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Abstract

Mobile ad hoc networks (MANET) are dynamic networks formestbe-fly as mobile nodes move in and out of each
others’ transmission ranges. In general, the mobile ad bbearking model makes no assumption that nodes know their
own locations. However, recent research shows that lataticareness can be beneficial to fundamental tasks such as
routing and energy-conservation. On the other hand, thearmslimited energy resources associated with common, low-
cost mobile nodes prohibits them from carrying relativetpensive and power-hungry location-sensing devices ssch a
GPS. This paper proposes a mechanism that allows non-Gifgped nodes in the network to derive their approximated
locations from a limited number of GPS-equipped nodes. mneethod, all nodes periodically broadcast their estimated
location, in term of a compressed patrticle filter distribati Non-GPS nodes estimate the distance to their neighlyors b
measuring the received signal strength of incoming messafygarticle filter is then used to estimate the approximated
location, along with a measure of confidence, from the sezpief distance estimates. Simulation studies show that our
solution is capable of producing good estimates equal tetbian the existing localization methods such as AP Sideeh
for the more difficult scenario when the network connedfiistiow.

1 Introduction

Mobile ad hoc networks (MANET) are constructed on the fly asrietwork nodes move in and out of the transmission
range of each other. A major challenge in protocol desigihfisrtype of networks is to provide mechanisms that deal with
the dynamical topology change. Constant topology chandeesnia more difficult for fundamental tasks such as routing
since the routing algorithm cannot simply rely on its presi&nowledge of the network topology. Furthermore, eveeraft
a route has been successfully established, it can still fritied at any time due to the movement of the intermediate
nodes. For this reason, most protocols originally desigoestatic networks cannot be adopted to ad hoc networksowith
significant change. Many protocols have to be redesigneaddroc networks in order to cope with the topology change.

Studies have shown that innovative algorithms can aid real hoc network (MANET) protocols if the nodes in the
network are capable of obtaining their own as well as othelesblocation information. For instance, algorithms such
as LAR [8], GRID [11], and GOAFR+ [10] rely on the location arfnation to provide more stable routes during unicast
route discovery. The location information is also appliedyeocast (multicast based on geographic information)d] f
algorithms such as LBM [9], GeoGRID [12] and PBM [14]. To nmitize the power consumption, The GAF algorithm [23]
uses the location information to effectively modify thewetk density by turning off certain nodes at particular amtes.

The algorithms listed earlier all rely on the availabilitf reasonably accurate location information. This assuompti
is valid for networks in which some location sensing devicgegsh as GPS receivers, are available at all nodes. However,
in reality this is rarely the case; although GPS receiveesimereasingly cheaper to produce and becoming more widely
available, they are still relatively expensive and powendry. GPS receivers also require line-of-sight to sagglivhich
precludes indoor usage. Therefore, it is too general tonasghat they will be applicable to every node in the ad hoc
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networks. For this reason different algorithms have beepgsed to derive approximated locationsaifnodes based on
the relaxed assumption that direct location sensing ds{&ech as GPS) are available to onlsudsebf the nodes.

This paper presents a solution to the location tracking lprotbased on particle filters. Given an ad hoc network with
limited number of location-aware nodes, our solution eatas the locations of all other nodes by measuring sensaay da
in this particular case the received signal strength iningRSSI), from neighbors. For each node, the estimateatilon
is viewed as a probabilistic distribution maintained by &ipke filter. Unlike other location tracking methods, ootgion
has low overhead because it is purely based on local bro@uigasd does not require flooding of the location informatio
over the entire network. Simulation studies show that eviginout flooding, our solution can still generate good estaésa
comparable to other existing methods, given that the pémgenof GPS nodes is not extremely low. In addition when
connectivity is low, our algorithm is still able to derivecktion information which is not the case with most of the othe
approaches. While most algorithms either attempt to irsrélae accuracy of the estimate or to increase the coverage, o
algorithm recognizes the tradeoff between the two and pges/a quantative measure for both. From the implementation
point of view, our algorithm can be easily implemented intritisited manner for both stationary and mobile networkssMo
importantly, our algorithm provides a probabilistic framak in which other sensory data (such as angle of arrivad)a=
naturally incorporated in the future.

2 Related Works

Given a network grapts = (V, E) in which the number of location-aware nodes (also callechornodes)Vypd < [V, the
objective of the location tracking algorithm is to find thedtions ofnon-anchomodes{V} — {Vgps}. In this section we
survey the previous work on the location tracking probleradrhoc networks.

Generally speaking, there are two categories of distriblatealization methods depending on whether sensory data ar
used. The methods that do not use sensory data are simpkenbiub perform poorly especially when anchor ratio is low
or the network is sparse. The methods that do use sensorgela¢aally perform better but tend to be significantly more
complex. The performance in the latter case is also largédgtad by the noise introduced to the sensory data whiathsten
to aggregate rapidly as sensory data is propagated thrbagtetwork.

