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Abstract. Pervasive computing is an emerging technology that offers new possibilities to distributed computing
and computer networking; it employs a wide variety of smart, ubiquitous devices throughout an individual’s
working and living environment. Mobile agents are software entities that can migrate between servers (mobile
agent environments) of the network accomplishing various tasks on the behalf of their owners. The objective of
this paper is to describe a test and prototyping environment for experimenting with mobile agents in pervasive
environments. A prototype environment for a novel, proactive infrastructure is described for mobile agent assisted
pervasive computing. In addition, a new message passing algorithm is provided for mobile agent connection
establishment and management (CEMA). Simulation results show the performance of the proposed approach.
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1. Introduction

This paper introduces a new mobile agent communication paradigm to be used in pervasive
computing environments [1, 7, 10, 23, 27]. Mobile agents are software entities or programs
that can migrate from host to host, at the instance and destination of their own choosing.
A host refers to any node with computational capabilities providing an execution environ-
ment for mobile agents. Hosts can vary in size and computational power from tiny sensory
devices through small portable computers to large servers. Typical examples include work-
stations, desktops, laptops, PDAs, and more sophisticated/dedicated devices such as routers,
database servers, or access points. There are several wellknown mobile agent environments
in existence today, including IBM Aglets [14] (Java bytecode based), Tcl agents [9, 11],
and Telescripts [6] (both script based); all of these methods are interpreted by respective
agent servers enabling code mobility.

Pervasive computing is a newly emerging paradigm to provide users with anytime any-
where access to information or computing resources. Pervasive computing enables conve-
nient access to relevant information for users and applications through a class of intelligent
and ubiquitous software and hardware entities that have the ability to come alive and become
available when and where needed. Ubiquitous entities refer to small, mobile computing
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devices such as handheld phones, portable and wearable computers and appliances equipped
with intuitive user interfaces to enhance information processing while being accessible
in different types of networks. Many research groups and projects throughout the world
are focusing on various aspects of pervasive computing, e.g., the Oxygen project at MIT
[18].

The motivation behind this paper is to extend the mobile agent paradigm to pervasive
computing environments, enabling the development of novel ubiquitous applications. One
of the features of mobile agents is the asynchronous and autonomous behavior of mobile
agents. Mobile agents are generally transport layer and architecture independent depending
only on the availability of the execution environment. Mobile agents can be designed to be
robust and fault tolerant to dynamically adapt to unfavorable conditions.

The prototype designs of the mobile agent architecture as well as the server for the mobile
agent architecture are described in Section 2. Section 3 outlines a novel Connection Estab-
lishment and Management Algorithm CEMA for message passing among mobile agents
in heterogeneous networks. Section 4 presents a simulation based performance analysis of
CEMA. A very preliminary version of this research has been previously published in the
PDPTA’03 Conference [15]

2. Background and previous work

There are several well known mobile agent and pervasive computing environments in ex-
istence, including IBM’s Aglets [14], Tcl Agents (now known as D’Agents) [9, 11], Oxy-
gen [18], DECAF [8], Java-To-Go [16], and Pico [12]. In addition agent communication
languages such as MASIF (Mobile Agent Systems Interoperability Facility) [13, 20] and
KQML (Knowledge Query Manipulation Language) [2] are used to enable agent commu-
nication and verification [26]. Experimental mobile agent infrastructures have been imple-
mented and deployed in distributed systems [3]. Mobile agent systems provide the software
environment for mobile agent programs to start running on a host computer and, at will,
suspend their execution state and move to another host, where they may resume execution.
Unlike aglets, which are small applications sent to a client and run once from start to finish,
mobile agents continue execution where they left off and may move an arbitrary number
of times to any number of hosts. Where code-migration systems attempt to distribute work
load by moving running programs, mobile agents move according to their own needs and
routes.

