric ranging is more difficult to implement palty due to the following reasons:

1. The measurement can be impacted by various sources & swif as frequency drift, ground
multipath error, and time synchronization error [16]. Rreqcies of the transmissions need to
be precisely calibrated, as any carrier frequency drift gimalse noise would directly impact the
observed phase offset. Precise time synchronization ideukat the senders of a g-range. Thus,

there will be overhead to maintain clock synchronization.

2. Asignificantly larger number of measurements are neemtdddalization than using direct rang-
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ing techniques. While there are also a large number of measants availableJ(n*)) even for

a small network, only a small subset of them are independeeach other. The rest merely
provide redundant information. It has been shown in [15] tha number of independent mea-
surement using interferometric measurementd(is?), which is significantly higher than with
RSSI and AOA ranging@(n)). Considering the localization problem in relative cooates, for

a network ofn nodes there aren2- 3 unknowns in two dimensions and 3 6 unknowns in three
dimensionst. Thus, the smallest network that can be localized usingfer@metric measure-
ments is a fully-connected network with a populatiomet 6, where there are 9 independent
measurements available to cover 9 unknowns. The large nuofiloeranges available/required

indicates a scalability issue for larger networks.

3. Since each measurement involves four nodes, more codiaois required between nodes. Due
to the requirement of synchronized transmission, the geritheve to collaborate in scheduling
their transmission. Also, the receivers have to collaleoi@terive the relative phase offset. This
collaboration requires sophisticated protocols to be @mnted so as to reduce the communi-

cation overhead.

Those difficulties rooted in the physical characteristitgterferometric ranging devices affect the
algorithmic design of the localization algorithm. As we hgiée in the following section, the localiza-

tion algorithms based on interferometric ranging measergaitend to be more difficult to design.

3 Localization Algorithms

Obtaining measurements such as distance ranging and angteval is only the first step of local-
ization. To calculate the actual node location, we will hawveely on localization algorithms. While

there are various ways of classifying localization aldoris, we feel it is more logical to classify them

1This is because the relative coordinates are invariantntrateslation, rotation and reflection. Thus, in two dimensi
we have 2 — 3 degrees of freedom, where translation, rotation and tefteeach reduce one degree of freedom.
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according to the measurement assumptions as follows: nemivity-only, ii) range-based, iii) angle-

based, iv) interferometric ranging based, v) hybrid, andnobility-based.

3.1 Connectivity-Based Algorithms

A number of localization methods rely on connectivity infation only. These types of methods
are also referred to as “range-free” methods in the liteeat&or instance, the Centroid method [21]
estimates the location of an unknown node as the averags okighboring beacon locations. To
provide sufficient localization coverage, the Centroid moetrequires more powerful beacons with a
large transmission range.

The APIT (Approximated Point-In-Triangulation) metho®]2stimates the node location by iso-
lating the area using various triangles formed by beacoaseé&ch triangle formed by three beacons,
the node is either in or out of the triangle. For instance guFeé 2(a), if it can be determined the node
G is insideAABCand ADEF, then its location can be isolated to the shaded overlapgieg of the
two triangles. To determine whether a node is inside or datsie triangle, APIT compares the RSSI
readings from the beacons at the node with those at its neightntuitively, smaller RSSI reading
means a shorter distance (i.e., closer to the beacon) aad/gisa. If there does not exist a neighbor
that is further from (or closer to) all beacons simultandguken the node is inside triangle with high
probability. For instance in Figure 2(b), a neighboifE, can be measured to be further away from
the beacor, B andC because it has smaller RSSI readings comparirig, tdhus,D is considered as
to be outsideAABC. Conversely, iD is inside AABC (Figure 2(c)), then it is likely that its neighbors
will be closer to (or further away fromgome(but notall) of the triangle points. Clearly, this test does
not guarantee correctness every time. However, since #tera large number of triangles available
for the test O(n®) for n beacons), error can be effectively controlled. Indeadulations performed in
[22] indicated that APIT gives more accurate localizatibart the Centroid method when the beacon

density is higher. Note that although APIT makes use of RB3,only used to derive the relative
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(a) localization using overlapping triangles  (b) node outside a triangle (c) node inside a triangle

Figure 2: APIT.

proximity, but not the absolute distance. Thus, we classdg a connectivity-based algorithm.