The Centroid method [2] provides the most straight-forwsotiition that does not use sensory data. Assuming that a
non-anchor node is capable of receiving the location in&drom from multiple anchor nodes, the Centroid method @sriv
the location of a non-anchor node as the average of its nefgihanchor nodes’ locations. The method is simple and
efficient, but it requires the anchor nodes to redundanthgclarge areas for an acceptable performance. The APITadeth
[5] estimates the node location by isolating the area usanigus triangles formed by anchor nodes. The location ofitiue
is narrowed down by analyzing overlapping triangles to aeiee whether the node is contained within the triangleghBo
the Centroid method and the APIT method require the trarsomgange of anchors to be much greater than non-anchors
(by an order of magnitude [5]) in order for nodes to obtairscggble location estimates.

The DV-Hop method [18] allows the location information franchor nodes to propagate through multiple hops. The
locations of anchors are periodically flooded throughoetrktwork much like the routing packets in a distance vector
routing protocol. The locations of non-anchor nodes arézddrgeometrically by performing trilateration of the diste
estimates from at least three anchor nodes. Here the déststimates are obtained by multiplying the number of hopisto
anchor node to a predefined average-distance-per-hop vEhgeDV-Hop method does not require a greater transmission
range of anchors, and it works well even when the ratio betvaeehor and non-anchor nodes is low. However, the message
complexity is rather high due to the flooding of the locatinformation. Furthermore, because the average-distagce-p
hop is an estimated value over the entire network, the acgwthe location estimation suffers when the nodes are not
uniformly placed over the network.

Other, significant location tracking methods make use ofteaigil sensors. In [13], the location, velocity and accale
tion of mobile nodes are estimated by measuring the receiggdl strength indicator (RSSI) from multiple base staio
in a cellular network. The measured power levels are fed ankalman filter to smooth out (filter) the erratic readings
and thus be able to derive the distance. Since base statiatidns are assumed to be well-known in a cellular network,
mobile nodes can use them as reference points for locattona®n. In [17], the authors assume that non-anchor nodes
are equipped with devices that measure the incoming sigredtibns. The directional information allows the reces/e
to obtain the angle of arrival (AoA) of the signal thus allogimore accurate location estimates than the pure DV-Hop
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method. The DV-Distance method [18] is similar to the DV-Hopthod but uses the estimated distance instead of the hop
count during trilateration. In [20] after obtaining thetial location estimates from the DV method, the nodes olttaén
estimated locations from the neighbors via local broadddst RSSI readings also provide the distance estimatestfrem
neighbors. Using the distance estimates along with thenattd locations from the neighbors, the nodes can refine thei
initial location estimates via trilateration.

Hardware-wise, sensors that measure RSSI are widely biattamobile devices. Indeed, most off-the-shelf technolo
gies implicitly provide such information (e.g., most Wi/gérds provide with RSSI). Based on RSSI and an underlying
signal propagation model, the distance to the sender castineatded. Because of the noise caused by multipath fadidg an
far field scattering during the signal transmission, theaslise estimates derived from RSSI suffer accordingly, @ajhg
when a large number of obstacles present. However, a nurhb@ahanisms have been proposed to improve the accuracy
of such estimates, such as the ones that use a more robustiaganging system [3], device calibration on the RSSI
sensors [22], and Kalman filters to smooth out the odd readiregn the sensors [6]. Experiments have shown that the
distance estimation error can be drastically reduced bygusiose methods. Thus, the RSSI-based methods are becoming
more practical solutions to the location tracking problemad hoc networks.

3 Particle Filter Solution

“Geometrically speaking,” in order to find the location of @de in a 2-dimensional space, the distances and locaticats of
least three anchors need to be known (as each of these adefioesa circle where the target node could be). In a network
where the percentage of anchors is low, the major challentgeobtain the distances and locations of anchors when the no
is several hops away from the anchors. Previous works resbis problem by either 1) assuming a greater transmission
range of anchors [2, 5] (thus, anchors are always 1-hop awaf) broadcasting the anchor locations hop-by-hop ower th
entire network [18, 17, 20]. The assumption made in the foktt®n requires the network to be heterogeneous in the node
types (in which anchors’ radios are considered differeanttihose of non-anchors) and requires homogeneity (unitgym

for anchor nodes’ location over the area. The flooding oftlcation packets in the second solution requires extra eegrh
This overhead can be especially heavy when nodes are mabhiége location packets need to be re-broadcasted repgated|
by nodes. Furthermore, most methods in [18, 17, 21] requimgkiple phases of operations such as a phase of initial
location discovery followed by a phase of refinement. Howewmea more general network model in which nodes are can
come online and go offline at different time, it becomes mdifecdlt to define the start and the end of a phase. Lastly, due
to the geometric and algorithmic limitations, most exigtinethods produce the location estimates for a limited peage

of nodes. But, their estimates lack a measure that qualifeegdtimates. In other words, one cannot tell how good those
estimates are.