Stationary programs are compiled and executed or interpreted on a host computer while
mobile agents must be transported from one host to another and run on hosts with possibly
different processors and operating systems. These constraints usually encourage the build-
ing of mobile agent systems utilizing scripting languages which are directly interpreted
(e.g., Tcl) or programs compiled to an interpreted intermediate form (e.g., Java bytecodes).
Not only do these languages allow portable execution on heterogeneous hosts, the code
transported is typically smaller than binary executables. Other benefits of interpreted forms
include providing for some security considerations for running on a host (for example,
Java sandbox or trusted/signed code) and the ease of freezing execution before transporting
by capturing the runtime stack state not actual processor memory (which may be virtual,
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mapped, and contain pointers). The additional cost of interpretation may be offset by just-
in-time compilers and smaller network data payloads.

Another critical issue in mobile agents is the ability to communicate with other agents
(stationary or mobile, of the same type or different). This issue has resulted in OMG (Object
Management Group) building a CORBA based standard MASIF which deals with managing
(creating, suspending, resuming), transporting (between agent systems of different types)
and naming mobile agents. While MASIF promises easier communication between agents
it does not attempt to handle a mobile agent wanting to communicate with a non-agent
source of information or handling the meaning of the data at a source (where the names of
the data may be different but the data contents are the same), or where the host may have
higher-level ways of managing data that the mobile agent was not originally programmed
to handle (for example: advanced queries versus a simple string search).

Agent communication languages (ACL) such as KQML (a Lisp-like s-expression based
language) are a multi-layered (content, communication and message are separated) way
to describe information meta-data (e.g., by defining what is required and what are the re-
quired capabilities). KQML describes facilitators as agents that “match-make” connections
between information requestors and providers and may optionally translate and mediate
between clients and providers.

Researchers at Georgia Tech have been innovative in using mobile agents in pervasive
computing environments, one approach has been linking agents with mobility [24], while
work emphasizing mobile agent security has been described in [21]. Other groups have
focused on using agents to provide collaborative as well as ubiquitous computing as in
Berkeley’s Lawrence Berkeley’s National Laboratory Pervasive Collaborative Computing
Environment Project [4].

Finally, pervasive computing environments employ agents to create an “anytime, any-
where” smart environment where specialized hardware and software interoperate and com-
municate to provide a community of agents. MIT’s Oxygen project is modeled after the
Oxygen in the air (available for breathing but not visually noticeable). Special hardware,
embedded devices (cameras and microphones, for example) will work with handheld de-
vices (such as a personal digital assistant- PDA) utilizing a self-configuring network to
automatically locate devices, people or services in an ever present environment that never
shuts down or needs to be re-booted. Users are expected to communicate in natural language
speech and through gesturing to cameras to devices or other people, special software and
the network will provide security, support changes, and provide interoperability. Analogous
to Oxygen, the PICO project at UTA is striving to develop a ubiquitous environment mid-
dleware providing a mission-oriented dynamic community performing tasks for people and
devices. Standard or specialized hardware devices will have mobile (or stationary) agents
placed on them that allow them to create very fast forming dynamic communities to respond
to special needs, for example cameras that detect a car accident will find devices to call an
ambulance and hospital, when needed.

Our proposed infrastructure works with mobile agent systems and agent communi-
cation languages to allow mobile agents in a pervasive environment to find other mo-
bile or stationary agents and exchange messages (of any type) with them reliably and
efficiently.
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3. Prototype architecture

One of the main research thrusts in the field of pervasive computing is making the com-
putations and functional behavior of the system invisible to users while providing smart
spaces around ubiquitous devices [27]. The proposed software infrastructure relies on the
operating system to provide the execution environment for mobile agents. The requirements
for the proposed software infrastructure in a host are as follows:

• Allow multiple mobile agents to co-exist and execute simultaneously without interfer-
ence.

• Provide means of communication between mobile agents and the host, and between
mobile agents.

• Provide a transport mechanism to transfer and receive agents to or from other hosts.
• Provide mechanisms to save the state of an executing mobile agent.
• Be capable of receiving a mobile agent and resuming execution from the point it was

suspended.