Both the Centroid and APIT methods try to localize the nodedally from the beacons 1 hop away.
Thus, to provide better localization coverage, they regaither a large number of beacons or a large
beacon transmission range. The DV-Hop method [23] relaxels sequirement by providing a way to
localize from the beacons several hops away. In DV-Hop, éaelton floods its location to the entire
network much like the distance vector (DV) routing protodéach node maintains a DV table of the
beacon locations it has heard along with the shortest hoptdouhem. A node will only forward
the location broadcast if it has a shorter hop count thandhert one in its table. In addition, when
a beacon has heard the broadcast originated from anotheorheican derive the distance-per-hop
information based on the physical distance between the sagcdns and the hop count accumulated
along the path. The distance-per-hop information is theadbcast to other nodes. To localize, a node
extracts the hop counts to the beacons from its DV table andects them into distances using the
average distance-per-hop information it has received. nidde can then estimate its location using
multilateration based on the distances to the beacons. nstarice in Figure 3, the nod® can tri-
angulate based on the location broadcast from the beagoBsandC stored in its DV table. The
distance-per-hop is calculated as the average of the desgwer hop among all the beacons. Com-
pared to Centroid and APIT, DV-Hop requires much less nunolbdreacons. It does however have
greater communication overhead since it requires multiiesage flooding.

The above connectivity-based localization methods assimenodes are stationary. The MCL
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Node | Hop Location Distance

1D Count

A 3 (100, 100) distance-
per-hop *
3

B 4 (0, 0) distance-
per-hop *
4

C 3 (200, 10) distance-
per-hop *
3

distance-per-hop = (IBC|/6 + |AB|/6 + |AC/6)/3

Figure 3: DV-Hop.

(Monte Carlo localization) method [27] takes a novel applohy making use of the node mobil-

ity. As a node moves, it becomes connected or disconneciettiéo nodes. Based on the connectivity
observation, a unit-disk connectivity model, and a simpledom movement model of the node, MCL
updates the probability distribution of the possible naatwation. Simulation in [27] has reported as
much as three times of localization accuracy when comparétetCentroid method.

In general, connectivity-based localization algorithescd to be simple to implement, and they de-
pend less on special hardware. However, due to the lack of m@&cise measurement, the location
estimates they provide tend to be less accurate. A large euofibbeacons need to be deployed in order
to improve their accuracy. Sparse networks by nature aoteas connectivity information, and thus

they are more difficult to localize accurately using conivitgtbased localization methods.

3.2 RSSI and ToA Range-Based Algorithms

Many algorithms use the RSSI and ToA measurement to dereseitance to the senders. The DV-
Distance method [23] behaves much like the connectivigedaDV-Hop method. But instead of in-
crementing the hop count, DV-Distance increments the wigtdetween from hop to hop as beacons
broadcast their locations. Since the distance at each hopecquite different, DV-Distance can obtain

more accurate range to the beacons compared to DV-Hop, whlgltonsiders the average case. How-
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Figure 4: Multihop Distance Derivation in Euclidean.

ever, its performance becomes heavily dependent on thexgngeasurement accuracy. The Euclidean
method [23] tries to derive the distance to a beacon thatveraehops away by measuring RSSI or
ToA to its neighbors. For instance in Figure 4, the nBdis several hops away from the bead®nTo
derive its distance té, D obtains the distance using RSSI or ToA to two neighti®endC, where
the distanceéAB, AC andBC are known. The distancg&D is the second diagonal of the quadrilateral
ABDC. Depending on wheth&BDC is convex or concave, two solutionsAD exist. This ambiguity
can be solved by examining multiple quadrilaterals IM@DC. Once the distances to at least three
beacons have been obtained, both DV-Distance and Euclidetlrod estimate the node location using
mulitlateration.