Recognizing various shortcomings of previous approachegropose a different location tracking method that is dase
on Bayesian filters using Monte Carlo sampling (also knowmpagicle filters) introduced in [4]. Our method can be
considered as a probabilistic approach in which the estichiaication of each node is regarded as a probability digtab
captured by samples, thus the term particles. The disiibatf particles (the probability distribution of a nhodetxhtion
over the area) is continuously updated as the node rec&igaidn estimates from its neighbors along with the digtanc
estimates from RSSI reading. Essentially, the nodes efstitnair own locations by interchanging the location disttions
with their neighbors.

Our method has the following advantages over most existicglization methods:

1. Provide a measure of estimation qualiyV based algorithms can generate location estimates tbsesof nodes.
The coverage of the estimates depends on the nature of iwétlaty. There is always tradeoff between the coverage
and the quality of the estimates. Some algorithms (such a$i@)j give better coverage, while other (such as
Euclidean) gives better estimates. Our method, howevegrgées location estimates for all nodes in the network.
Each estimate is qualified by a variance, which serves asufiéyimeasure. Thus, the coverage of our estimates is
not a fixed value but a function of the variances. In practieetain applications might desire better estimation dyali
while other might desire better coverage. Previouslyedéht localization methods need to be applied separately
to accomplish the two objectives. Our method, however, peed the result satisfies both scenarios all in same
probabilistic framework.
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2. Single phase operatioMany algorithms employ multiple phases during the loedlon process. For instance, DV-
Hop requires a first phase to calculate per-hop distance sacoad phase to propagate the result. The multilateration
methods [21] contains three phrases of initial estimatpayping and refinement. Our method, however, has the ad-
vantage of a single phase operation. From the implementpatimt of view, our algorithm can be easily implemented
in distributed fashion because nodes do not have to calidgtmaintain the state information of “which phase are we
in?” From the functional point of view, the probabilistictnee of our method simplifies the algorithm by eliminating
the need for multiple phases. In multilateral methods, #@ialrestimate is obtained based on a certain measure (dis-
tance or hops) to GPS nodes followed by phase of further refimné The initial location estimate suffers because
infomation from non-GPS nodes are not used. The refinemeadepis needed so that information from non-GPS
nodes can be incorporated into the estimates. Our methadrdmeneed separate phases, as the information from
non-GPS nodes is automatically applied as soon as it becavadlable. In particular, as non-GPS nodes becomes
more aware of their locations, their variances decreasiehvatlows their estimates to be used by neighboring nodes.

3. Simple communication model and fast convergefize method employs a simple computation and communication
model which relies solely on local broadcast (broadcaseighbors only). This allows our method to be naturally
integrated the periodical Hello messages used by mobilesiodad hoc networks to declear their existence. No new
type of control messages is needed. Furthermore, our dimishows that comparing to existing method such as
APS, our method generally converges with less messageeagrh

4. Mobile ready Because of our algorithm eliminates multiple phases aed asimple communication model, it can
be applied directly to mobile networks without any modificat While previous works do not generally provide
simulation result for mobile scenarios, we demonstratesinaulation that our method can be effectively used in
mobile ad hoc networks.

5. Extensibility Peering away the dependency to the RSSI signal readingsptie of our algorithm is a probabilistic
framework based on particle filtering that is extremely aéhs. The framework can be easily extended to different
signal and network models. For instance, unlike DV-Hop,method does not assume that all nodes have the same
transmission range. Unlike Centeriod or APIT, our methodsdoot require a greater range for GPS nodes, which
allows it to work in homogeneous networks. Furthermorefrtéi@ework is not tied to a particular signal propagation
model or a particular sensory data. Although we have notémphted it, we expect other sensory data such as angle
of arrival (AoA) can be used in place of RSSI as the input toadgorithm. More interestingly, the same probabilistic
framework will allow multiple sensory data working togethe localize the network. In other words, a subset of
nodes is capable of AoA readings while another subset idatajph RSSI readings. The framework provided by our
algorithm can be adapted to solve such problem.