The agent environment consists of five software blocks as outlined in Figure 1.
The Data Router is the nerve center of the infrastructure. It is responsible for receiving,

interpreting and exchanging data between the mobile agents and the outside world. The
architecture of the data router is as shown in Figure 2.

All incoming data flow into the data router through the XML parser. At the XML parser,
the XML tags are parsed and send to the interpreter. The interpreter consults with the direc-
tory services to determine whether the data is addressed to the current host and interprets the
type of data. If the data is not addressed to the host, it is sent to the XML generator where the
appropriate modifications are made to the data and then transmitted to the most appropriate
host. The primary function of the data distributor is to deliver data to mobile agents within
a host. It is also responsible for transferring mobile agents to the MA loader. The XML
generator is responsible for generating XML tags for the data that is to be sent outside

Figure 1. Prototype architecture.
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Figure 2. Architecture of data router.

the host. The routing functions are supported by the directory services. Directory Services
provide lookup tables for inter-host as well as intra-host data transfer. Directory services
implement three directory-tables for communication services: resource table, service table
and lookup table:

The resource table maintains information on neighboring hosts. The service table stores
information about mobile agents residing in the neighboring hosts as well as the native
host. The lookup table implements a volatile cache of mobile agent addresses enabling the
routing of messages among mobile agents.

The Mobile Agent Loader (MA Loader) provides the execution environment for the
mobile agents. It maintains a process table with entries for each of the currently running
mobile agents in the host, while tracking of the execution state of these agents. The MA
loader is capable of (i) receiving mobile agents as a serialized binary objects; (ii) de-
serializing the binary objects; (iii) allocating a process space and launching the mobile
agents. It is also able to retrieve the previous context of the mobile agent and resume its
normal execution. When a mobile agent wants to migrate from one host to another, the MA
loader is capable of serializing the mobile agent and sending it to the XML generator, where
the necessary XML tags are generated.

The Operating System Support Layer provides low-level services to the other compo-
nents in the infrastructure; it maintains information about the host system and provides
communication channels and basic input and output primitives. Figure 3 shows the details
of the OS support layer. It is assumed that the OS support layer is also hardware dependant.
Information on hardware components of the host is sent from the OS support layer. Mobile
agents are capable of communicating with the operating system by means of OS Support
Layer.

3.1. Mobile agent architecture

A mobile agent is a thread of execution so it has all characteristics of a thread with some
enhancements. Mobile agents inherit all properties of threads; they are able to spawn parallel
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Figure 3. OS support layer.

threads on their own, sleep, suspend, stop and resume like any normal thread. In order to
enable migration, mobile agents have a serializable interface that allows the process to be
suspended and transported. Mobile agents should also have a uniform MA interface with a
standard framework for mobile agent communication.

A UML representation of a mobile agent is given in Figure 4. All other mobile agents are
inherited from this base mobile agent and may have additional functionality to meet special
needs. The basic infrastructure remains the same in all mobile agents. The basic architecture
of a mobile agent is depicted in Figure 5. Mobile agents consist of three modules: functional
module, control module and communication module:

• The functional module contains the functions the mobile agent should perform; the func-
tions can receive input from the host, or from other agents.

Figure 4. UML representation of mobile agents.
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Figure 5. Basic mobile agent architecture.

• The control module consists of three submodules maintaining information about the
mobile agent. The ID sub-module is responsible to carry the MA identity. The Peer sub-
module maintains a list of peer mobile agents. The State sub-module stores the state
information of the MA.

• The communication module maintains a common framework for communication with
the software architecture. The MA Interface submodule allows simultaneous reception
and transmission of messages between agents. The input buffer provides buffering for
incoming data, while the output buffer does the same for outgoing data. The serializable
interface serves the agent in preparing for migration to another host by suspending all
parallelism.