The Collaborative Multilateration method [24] is also bde& mulitlateration from ranging. How-
ever, it allows nodes being triangulated from non-beacaero Initially, all non-beacon nodes are
assumed to be at some random locations. As a node receivesgtsdors’ estimated locations, it tries
to triangulate its new location with the least mean squamar.emhe newly estimated location is then
sent back to the neighbors for their own mulitlateratione phocess is iterated multiple times, and the
idea is that eventually the location information from thedens will propagate to remote nodes via
collaborative multilateration. However, it is foreseeatiiat the nodes further away from the beacons
would be slow to converge. The Hop-TERRAIN method [25] ma&esmprovement in this regard

by using the DV-Hop method to derive an initial coarse lamatilt then runs the collaborative multi-
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[X,—a,Xg +h+(]

Figure 5: Bounded Region in n-Hop Multilateration.

lateration to further refine the localization results frdm tlistance and location information from the
neighbors. The n-Hop Multilateration method proposed B [Zses a bounded box model instead of
DV-Hop to provide initial location estimates. For instameé-igure 5, while nod® is two hops away
from the beaco® and one hop away from the beacAnit is still bounded by the distance constraints.
The bound on the coordinates igxa — a,xg + b+ ¢], wherea = |AD|, b = |BC| andc = |CD. Using
this kind of geometric bounding via multihops, an initiat&tion of the node can be derived.

The iterative multilateration provides a way to deal witk thfficult question of how to effectively
use the beacon information several hops away. Howevee #irticats location estimates from non-
beacons the same as beacons, the beacon information caickly guatered down by the inaccuracy
of non-beacons. The probabilistic localization method2@] [explicitly considers the location uncer-
tainty of non-beacons by the means of probability distidng. In particular, each node location is not
represented by a singular value but a probability distridsuin terms of particles. Initially, all non-
beacons have a uniformly distributed particle distribasioTo localize, nodes exchange their particle
distributions among the neighbors and run Monte-Carloriiitgebased on the RSSI or TOA measure-

ment data to update the particles. Eventually, the pastieié be refined to the true location of where
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the node resides. The particle filtering method allows baltative localization as shown in Figure 6.
Here, nodes 2, 3, and 4 are beacon nodes, while nodes 0 anshdrabeacons. Of the beacons, node
0 can receive signals only from nodes 1 and 4, and node 1 caiveesignals from only nodes 0, 2,
and 3. From the signal strength readings, non-beaconsatstihreir distances to their neighbors. The
probability distribution of the estimated location is repented by the particles (dots) in the graph. In
sub-figure (a), where node 1 is removed, node 0 can only res@wals from node 4; thus as the parti-
cle distribution indicates, the probability distributiainere node 0 is most likely located concentrates
on a circle around node 4. In sub-figure (b), where node O i®venh node 1 can receive signals from
nodes 2 and 3; thus the most likely locations for node 1 ceartaind two areas where “transmission
circles” around node 2 and 3 intersect. Intuitively, in artielocalize itself, a node needs to receive
location information from a minimum of three beacons eittieectly or indirectly. In both case (a)
and case (b), the exact location of the nodes 0 and 1 cannatcheceld because they do not receive
location information from all three beacons. In (c) and (@d)ere all nodes are available, nodes 0 and 1
are able to communicate to each other and exchange thatledaistributions. Thus, their probability
densities will represent their actual locations much al@sen though neither node receives location
information from all three beacons directly.

Compared to range-free methods, range-based methods greeatcurate location estimates when
ranging data is reliable. However, depending on the depémtrenvironment, ranging techniques
based on RSSI tend to be error-prone and strong filteringgsined. The ranging error could ulti-
mately destroy the localization accuracy if it is allowedtopagate through the network unbounded.
Furthermore, different methods generally exploit theératf between the estimation accuracy and the
estimation coverage. For instance, given the same netweriasio, the Euclidean method is capable of
generating more accurate location estimates of a smalsesof nodes, whereas the DV-Hop method
has better coverage but worse accuracy. Regardless oatlenff, a common characteristic shared by
distance-based localization algorithms is that they meqairelatively high network density in order to

achieve better results. Based on the extensive simulafivdistance, Euclidean and multilatera-
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Figure 6: Collaborative Localization Using Particle Fi#te

tion methods performed in [20], it can be concluded thatehdistance-based localization algorithms
“require an average degree of 11-12 nodes within the ranggnghborhood in order to achieve 90%

localization coverage with 5% accuracy [20].”