A similar Bayesian based approach has been proposed inde#id in-door location tracking problem. In [24], because
of the different obstacles (walls, windows and doors) preestin the in-door floor-plan, a signal strength (RSSI) megds
to be obtained via measurement ahead of time. The locatiakitrg problem then becomes a decision-making problem.
The problem can be solved using a measurement model thateemRSSI with the signal strength map to find the location
in the map that contains the largest probability of matchimgcurrent RSSI characteristics. While similar, our doluts
designed for our-door environment in which obstacles aserasd to be minimum, and fairly reliable distance estimates
can be obtained from RSSI readings and the signal propagatialel. Based on those assumptions, our solution does not
require the RSSI map. The probability distributions of kimaestimates are updated solely from the distance andidoca
estimates from neighbors.

Fig. 1 demonstrates how our method solve the localizatioblpm in a simple scenario. Here, node 2, 3 and 4 are GPS
nodes, and node 0 and 1 are non-GPS nodes. Of the non-GPS noded) can receive signal from 1 and 4 only, and
node 1 can receive signal from node 1, 2 and 3 only. The protyathistribution of the estimated location is represented
by the particles (dots) in the graph. In (a), node 0 can ontgike signal from node 4. Thus, as the particle distribution
indicate, the probability distribution where node O losa# is a circle around node 4. In (b), node 1 can receive signal
from node 2 and 3. Thus, the probability where node 1 locaagecs around two areas where circles around node 2 and
3 intersect. Intuitively, in order to localize itself a ne@S node needs to receive location information from a nuimnim
three GPS-nodes either directly or indirectly. In both d@end case (b), the exact location of the non-GPS nodes 0 and
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cannot be deduced because they do not receive locatiomiafmm from all three GPS nodes. In (c) and (d), node 0 and 1
are able to communicate to each other and exchange theilpititypdistributions. Thus, their exact locations areritiied
even though neither node receives location informatiomftioe all three GPS nodes directly.

3.1 Classic Monte Carlo Sampling-Based Bayesian Filtering

This section describes the theoretical background behaiyg&8an filtering and how it can be applied to location ediiona
using RSSI. Let us envision a grid system superimposed beeelttire tracking area, and let the statbe the location
of the node to be tracked in the grid system at the timeOur goal is to estimate the posterior probability disttibn,
p(s|di,...,d), of potential states s, using the RSSI measuremends, ...,d;. The calculation of the distribution is
performed recursively using a Bayes filter:

p(d|s) - p(s|dy,...,d—1)
p(ck|dy,...,di—1)

Assuming that the Markov assumption holds, igs|s-1,--.,%,6-1,...,d1) = p(s|s-1), the above equation can be
transformed into the recursive form:

p(s|d,...,d) =

p(ci|s) - [ p(s|s-1) - P(S-1]d1,...,0-1)ds 1
p(d|dy,...,ck—1) ’

wherep(d;|ds,...,di—1) is @ normalization constant. In the case of the localizatiba mobile node from RSSI measure-
ments, the Markov assumption requires that the state ¢enédli available information that could assist in predigtihe
next state and thus, an estimate of the non-random moti@nyers of the nodes is required as part of the state descrip-
tion. Starting with an initial, prior probability distrition, p(sp), a system modelp(s|s—_1), representing the motion of
the mobile node (the mobility model), and the measuremerdginp(d|s), it is then possible to drive new estimates of the
probability distribution over time, integrating one newasarement at a time. Each recursive update of the filter can be
broken into two stages:

Prediction: Use the system model to predict the state bigidn based on previous readings

p(&ldlvadf):

Pls[da,. ck-1) = [ P(SIs-1)- Pl&-ldh,... ck-1)ds 1
Update: Use the measurement model to update the estimate

p(d|s)
p(ck|da,....0_1)

To address the complexity of the integration step and thbleno of representing and updating a probability function
defined on a continuous state space (which therefore hadiaibteimumber of states), the approach presented here uses a
sequential Monte Carlo filter to perform Bayesian filterirgabsample representation. The distribution is represented
a set of weighted random samples and all filtering steps aferpged using Monte Carlo sampling operations. Since we
have no prior knowledge of the state we are in the initialgandistribution,pn(s0), is represented by a set of uniformly

distributed samples with equal welgh{$s0 Wo )|| € [1,N], w(() = 1/N} and the filtering steps are performed as follows:

Prediction: For each samplé:st 1 t(>1) in the sample set, randomly generate a replacement sacgaeding to the
system (mobility) modep(s;|s—1). This results in a new set of samples correspondirg ¢dds, ..., d):

p(s[ds,....dh) = p(s|da, ..., d-1)

(& w")li € [1,N], W = 1/N}

Update For each samples[ ,vvt ) set the importance weight to the measurement probabilithyeoactual measure-
ment wt = p(dt|s[' ). Normalize the weights such thggn - Wt = 1.0, and drawN random samples for the sample set
{(st ,n- wt )|| [1,N]} accordlng to the normallzed weight distribution. Set théghts of the new samples tg/ll, re-
sulting in a new set of sampléQs[ )|| € [1L,N], wt = 1/N} corresponding to the posterior distributip(s |dy, .. ., d;).
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(d) Particle distribution of node 1 when nodés@resented.