4. CEMA

CEMA (Connection Establishment and Management Algorithm) is used to establish and
manage connections between mobile agents. CEMA ensures that all mobile agents are
able to communicate with peer agents even in sparsely connected pervasive networks.
Previous research addressing communication among mobile agents has concentrated on
fully connected networks, in which any two hosts can communicate with each other directly
[23]. While an active message approach [24] uses an agent to route messages on-the-fly,
CEMA calculates routes on demand.

4.1. Design components

The network between hosts is represented by an undirected graph G = (V, E) where V is the
set of vertices representing the hosts, and E is the set of edges representing a communication
link between two hosts. Exy denotes a connection between vertices Vx and Vy implying
a full duplex communication channel. Cx represents the set of vertices connected directly
to Vx . Communication between two hosts not directly connected with each other requires
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Figure 6. A sample network.

messages relayed by other intermediate nodes. A sample multihop network is depicted in
Figure 6.

Key parameters of messages relayed from one host to another are: mode, sid (sender
mobile agent id—the unique identifier of the originating MA), shid (sender host id—the
unique identifier of the originating host), rid (receiver agent id—the unique identifier of
the destination MA), ts (timestamp), info (the body of the message), current (the unique
identifier of the host currently running CEMA on the message). Depending on the mode
parameter, messages are divided into three categories:

• Control messages (mode = 0): contain routing information and are dispatched when an
agent is launched in the agent loader. When an agent migrates, it will transmit control
messages to its peer mobile agents.

• Normal messages (mode = 1): contain user data to be relayed between mobile agents.
• Acknowledgement messages (mode = 2): contain acknowledgments for messages.

As described in Section 3, each host maintains three tables in the directory services that
help in sending messages:

• Resource table: is a hash table maintaining information on the physical neighbors of a
specific host with unique identifier hid (host id). The hids are used as keys associated
with corresponding values (values) (communication parameters).

• Service table: is a hash table maintaining information about mobile agents residing in
the physical neighbors of hosts. A typical key in a service table is the unique identifier
of mobile agents residing at the neighbors while the corresponding values are the unique
identifiers of the serving hosts.

• Lookup table: is a hash table maintaining routing information on mobile agents in a host
with unique identifier hid.
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4.2. CEMA primitives

The following list contains the CEMA primitives:

CEMA-RESOURCES (res (hid)) is called to retrieve the unique identifiers of all the physical
neighbors of a host hid. It has a complexity of O(N ) where N is the number of hosts in
the network.

CEMA-CONTAINS-MOBILE-AGENT-SERVICE (ser(hid), id) determines whether there is an
entry key for an agent in service table of the host with unique identifier hid. It has a
complexity of O(N ).

CEMA-FIND-ADDRESS-SERVICE (ser (hid), keys) returns the unique identifier of the host
where the mobile agent exists. It has a complexity of O(1).

CEMA-CONTAINS-MOBILE-AGENT-LOOKUP (lookup(hid), keys) determines if there is an
entry for an agent in the lookup table of host with unique identifier hid. It has a complexity
of O(M) where M is the number of mobile agents in the network.

CEMA-FIND-ADDRESS-LOOKUP(ser (hid), keys) returns the unique identifier of the host
where the mobile agent is presumed to exist. It has a complexity of O(1).

CEMA-VERIFY-MESSAGE-LOOKUP (lookup(hid), keys, newts) verifies if a message it received
is an old message; if so then the message should be discarded. It has a complexity of
O(M).

CEMA-UPDATE-LOOKUP (lookup(hid), keys, newts, level) is used to add/update entries
in the lookup table hid when it receives a message from an. It has a complexity of
O(M).

4.3. Description of CEMA

A high level pseudo code description of the CEMA algorithm is given in Figure 7. CEMA
runs in the data router module of each host. It consults with the directory services to
determine what function should be performed on each message it receives. The current
parameter refers to a unique identifier of the host where the algorithm is currently executing.
The output of CEMA is the most optimal neighbor to route the message to. The variable
level refers to the host from where the message was received.