3.3 Angle-Based Algorithms

Even though the future of AoA sensing devices is still unglsame works have been published on lo-
calization using angle information. Simulation studie§2@] also show that when AoA of the signals

is used in addition to the distance measurement, the lataizaccuracy and coverage can be drasti-
cally improved. This should not come as a surprising comafyss nodes need to communicate with
only one neighbor to perform localization if they can obtaath AoA and distance measurements. The
work in [20] also presents three variations of a weightedmsepuare error algorithm that localizes the
nodes, each of which is designed to work with one of the threasurement types: i) distance-only
measure, ii) distance plus a more accurate AOA measure (8pdbprecision) and iii) distance plus

a less accurate AoA measure (up td @ precision). The less accurate AOA measurement method

is sometimes referred to agctoring Simulations in [20] show that the localization accuracyl an
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Figure 7: Multihop Distance Derivation in AoA Triangulatio

coverage can be greatly improved with such coarse sectoraagurement as well.

In order to localize withonly AOA measurement, the AoA triangulation method propose®8j [
can be used. The triangulation takes several AOA measutsrfrem beacons and estimates the node
location with least square error. To propagate the AOA memsant for more than one hop, the AoA
triangulation method uses a approach cabbeiéntation forwardingthat is similar to the Euclidean
method for distance ranging. For instance in Figure 7, leA Aweasurement be the bearing against
South. For nod® to derive its bearing to the beacdn(i.e., Z/SDA), it can contact two neighbors,
B andC, with known AoA measurements from the beaddii.e., /SBA and /S CA are known).
FurthermoreB, C andD can measure the AoA of each other to give the readingsBC, /SBD,
/SCB, Z/&CD, £/$DB andZSDC. From there, all angles i ABCand/ABCD can be determined.
The bearing fromA to D can be derived ag $SDA = Z/SDC + ZCDA, where Z/SDC is known,
and Z/CDA can be determined frodd ABC and ABCD. Using the orientation forwarding method, the
bearing to beacons can be propagated through mutlitopghwdan then be used to triangulate the
location. However, much like the case of distance propagatheasurement error becomes aggregated
at each hop. Simulations in [29] have reported a near linear encrease to the hop count.

Overall, due to the limited availability of AOA sensing dess, relatively few algorithms have been

proposed for AOA. However, it is conceivable that some lizedilon algorithms originally proposed for
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RSSI or ToA ranging can be adapted to AoA. For instance, tbhbafilistic algorithm in [26] can be
updated to accept AOA measurements by simply providingt@nreltive measurement model for AOA

during patrticle filtering.

3.4 Interferometric-Based Algorithms

Due to the fact that interferometric sensing devices foaliaation are relatively new, there have been
only a limited number of localization algorithms proposedthis type of measurement. When com-
pared to RSSI/ToA ranging and AoA, all of which involve twodes for each measurement, it is more
difficult for interferometric ranging to propagate the ltoa information from the beacons since four
nodes are involved. To eliminate the multihop propagatssae, a simple genetic algorithm approach
was taken in [16], which propagatedl interferometric readings within the network to a centrediz
location and runs a genetic algorithm to find the node loaattbat match the readings. Such approach
is more of theoretical interest than practical use, singecantralized method is not scalable to large
networks. A Pair-wise Distance method was proposed in [38 wses both interferometric and RSSI
ranging. The method uses the interferometric ranging tvelgair-wise distances among the nodes.
The node locations can then be optimized using the leasts@uer method from the pair-wise dis-
tances. The algorithm then repetitively applies the RS&jirey measurements to fine-tune the location
estimates. Compared to the genetic algorithm, the Pag-distance method is able to converge much
faster. However, it is currently still a centralized algbm, which presents the same scalability issue
as the genetic algorithm.