Figure 1: Location Distribution in Simple Scenarios.
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3.2 Modified Particle Filtering for Location Estimations

The classical Monte Carlo method is often implemented upaticle filters. To apply the filter to the location tracking
problem a system model and a measurement model must be @dowde use a simple random placement model as our
system model (please note that this is the mobility moded irs¢éhe filter which is different from the mobility model used
in the simulations to enable node movement). The model asstimat at any point in time the node moves with a random
velocity drawn from a Normal distribution with a mean ahfs and a fixed standard deviation No information about the
environment is included in this model, and as a consequémedijter permits the estimates to move along arbitrary path
Thus, our system model is simpt¥s|s—1) = N(0, o), whereN is a Normal distribution. Note that while such system model
should work well in stationary networks, it's not best sdifer mobile networks. In reality, mobile nodes follow a @ént
kind of movement profile instead of random motion. The systeatdel should closely resemble the current movement
profile of the node. However, since it's difficult to obtainediable movement profile when the location is unknown, the
assumption of random movement is probably the best we cahtisatage.

The measurement data are obtained by observing the paiddiation data broadcast from neighbors. To minimize
the impact of the measurement error, we apply a simple Kalfitien to the RSSI sensor readings [6] before feeding
the measurement data to the particle filter. When a nodeceives broadcast location data from negéhe broadcast
data consist of the unique identifier afand the probability distributiory, of the location estimate of at timet. The
Xy distribution is a compressed version of the actual partidribution atv. The detail method of compressing and
decompressing the particle distribution is the topic ofrtaet section. For now, let us assume tatontains a set of sample
particles that representss location. Along with the RSSI reading of the broadc#&§S), the complete measurement
metricsd; is thereforg(id, Xy, RSS)).

After the measurement from the neighhois collected, the particle filter at nodeis updated. In the classic particle
filtering, particles are re-sampled based on weights, whiehin turn assigned based on the measurement. More weights
are assigned to the particle values that are more consigténthe measurement reading. After re-sampling, the gerti
distribution becomes more consistent with the current mmeasent. In our situation we have a unique scenario where the
measurement itself consists of a particle distributddn, Furthermore, botb, andX, areimprecise Our task during the
update step is to modify the particle distributignso that it becomes more consistent WkRB S} while taking into account
the inherent impreciseness Xf andX,. First, we obtain a distance estimate from the inverse oktteal propagation
modelP:

DRSS — P/(RSS))

Note thatP can be arbitrary as long as it depends on the distance frosetiger to the receiver. Noise can be added to the
model, but we disregard it when calculating the inverse ahd be filtered out by the particle filtering (note, that ireth
simulations noise is indeed added to the RSSI measurements)

For each particleg, in X,, we randomly select a particlg in X, and calculate their distan@*) . We then measure
the difference betweeB®u*) andD(RSS) and select a new location for re-sampling based on theréifte as well as
the variances of the particle distributiofy and X,. For instance, before the update sigpandx, are located at poinA
andB, respectively. ThusD®u) = |AB|. Let A’ be the location ok, based on the RSSI reading on the same line, i.e.,
D(RSS) — |A'B. Intuitively, if the location estimate given by the disuiion X, is accurate and the actual location for node
v is indeed atx,, then the new location for particbe, should be at poin®&’. Conversely, if the location estimate of the
distribution X, is accurate, the new location fag should stay aA. Therefore, we select the new location based on the
perceived accuracy, i.e., the variances, of the distidluty, andX,. Let the variance of a distributiod be var(X). We
select the new location of}, x|, along the lindAA| such that

|AX,|  var(Xy)
XAl var(Xy)

A new particle is then randomly re-sampled by a Normal distibn centered at, with the variance being the average of
the variances oK, andX,. We consider the variances of both and X, during re-sampling because the spread of both
distributions affects the spread of the updated distritoix,.

Comparing to the re-sampling method of classic particlerlt our method is different in that we do not use a weight
based re-sampling method. Instead, we re-sample by congptére two distributions together against the measurement
reading. But, the concept is the same as we are updatingdtrédtion to fit the measurement readings. Our re-sampling
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method has a number of advantages over the traditional methiost, our method does not re-sample directly from the
original particle location using a weight based Gaussiatridution. Instead, it re-samples from a more accuratation
influenced by neighbor’s distribution. Thus, our methoduisgs less amount of random probing and converges more
quickly. Secondly, since our method requires less amourdrmdom probing, a significantly smaller number of particles
are required. With less particles, the particle filter upgabcedure computes more efficiently.