Lines 1–4 initialize the variables that are being used in CEMA. The Boolean variable
found is set to true when the location of the destination agent rid is found in the directory
services during the execution of the algorithm. Control messages (mode = 0) do not rely on
the lookup table (lookup(current)) to route from the source mobile agent to the destination
agent. Control messages are used to build the lookup table, so they consult only the service
table (ser(current)) and the resource table (res(current)). Line 5 ensures that the lookup
table is queried only if the message is not a control message.

In line 8, CEMA checks whether the message is an old message; if the message is
old then it is discarded. When a message is received, only the information regarding the
sender mobile agent (sid) is updated. It has to be ensured that no entry for sid is added in
the lookup of the host where sid is residing (implemented by lines 11–14). An update is
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Figure 7. CEMA algorithm.

made for the location of sid along with the timestamp (ts) of the received message in line
15.

When mobile agents are dispatched to a pervasive network the first task they perform is
to transmit control messages to their peer mobile agents. These control messages populate
the lookup tables initially. The resource tables are populated when the network is formed.
The service table is populated when the host receives the mobile agent. Figure 8 shows how
the data in various tables are affected by the various events.

If a message is a control message (mode = 0), CEMA first checks if the message is
outdated. It then updates the information in the lookup table for the originating agent. The
service table is queried to determine the location of the destination agent. If the query is
unsuccessful then CEMA will multicast the message to all of its neighbors, except for the
neighbor from which it has received the message.

If a message is a normal message (mode = 1), then the lookup table is queried for
the location of the destination host. CEMA then proceeds the same way as in the case of
control messages. A fallback to search the service table is made only if CEMA fails to find
the location of the destination host in the lookup table. Acknowledgement messages are
generated for every normal message. Acknowledgement messages (mode = 2) are similar
to normal messages except that they do not require an acknowledgement.



MOBILE AGENT CONNECTION ESTABLISHMENT AND MANAGEMENT (CEMA) 89

Figure 8. Events affecting tables in a host.

4.4. Link failure and migration of agents

When a mobile agent wishes to move from one node to another (from node x to y) it must
remove itself from node x before going to node y. Formally, if MAz wants to migrate from
Vx to Vy then it must remove itself from ser(Vx ) before moving to Vy to ensure proper
working of the routing algorithm. Upon reaching its destination, MAz adds/updates an entry
for itself in ser(Vy), the service table for node y. It also removes any old entries in lookup
(Vy) referring to MAz . In the next step, MAz transmits control messages to all of its peer
mobile agents. Failure of edge Exy mandates Vx and Vy to remove entries corresponding to
Vx and Vy , from their resource, service, and lookup tables. If a new link is not registered
by CEMA, the path remains undiscovered until a mobile agent migrates and sends out the
control messages using (and detecting) the new link. As an example, suppose there are two
mobile agents under consideration namely, MAx and MAy as shown in Figure 9(a). The

Figure 9. Illustration of link failure: (a) optimal path (b) new path (c) changes in the tables.
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optimal path for communication between MAx and MAy is V1 −V5 −V4. If the link between
V5 and V4 fails, V5 will remove all references to V4 from its resource, service, and lookup
tables. Suppose a message from MAx addressed to MAy reaches V5 (Figure 9(b), it finds
there is no references to MAy since all entries leading to V4 have been removed. V5 will be
left with no option other than to multicast the message to its physical neighbor V3. Once
the message is received by V3, since MAy is there in the service table of V3 it will directly
send the message to V4 and a new entry will be made in the lookup table of V3 for MAx .
This is shown in Figure 9(b). MAy sends an acknowledgement message back to MAx , which
then makes a new entry in V5 for MAy as shown in Figure 9(c). Therefore, a new path is
created from MAy to MAx and vice versa. Next time the message will be able to reach the
destination without any multicasting.