Both of the above algorithms try to optimize for a global ¢ given an entire set of interferometric
measurements. Intuitively, finding a global solution toltwlization problem is often difficult because
of the large search space and the large number of constgaretsby the interferometric measurements.
Thus, it is desirable to find the solutions in some subspassafid then incrementally build up to the

global solution. For instance, an iterative approach ha&s lpgoposed in [31] that localizes from a



Device Localization in Ubiquitous Computing Environments 24

small set of seeding beacons. As additional nodes have beahzed at each round , they act as
pseudo-beacons that allow other nodes to be localized aegquknt rounds. The iterative method is
fully distributed. However, error propagation can be améssince any localization error at pseudo-
beacons would adversely affect the localization resultbsequent rounds. Simulation results in [31]

have shown a linear increase of localization error at eachdo

3.5 Hybrid Algorithms

A combination of the above techniques can be employed to fiytonid methods. For instance, a hybrid
method is proposed in [32] that uses both DV-Distance [28] Blulti-Dimensional Scaling (MDS)
[49]. The algorithm contains three phases. In the first phasgnall subset of nodes are selected as
reference nodes. In the subsequent phase, the refereneg ar@then localized in relative coordinates
using MDS. The final phase uses DV-Distance to localize thieakthe nodes in absolute coordinates.
The rational behind such hybrid algorithms is to exploit tredeoff between different localization
algorithms. For example, MDS gives good localization aacyrbut as the network size is increased
MDS can be costly. Meanwhile, DV-Distance is less costly,ibanly works well when beacon ratio

is high. With hybrid algorithms, the cost is minimized by pynlinning MDS on the reference nodes,

and the reference nodes are used as beacons for DV-Distance.

3.6 Localization Using Mobility

While most previous methods assume stationary beacoridosatin alternative method is to localize
devices using a mobile beacon. In this method, a mobile lmetravels through the deployment area
while broadcasting its location along the way. Devices liaegahemselves by monitoring information

coming from the beacon. A straight-forward technique usiregabove method is described in [46],
where devices are required to receive at least three conwations with the same RSSI reading from

the beacon. Given that the same RSSI readings imply simisarttes to the beacon locations, the
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physical device location can be derived using simple geominctions. Computation-wise, this
method is simple making it suitable for resource-limitedss®s. However, it requires the beacon to
directly pass by the ranging area of the device. In addiiomost cases, the beacon has to pass by
the device twice because the sampling positions of the Imeaben the three RSSI readings are taken
should not be on the same line. This method also assumesrtbet are insignificant in the RSSI to
distance translation.

Instead of computing the location directly, a probabitistpproach may be taken; here device loca-
tion is viewed as a probability distribution over the depimnt area. In [45], devices measure a series
of RSSI readings from the mobile beacons and localize thimes®y a sequential update process to
the probability distributions of their locations. Each aevstarts with a uniform distribution covering
the entire deployment area. As the beacon passes throegtisthibution is updated to fit the received
RSSI readings (using a propagation model). The methodtisdummproved in [47] by adding the neg-
ative information (that is, the information that the beaoout of range) as well as RSSI readings from
the neighbors. These probabilistic methods provide witlelmmproved location estimates, but have
the drawback of being complex. For a deployment grid bl n units, the time and space complexity
is O(n?). As the devices such as sensors at present time have vetgdingisources it is difficult to
implement these methods directly for the large deploymiewteed, the experimental results shown in
[45] are performed on pocket PCs, which are much more powtidn common devices such as cheap
sensors.

A similar method of localizing the networks using a mobileaben is presented in [48]. Instead
of the actual probability distribution, the possible deviocations are represented with a bounding
box. As the beacon passes by, the area contained by the Ibguinox is progressively reduced as
positive and negative information are processed. The hogritbx method drastically simplifies the
probability computation, making it possible to implemednstmethod on devices. However, such large
simplification has its side-effects in that it sacrifices pieciseness of the distribution for its simplicity

as it is not possible to describe multiple possible locamith a single box. There is also an additional
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problem when noise from the ranging devices is considerb. method may work well when ranging
error is minimal, however when noise is present (which isitagle when using RSSI ranging), there

might be situations where no bounding box exists to satibfgadings.