3.3 Compressing and Decompressing Particle Filter Distribtion

The previous section makes the assumption that the contptaton distribution is received from the neighbor. Sitice
complete distribution consists of a large number of pasielith their location data, doing so is obviously not verggical

due to the limited bandwidth of ad hoc networks. Therefolepnopose a simple yet effective compressing mechanism that
allows the particle distribution to be transmitted in a cawigform.

Given a particle distributioX, we locate the expected value, ds the particle in the distribution that has the mini-
mum overall distance between itself and other particles,Xx.= argminex (3 yey [X—Y|). In other wordsx’is the most
representative particle of the entire distribution. Fremwvé count the number of particleswithin the predefined range
r. We then calculate the variana@ within thosen particles. Thus, we obtain a quadrufer, n,cz). From there, we
remove then particles in the previous quadruple from the distributiod aepeat the process of finding the expected value,
a larger range (explained later) and the variance. By coiminthe same process until all particles have been covesed,
obtain a sequences of quadruples that approximates thiearmarticle distribution. When the quadruples are reegioy
the receivers, a decompressing algorithm runs to reproihgceistribution by randomly generating particles basethen
expected value, range, particle number and variance fér gaadruple.

For each broadcast, a fixed number of aforementioned quizdrape transmitted. The following algorithm is used to
progressively increase the rangir each quadruple.

Q := number of quadruples desired

R := max range that covers the entire area
minQuota:= |X|/Q

rincrement:= X%/3/R

xCount:=0

r:=0

curRange=0

qg:=1

FORg=1t0Q

maxRange= q- rincremeng/2

WHILE curRange< maxRangé&ND

number of particles icurRanget xCount< minQuota q DO
curRange=¢ - rincrement’?
qg=q+1

rq := curRange

xCount:= xCount+ number of particles icurRange

The algorithm starts with an initial range Dif/R3/2 and a minimum quota of particle siz¥|/Q for each quadruple.
As each quadruple is defined, a running su@ount keeps track of the the total number of particles covered fau At
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Figure 2: Compressing the patrticle filter distribution.

each step, the range is incremented exponentially at eaadirgple byr := r32, unless the running sum already exceeds
the minimum quota. The algorithm guarantees that all dagiare covered by the predefined number of quadruple, and
the overall trends of the original distribution are maintd. Meanwhile, by using a quota limit with the exponentaige
increment, more heavily populated areas are preservediwéghdetail. Our experiment has shown that the compression
method reduces the amount of data exchange by nearly 90nperitBout a significant increase to the location estimation
error

Fig. 2 shows the compressed distribution, where the cigtlesis the ranges.

4 Simulation Results

We have conducted a number of experiments to validate teetaféness of our particle filter based solution. Our experi
ments attempt to duplicate real world scenarios as closabpasible. In our simulations we assume a network in which al
nodes have an identical transmission power, with a certiogmtage of nodes (simulation parameter) being GPS nodes.
For a network of fixed size, the connectivity of the networgeteds (almost solely) on the transmission range. When a node
is located within the transmission range of another nodeasgeime that it is capable of receiving signal from the sender
when noise is not present. The received signal strengtmdispen the distance to the sender as well as a signal propagati
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model and a noise model.

The signal propagation model is givenBy= c-d~2, in which the power of the received sigriis inversely proportional
to the second power of the distartteHere cis an arbitrary constant. When the received signal pé&gbelow a threshold
Pmin, it is considered too weak to be captured by the receiverttieitink breaks. For our simulations, we seleet 10°
andPmyin = 1. Note thec and Py, selection does not affect the overall simulation resukdpoag as the same values are
used in the observation model of the filters. In fact, the seamebe said about all other signal propagation models - all we
require is a model that represents the receiving power asdidfun of distance, and we let the filter to filter out the noise
For the particle filter itself, we use a total number of 20Qtipkes at each node.

We use two types of networks, isotropic and anisotropic0ff tandomly placed nodes. With isotropic networks, nodes
are randomly placed into a square with an average degreé ofWith anisotropic networks, nodes are placed into a C
shape area with an average degree of 7. Noise is added tgttad sirength calculated via the signal propagation maoglel a
a percentage of the calculated signal strength. For ingtant0 percent noise means that the received signal strerayth
vary within a plus-minus 10 percent range of the calculaigdas strength (uniformly distributed). Note that our netlw
configuration and noise model is identical to that of therguit topology in [16], so that we can effectively compare ou
method with APS.

We start by running the simulation on stationary networksiclw resembles sensor network in the real world.