5. Analysis of CEMA

This section presents a performance analysis of CEMA. The network is represented by an
undirected graph G = (V, E) where V is the set of vertices that represent hosts while E
is the set of edges representing communication links between two hosts. Exy depicts a full
duplex connection between vertices Vx and Vy . The following assumptions are made:

• The communication channel remains duplex at all times.
• All link bandwidths and power sources of devices are infinite.
• The cost of all links are equal.
• There is equal delay on all links and there is no loss during transmissions.
• Graph G remains connected at all times.
• Vx and Vy are notified if Exy is removed.

In a time interval τ , if n agents are launched then the total number of control messages
generated is equal to n ∗ (n − 1). If, within the time internal τ , there are m migrations of
mobile agents then the total number of control messages generated due to the migrations
is: m ∗ (n − 1). If x number of messages are transmitted in a time interval τ , then the total
number of normal messages is x and the total number of acknowledgement messages is x.
Therefore in a time interval τ , if n mobile agents are launched followed by m number of
migration and they send x messages among themselves, the total number of messages is:
n ∗ (n − 1) + m ∗ (n − 1) + 2x .

The algorithm has a message complexity of O(N + M) where N is the number of hosts
in the network and M is the number of mobile agents in the network. Messages in CEMA
traverse the network in a breadth-first fashion; T is a breadth-first generated spanning-tree
of nodes from Vx to Vy . The maximum number of hops a message (normal message) can
take to reach its destination depends on the number of levels in T (the location of the mobile
agent).

The algorithm allows only forward movement of messages and does not allow a message
to revisit an edge it has already visited. Thus, the numbers of levels in T denoted by
x determine the average number of hops a message takes to reach from a source to a
destination. The worst-case scenario occurs when the graph G is a linear graph having a
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Figure 10. CEMA traversing the network.

worst-case complexity of O(|V |). In such a case, the number of levels in T is equal to the
number of edges. The best-case scenario is when all the mobile agents are concentrated on
a single host, while in a fully connected G, to reach the destination the message has to take
either zero or one hop.

The CEMA algorithm is analyzed to obtain the number of hops it takes to reach a
destination host. CEMA traverses the network in a breadth first traversal fashion as shown
in Figure 10. Let us denote the sub graph created by the traversal by T. The traversal goes
one level at a time, left to right within a level (where a level is defined simply in terms of
hops from the root of the tree).

Lemma 1 When CEMA is executed, it runs in a breadth first traversal fashion.

Proof: The proof that vertices are in breadth first traversal fashion is made by induction
based on the level number. By the induction hypothesis, CEMA first reaches all one-hop
neighbors followed by the two hop neighbors. It reaches all vertices at level k − 1 before
those at level k. Therefore, it will reach all vertices at level k before all those of level k + 1.

Lemma 2 The sub graph T generated by CEMA is a tree.

Proof: Let us consider each edge vw in the breadth first traversal; vw can be seen as if it
was pointing “upward” from v to w. Then, each edge points from a vertex visited later to
one visited earlier. Following successive edges upwards can only be rooted by x (which has
no edge going upward from it) so every vertex in T has a path to x. This means that T is at
least a connected sub graph of G. A tree is just a connected and acyclic graph, so we need
only to show that T has no cycles. In any cycle, no matter how edges are oriented there is
always a “bottom” vertex having two upward edges out of it. However, in T, each vertex
has at most one upward edge, so T can have no cycles. Therefore, T is a tree.
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Lemma 3 T is a spanning tree of graph G.

Proof: If the sub-graph T is connected (every vertex has a path to the root x) then every
vertex of G will be present in T. We use induction on the length of the shortest path to x to
prove this Lemma. If v has a path of length k, starting v − w − · · · − x , then w has a path
length of k − 1, and by induction would be included in T. Thus, when w is visited, edge vw
has already been visited, and if v was not already in the tree, it would have been added.

Lemma 4 T is the shortest path tree starting from its root.

Proof: Breadth first search trees have the property of every edge of G being classified
into one of three groups: (i) some edges of G are in T; (ii) some edges connect two vertices
at the same level of T; (iii) remaining edges connect two vertices on two adjacent levels.
It is not possible for an edge to skip a level; therefore, the breadth first search tree T is a
shortest path tree starting from its root.