In summary, different measurement types and their uniqopesties to a large degree dictate the
design of localization algorithms. For instance, connvgtbased measurements can only provide
coarse localization without a higher beacon percentagedalrdegrees. Range and AoA-based mea-
surements can provide much finer localization results by #te more prone to measurement error. A
guantative comparison between the more well-known algmstsuch as DV-Hop, Euclidean and mul-
tilateralization can be obtained from [33], in which the qmarison is done in the context of specific
constraints of sensor networks, such as error tolerancerady efficiency. Their results indicate that

there is no single algorithm that performs “best” and thatéhs room of further improvement.

4 Theoretic Results

While there have been many localization algorithms progdee various scenarios, it is only recent
that the theoretic aspects of the localization problem haesn explored. We are particularly interested
in the following three theoretic problems with regard todbzation: i) localizablity, ii) complexity of
localization, and iii) error bound.

First of all, we would like to know that given a network scdodi.e., the nodes and their relative
measurements such as ranging and angling) whether it isctieadly possible to uniquely localize the
network. Such knowledge ddcalizablityis important to us because if we can easily identify that the
scenario is impossible to localize uniquely, then it woudddointless to run any localization algorithm
on it. Instead, we would have to request additional nodesearstrement data to be available (by pos-
sibly deploying more nodes or beacons) so that the locdiigabquirement is satisfied. The following

theorem gives the necessary and sufficient condition feanég-constrained network localizability in
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two dimensions.

Theorem 4.1. The network is localizable in two dimensions if and only & tletwork graph is redun-

dantly rigid and triconnected [36, 35].

Theorem 4.1 holds only for two dimensions. The sufficientdittmn for higher dimension is cur-
rently unknown. To test the localizability, there existsaiypomial time algorithm@(n?), wheren is
the number of vertices) that tests for the first-order rigi(ee [36] for one implementation). However,
it is a known NP-Complete problem to test for the second-ordédity of a graph [37]. A related but
even more difficult problem is theode localizability which asks if a particular node (instead of the
entire network) is localizable. No sufficient condition afde localizability is currently known even in
the two dimensional case, and thus no deterministic algorturrently exists.

A second problem asks for the theoretic complexity of |azlon itself. In particular, we would
like to know that given a network scenario that satisfies linahlity whether there exists a deter-
ministic polynomial time algorithm that would localize timetwork. This problem deals with the
NP-Completeness of localization. Unfortunately, the hass of graph realization has been shown as
NP-Hard under the measurement of distance [38], angle §dDhectivity [39, 41], and interferometric
ranging [31].

The above theoretical results indicate the general irghdlitly of the localization problem even in
the ideal case where measurements (such as edge distarec@8P&6 accurate. Unfortunately, mea-
surements in the real world are a far-cry from being accueatd any optimization method has to deal
with not only different measurement types but also noise [dhalization inaccuracy attributed to the
measurement types and noise can be mathematically quaigied Cramer-Rao Bounds (CRB) [13].
The CRB is alower bound on the covariance of any unbiaseditooastimator that uses measurements
such as RSSI, ToA, or AoA. Thus, the CRB indicates a lower dafrthe estimation accuracy of a
given network scenario regardless of the localizationréigm. In other words, with CRB we have a

way to tell the besanylocalization algorithm can do given a particular networleasurement type and
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measurement noise scenario. CRB formulas of individualstnegment types such as RSSI, ToA and
AOA under most common noise models (mostly Gaussian) arermily known.

The CRB of the localization error for a sample network is show Figure 8 as rings of radius
= 0j. Here, the square nodes are the beacons and the circle nedes lze localized using RSSI
ranging. The edges indicate the communication links abvkslo measure RSSI readings. We assume
the measurement model to be RSSI with the path loss expopen® and the standard deviation of the
noiseagg = 0.7. A ring with smaller radius (i.e., a smaller CRB) signalattmore accurate localization
result can be theoretically obtained. Conversely, a langeyindicates a larger localization variance
and thus a less accurate result. In the figure, two types agsidd not have rings. First, all beacons
have a CRB of 0. There are also regular nodes that have in@ft indicating that those nodes are
theoretically impossible to localize. The latter case carséen at nodes 38, 48, 49 and 78 in the top
left corner. At the minimum, three beacons are needed tdizeca connected network. However, those
nodes in the top left corner are isolated to a different parti Since they are connected to only one
beacon (node 91), those nodes clearly cannot be localizéter @han those cases, the CRB rings at
the main network partition clearly show the level of locatipn difficulty under various scenarios. In
general, we observe that nodes closer to the beacons teasid@tsmaller CRB than the ones that are
several hops away. Even smaller CRB can be obtained wheneaisiotbser to more than one beacon.
All of the above observations match our common intuitionubocalization difficulty.