4.1 Filter Convergence

Figure 3 shows how the estimation error converges as morsureraent readings are processed in a static network. We
are interested in how long and how many messages it takebdagrtor to reach an acceptable level from which it only
reduces marginally. We added a noise level of 50 percenetonsasurement readings. The estimation error is calculated
as the difference between the most likely value given by Hréige distribution and the actual location. The differeris

then measured in term of the ratio against the maximum tresson range. Thus, an estimation error of 1.0 means that
difference between the expected value and actual locatjoale to the maximum transmission range. The data is cetlect
of enough simulation runs to claim a 95 percent confidencégwshows as the vertical scale at each data point; the error
ratio is the average of all non-GPS nodes (i.e., the perfstirhates” of GPS nodes are not biasing the results).

Two obvious facts can be observed from Figure 3: i) networits tigher GPS ratio produce better estimations and ii)
estimation error reduces quicker with higher GPS ratio.hBdtthose observations can be explained by the fact that GPS
ratio determines how fast and how accurate location inftion&an be propagated through the network. With a higher GPS
ratio, non-GPS nodes will be able to obtain the necessaayitutinformation faster because non-GPS nodes are cioser (
less number of hops) to GPS nodes. Also, since measuremeniseaggregated at each hop, the location information will
be more accurate with higher GPS ratio. GPS ratio also affeetconfidence interval. This is because when GPS ratio is
low, the estimation error depends greatly on the positicth@iGPS nodes. When their position does not spread out evenly
through the network (for instance, GPS nodes is concedteataund one edge of the network), it becomes more difficult
for the the nodes further away to obtain good estimates. A$RAS ratio increase, the chances of bad positions reduces,
and thus the variance of the estimation error reduces.

Figure 3 also shows that the estimation error convergestonihimum between 2 to 5 seconds depending on the GPS
ratio. Considering that the location broadcast occursye0es seconds, it takes about 4 to 10 rounds of broadcasts for
the error to reach the minimum. Since the average degreesafdtwork is 7.5 with a total of 100 nodes, each round of
broadcast is equivalent to 750 messages. Therefore, & td@ut 3000 to 7500 messages to minimize the error depending
on the GPS ratio. Note that when even in the worst case wher@RS ratio is low, error converges very quickly and is
close the minimum after 2 seconds. The results are at legstabas those of APS, where the “DV-distance” method uses
6500 messages (when GPS ratio is 0.1) to 9000 messages (W& re@o is 0.9), and the “Euclidean” method takes from
3000 to 8500 messages (results taken from Figures 7 and 1'BPf [Note that our method converges quicker and takes
less number of messages when the GPS ratio is high.

4.2 Minimum Estimation Error

Fig. 4 compares the estimation error of our particle filtethod with other methods. Again, the simulation scenario is
duplicated from that of the isotropic topology in APS [16]ithva rather dense network of degree averages at 7.6. One
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Figure 3: Filter Convergence.

advantage of our method is that our method produces theidocastimate along with a variance indicating its quality.
Thus, by varying the variance threshold, we are able to obtite effective estimation coverage. Fig. 4(a) plots thealc
filter variances against the estimates for the scenarioeVB&S ratio is to 5 percent. Here, a trend can be observedhthat t
variances increase linearly with the estimates. Fig. 4{b\vs relationship between the coverage and estimationwhen

the GPS ratio varies. Other methods such as DV-Hop, DV-Bigtaand Euclidean generate estimates with fixed coverage,
and thus they are plotted as single points in the graph. Mateithen GPS Ratio is 10 percent, our method generatessimila
estimation error as Euclidean when adjusted to the sameageeout DV-Hop and DV-Distance give better estimatiorwit
the same coverage.

Fig. 4(c) through Fig. 4(e) shows the result of a more dedailemparison against DV-Hop, DV-Distance and Euclidean.
We compare the estimation error of our method with other pughoy obtaining the average estimation error when its
corresponding coverage matches the other method. Thedighosv that DV-Hop and DV-Distance give lower estimation
error when the GPS ratio is less than 20 percent. With a hiGRS ratio, our method gives better result. Similar resuit ca
be observed when comparing to Euclidean, but the cut-ofitgwre is around 10 percent GPS ratio. The higher error at
low GPS ratio can be explained by the fact that the partidierfihethod prefers the scenarios where GPS nodes are located
around all edges of the network forming a near convex hulkhich case the location information from various GPS nodes
can utilized more effectively. When GPS ratio is low, sucsaldscenarios are less likely to occur, and there will be sode
outside the convex hull that are more difficult to localiz& Based methods, however, are affected less by those sognari
since they uses globally collected data such as distanehepeto perform the triangulation.