Every vertex has a path to the root, with path length equal to its level, and no path can skip
a level. The maximum number of hops a normal message can take to reach its destination
is dependent on the number of levels in T and on the location of the mobile agent. The
average case for the message complexity is O(x) where x is the number of levels in T. This
can be proven from Lemma 4. The algorithm allows only forward movement of messages
and does not allow a message to revisit an edge already visited. Thus, the numbers of levels
in T denoted by x determine the average number of hops a message takes to reach from a
source to a destination.

In summary, the CEMA algorithm is efficient in terms of number of messages generated
(for n mobile agents launched and m agent migrations, the number of messages are slightly
more than m2 + mn. Since the algorithm basically views the nodes in the network as a
tree (spanning tree) and then does a breadth-first traversal, the worst-case scenario are
completely linear nodes where nodes x and y are at the opposite ends of the tree (network).
Average case performance depends on the depth of the tree (from x to y) and is usually
much better than worst case, while best case is the trivial case of x and y being the same
node.

6. Experimental results

To investigate the performance of CEMA, a discrete event simulation has been developed in
Java (Figure 11). The simulator is capable of mimicking a network with an arbitrary number
of hosts, a user specified network topology and an arbitrary number of mobile agents. Events
such as migrations and link failures can be created by defining their probability density
function (pdf) and its parameters.

Four sets of simulation experiments have been completed, with sufficient runs for each
simulation step to claim a 95% confidence level that the relative error is less than 5%, based
on large generated random samples and calculations of means and deviation.
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Figure 11. Screenshot of the CEMA simulator.

6.1. Experiments with random population and 20 agents

The first set of simulations employed 20 mobile agents with varying populations (n =
4, . . . , 20) and a randomized network topology. A total of 100 messages were exchanged
in each simulation step. The results of the experiment are shown in Figures 12 and 13.
The maximum hops for each of the messages to reach the destination was proportional to
number of levels in the BFS tree T.

The worst-case scenario occurs when the graph G is a linear graph. This has a worst-case
complexity of O(E). In such a case, the number of levels in T is equal to the number of
edges as shown in Figure 14. When two mobile agents are located on extreme ends of a
linear graph, their messages will have to traverse through all the edges in order to reach the
other extreme end.

6.2. Linear graph with varying populations

The second set of experiments were performed in a setup similar to that of the first set of
experiments except for the topology which has been implemented as a linear graph. The
results of the experiment are shown in Figures 15 and 16. The maximum hops for each
of the messages to reach the destination was proportional to the number of edges in the
network.

The best-case scenario is when all the mobile agents are concentrated on a single host or
when G is a fully connected graph. To reach the destination a message has to take a single
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Figure 12. Number of hosts vs. maximum hops for average-case.

Figure 13. Number of hosts vs. total hops/multicasts for average-case.

hop or no hop at all (complexity of O(1)). In this scenario, the message has to move only
one level as shown in Figure 17(a) and (b).

6.3. Varying number of mobile agents

In the third set, the number of mobile agents (m = 10, . . . , 60) has been varied, for different
population of hosts (n = 5, . . . , 50). Readings were taken for transmission of 100 randomly
generated normal messages. It can be observed that as the number of hosts increase there is
an increase in number of hops. In addition, there is an increase in the total number of hops
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Figure 14. Worst-case scenario.

Figure 15. Number of hosts vs. maximum hops for worst-case.

as the number of mobile agents increase, but this is mainly attributed due to the increase
in the number of control messages created. Figure 18 depicts the total number of hops
versus to the number of hosts for the three runs with 10, 20 and 30 randomly distributed
mobile agents. Please note that the hops indicated on the graph are the total number of hops
(summed) for all mobile agents in the system.