It is important to note that CRB is essentially a theoretiarmbthat depends on the measurement
model. In the real world, its usefulness is limited by howwaate the measurement model reflects the
reality. Nevertheless, CRB can be a useful tool in comparargus localization algorithms. It can be
used to validate how close a particular algorithm can conthisotheoretic lower bound and to see if

there is any room for improvement in the algorithm design.
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Figure 8: The CRB of the sample network is depicted as ringhefradius= o;. There are two
exceptions: 1) beacons, depicted as squares, have 0 CRB) aonhe regular nodes have infinite CRB
(such as node 38, 48, 49 and 78 at the top left corner) indig#tiat they cannot be localized
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5 FutureDirections

Device localization within ubiquitous computing enviroent has been an active research field in the
past several years. Much work has been done in the area aféwdesign (in particular, reducing the
form factor and power consumption of sensory devices),rdalguic design and theoretical analysis.
However, like many areas of ubiquitous computing, locaiarais still a relatively new front with much

of the work yet to be done. In this section, we will briefly diss a few directions which we feel that
would produce fruitful results in the near future on the lazion problem. We hope our discussion
would serve the purpose to motivate the readers to actiatycgpate and contribute their own ideas

to this field.

5.1 Implementation and Testing Environment

When reviewing the previous works on localization, one catelp but noticing a disturbing trend: a
majority of works on localization have been based on eitheotetical models or simulations, while
works based on the result of actual hardware implementhtiwa been relatively few. It is not difficult
to project that the primary reason for such trend is the hardwost. To perform meaningful exper-
iments for localization, especially for those collaboratlocalization methods such as DV-Distance
and Euclidean, one would normally need a large number (16Ddgvices. Although mobile ad hoc
network devices (for instance, sensors) are becoming endgpthe day, it is still quite costly to im-
plement them on physical devices in such large scale. Irtiaddthe sensing capacities of the current
devices are usually limited to RSSI. Currently, there is heap hardware that implements AoA, ToA,
or interferometric ranging, and thus most works using thmeasurement types are all based on simula-
tions. In a sense, the advances in algorithmic work on thadilcattion problem are currently outgrowing
the advances in hardware. Future work needs to be done thicagily improve the hardware design
to fill this gap.

Another issue related to the testing environment is thatetie no common localization testbed.
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While large scale network simulators such as NS2 [42] has duhedor simulating mobile ad hoc
networks, the module does not contain localization. Smallaulators for sensor networks such as
SENSE [43] usually lack features on localization as well.other simulator SENS [44] does explic-
itly implement localization, but it uses a rather primiti@entroid method and lacks more sophisticated
methods. Since NS2 is the most widely-used network simyliat@ould be very helpful for researchers
to implement an interface to NS2 that allows a “plug-in” fatudre localization algorithms. This would
give a common testbed for different localization schemesreMmportantly, it would also allow those
location-depended algorithms (such as location-aidetdngumethods) to be implemented and com-
pared based on the result of localization. The localizatrmaule should also implement the Cramer
Rao Bounds(CRB) so that the theoretic error bound can bele#da for different localization scenar-

ios.