6.4. Effects of mobile agent migration

The fourth set of experiments deployed 20 hosts with a varying number of mobile agents
(m = 5, . . . , 30). Three different runs were performed with 10, 20 and 30 occurrences
of mobile agent migrations during the transmission of 100 randomly generated messages.
Table 1 shows the various readings taken during the experiment and Figure 17 depicts the
total hops taken versus the number of mobile agents. It is seen as the number of migrations
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Figure 16. Number of hosts vs. total hops/multicasts for average-case.

Figure 17. Best-case scenario: (a) same host and (b) fully connected graph.

Figure 18. Number of hosts vs. number of hops.
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Table 1. Experimental results of mobile agent migration simulations

Mobile Normal Control Maximum Total Multi-
Hosts agents Migrations messages messages hops hops casts

20 5 10 100 60 6 260 283
20 5 20 100 100 8 300 443
20 5 30 100 140 8 340 577
20 10 10 100 180 9 380 562
20 10 20 100 270 8 470 1261
20 10 30 100 360 8 560 1651
20 15 10 100 350 8 550 1461
20 15 20 100 490 8 690 1561
20 15 30 100 630 7 830 2299
20 20 10 100 570 9 770 1583
20 20 20 100 741 9 941 3076
20 20 30 100 950 8 1150 4259
20 25 10 100 864 9 1064 2922
20 25 20 100 1080 8 1280 3914
20 25 30 100 1320 9 1520 4178
20 30 10 100 1160 8 1360 3612
20 30 20 100 1450 8 1650 4352
20 30 30 100 1711 8 1911 5522

Figure 19. Number of mobile agents vs. total hops.

increase the total number of hops increase. This increase can be attributed to the extra
number of control messages that are generated because of migration.

6.5. Limitations of CEMA

The CEMA algorithm cannot automatically detect link failures. If a link fails the updates
to the tables have to be done by an external entity. Work is underway to extend CEMA
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for these scenarios. Additionally, messages can only move forward from the source to the
destination due to the timestamp and due to the multicast restriction towards the originator.
If a message crosses a bridge, it will not be able to return across the bridge; if meanwhile
the destination mobile agent happens to migrate to the other side of the bridge, then the
message is lost since it cannot go back across the bridge. This situation cannot be handled
by the current algorithm and will be addressed in a subsequent paper.

7. Conclusions

This paper presented the design of a prototype software infrastructure for pervasive com-
puting utilizing mobile agents. Mobile agents are being used in many new, ubiquitous
computing systems as well as Internet computing, distributed processing and other novel
domains. Architectural components of the software infrastructure were described and a
novel algorithm (CEMA) for establishing connections between mobile agents in a perva-
sive network was presented. Analysis of the algorithm showed that worst-case performance
is linear with respect to the number of nodes between a source and destination. For m
mobile agent migrations and n mobile agents the number of messages sent is on the order
of m2 + mn. Two limitations that are inherent in the CEMA method are: link failures are
not quickly found and some network topologies are slow to be updated. In the first case
link failures are not found until an agent migrates to a node where that link is part of the
communication path. In actuality, this is a reasonable penalty to pay for reduced message
overhead in the normal case, and bad links will be found when there is an attempt to use one.
The second case is the network topology where two sub-networks are connected via a single
link (bridge). In this case CEMA’s one-directional flow of messages (through the spanning
tree) will cause messages to be lost and must be timed out on a node to determine that
this situation has occurred. A Java based simulator was designed to evaluate the message
complexity performance of CEMA. Various experiments conducted by the simulator have
shown the scalability of the infrastructure as well as the limitations of the infrastructure. In
experiments both average case and worst-case simulations show reasonable performance, as
seen in the analytical model. Experiments also show that as agents are randomly dispersed
on a network topology, and then migration is simulated, the total number of cumulative
hops is better than linear (in relation to number of hosts), especially as the number of mo-
bile agents increases (from 10 to 60). Experiments show that as the mobile agents move
(migrate) through the network the total number of hops, on average, is only a little worse
than linear in relation to the number of mobile agents in the network.
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