5.2 Interferometric Ranging

Since interferometric ranging is a relatively new type ofasigrement available to the localization
problem, there are still many open problems in this area. h@flbcalization algorithms proposed
for interferometric ranging, all but the iterative algbnt proposed in [31] are centralized. There
is a definite need to design distributed localization altpons for interferometric ranging so that it
can be implemented with reasonable efficiency and scalabilo reduce the number of beacons, the
distributed algorithms should make use of multi-hop lamatnformation, which unfortunately is much
more difficult for interferometric ranging because each sneament involves four nodes. For instance,
there is a scheduling issue, both at a high level and low |@fekhen a device should be scheduled
to send or receive interferometric readings. At a high lesilce not all g-ranges are independent, it
is more desirable to schedule the senders and receiverdentorgenerate more independent g-ranges
instead of dependent ones. At the low level, after the seraed receivers are selected, they have to

be scheduled to coordinate the signal transmission bethe$snsmission needs to be synchronized.
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The design of the scheduling algorithm can have a substanpact on the overall performance of the
localization algorithm, in terms of the localization acacy and communication overhead.
Furthermore, simulation study in [31] has shown that thetiidp error propagation has a big
impact on interferometric ranging, which increases alrntinstarly as the localization results are prop-
agated at each hop. Therefore, the control of the error gatjmn is another issue. There is also a
need for an algorithmic independent theoretic error boliked CRB) for interferometric ranging. The
bound would be more difficult to derive than those for disearanging and angling because more than
two nodes are involved in each measurement. Thus, thedef@ndence between the error and the
relative locations of senders and receivers becomes matkerhing to characterize mathematically.
However, the payoff of obtaining such bound is that it wodldvwa us to ultimately compare interfer-
ometric ranging with other measurement types and idertiéyscenarios that are preferable for each

measurement type.

5.3 Collaborative Localization of Multiple M easurement Types

Previous localization algorithms often assume that the@eenetworks are to be localized using the
same type of measurement (such as connectivity-only, RI®®|, AoA, or interferometric ranging).
However, to be true to the spirit of ubiquitous computingsiforeseeable that future networks will
be consisted of devices of vastly different capacities imgeof i) different transmission coverage, ii)
power requirement, and iii) measurement sensors. Thusmgllocalization it is often desirable to
explicitly consider varied devices capacities in such ilgfeneous networks. For instance, in terms
of varied power requirement, the localization algorithnowd exploit the devices with more power
capacity and try to minimize the calculation performed @slpowerful devices. Furthermore, differ-
ent measurement types have different error charactevistiavould be interesting to investigate how
to collaborate multiple measurement types during locabmaand in particular how the collaboration

would impact the localization error. Intuitively, incon@ding multiple measurement types in the same
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localization scenario should improve performance sinah swllaboration can potentially cover the
drawbacks of individual measurement types for each othefortunately, such collaboration could
mean an increased complexity of the localization algorglaince heterogeneous networks would in-
validate some assumptions often made by simple localizatgorithms (such as uniform transmission
range). Thus, while it is worthwhile to consider collaboratlocalization algorithms, it is equally

imperative to keep the localization overhead under control

6 Summary

In this chapter, we studied the localization problem in ulitmus computing environment. Localiza-
tion in general refer to the problem of identifying the ptogdilocation of the devices from a limited
amount available measurement data. The most common messrg/pes include device connectiv-
ity (i.e., whether two devices are neighbors), rangingg &SI and ToA, angle of arrival (AoA) and
interferometric ranging. Given a small number of nodes \aithurate geometric location using GPS
receivers, localization algorithms try to derive the lagatof those devices that are not GPS-enabled.
The motivation of localization can be justified by the largenber of algorithms proposed for ubiqui-
tous computing that rely on (semi-)accurate location imfation and the fact that current technology
prevents GPS to be installed on all network devices due tepoanstraints and form factors. It has
been shown that localization in general, regardless of thesmrement types used, is an NP-Hard prob-
lem. Thus, current effort in solving it relies on some sorstiichastic optimization. Meanwhile, as
with other network-related problems in ubiquitous compg&nvironment, the ideal solution calls for
a distributed but efficient implementation, which leadsdditonal challenges.

Like other aspects of ubiquitous computing, the local@afproblem is relatively new. The prob-
lem is also conceptually straight-forward to character@el many results from other disciplines such
as graph theory, optimization theory, online algorithms ba readily applied to this problem. Thus,

researchers from other area can provide valuable insightthuld lead to better solutions to the prob-
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lem. It is our hope that this brief introduction would progithe readers motivations and inspirations

to research in this field.
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