4.3 Connectivity

Simulation results in previous work are based on a ratheselaetwork with an average degree of 7.67. Similar networks
were used in [16], and thus allow a more sensible compari$tg. 5 shows the estimation error of our particle filter
based localization method in more sparse networks. Here@awethe network connectivity by changing the transmission
range while maintaining the network size (100 nodes). Hig) Shows that as expected more error is introduced in gparse
networks. Roughly speaking, the error halves when the mtaannectivity doubles. Fig. 5(b) through Fig. 5(d) shotws t
result of direct comparison the estimation error betweemmethod and others under the same coverage. When the network
is sparser, our method clearly out-performs all other tmeéhods. In theory a node needs to receive signal readiogs fr

a minimum of three neighbors in order to pinpoint its locati®hus, a network with degree of at least three will be needed
to localize all its nodes. With our localization method pestable estimations are obtained even with very sparseriet

of degrees less than three (no other approaches are ableve etimates for such situations).
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4.4 Compression vs. No Compression

Fig. 6 and Fig. 7 demonstrate the effectiveness of our cosspe algorithm on transmitting the particle distributidrne
same scenario is repeated when a complete particle digbribis transmitted instead of the compressed version. The
results are compared side by side. While the localizatignridhm works better when the complete distribution is sent
the differences are rather minimal. While the original jgéetdistribution consists of 200 particles, each of whiontains

two decimal numbers to designate the location, the compgdessrsion consists of 10 quadruples, each of which contains
five decimal numbers. The compression method archives bhtatalwidth saving of 87.5% at each location exchange.
Given that the network bandwidth can be expensive, one cgily gastifies the minimal tradeoff of performance using our
compression scheme.

45 Results on Mobile Networks

Previous work on MANET localization generally do not contaktensive simulation and analysis when the network is in-
deed mobile (as the definition of MANETSs imply). As discussadier, many previous methods are specifically designed to
work in stationary sensor networks, in which it is sufficiemtomplete one round of localization and there is no requenet

for further adjustment when topology changes. Thus, adgpitiem to work in mobile networks can be quite challenging.
In the worst case, the entire localization scheme has torber®ur method, however, are specifically designed to work i
mobile networks.

This section discusses simulation results on running oeirpidticle filter localization method on mobile networks.
Again, we use a network with a population of 100 nodes andsaeedegree of 7.5. We use the epoch-based mobility model
of [15] to simulate node movement, which is widely accepted good mobility model for ad hoc networks - more realistic
than, e.g., simple Brownian motion models. The entire mammpath of the node is defined by a sequence of “epochs,”
i.e., (e1,e, - ,en). The duration of each epoch is I.1.D. exponentially disttéal with a mean of A\. Within each epoch
nodes move with a constant velocity vector. At the end of esadch, nodes randomly select a new velocity vector. The
direction of the movement is 1.1.D. uniform between 0 ard Zhe absolute value of the velocity is I.1.D. normal with a
meany of and a variance of?. Our simulation uses a fixed mean and variance suchuthat. The result is obtained by
varyingu ando from Om/s to 40m/s. The expected amount of time a node magits current velocity is set to 5 seconds,
i.e.,A=5.

Figure 8 shows the filter convergence on mobile networks wigasurement noise level set to 50%. Here, all nodes
in the network moves at 10m/s in average, ite= o = 10. Comparing to the results of stationary networks in FegRyr
the random movement of the nodes causes the estimationtersaring. However, the error variances are not very high
once the nodes determine their initial locations after that iouple of seconds. This indicates that the filter is able t
adapt to the node movement well enough to maintain its ovestination accuracy. Figure 9 shows the average estimatio
error of mobile networks. The error does increases gragedalthe speed increases. Considering that neighborsegeha
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location information every 0.5s, in a network with an averagdal speed of 40m/s hodes move an average of 20 meters
per observation; yet our method is capable of producingladabation estimates. From the above result, one can ferese
that it is possible to reduce the rate of localization exgegrbetween the neighbors after the initial localizatiomgletes,
while still maintaining reasonable good estimates. A @mgk of future works is to find out the ideal rate of exchanges f

a given amount of network mobility.

5 Conclusions

This paper described a novel solution to the location tragkiroblem for mobile ad hoc networks that uses a Monte
Carlo sampling-based Bayesian filtering (i.e., partickerfihg) method. The estimated location for nodes is reghede
a probability distribution represented by a collection afmple points. The location information from the GPS nodes
is propagated through the network via local broadcastintheflocation estimates. When a node receives the location
estimates from neighbors, it updates its location distignuusing the particle filtering method. Simulation studgishown
that the particle filter solution is capable of producing destimates equal or better than the existing localizatiethods
such as APS-Euclidean. Our solution also performs quitewien the network connectivity is low. Study has also shown
that the solution is resilient to network topology changeaking it suitable for ad hoc networks with significant maiili

Our particle filter based localization method currentlysiRESI as the sole measurement. However, because our method
is based on a rather generic algorithm of probabilisticriitét can be easily extended to incorporate other measunteme
types such as angle of arrival (AoA). To do so, only the filtpdate step needs to be changed in order to meaningfully
update the filter according to the properties of the new nreasent, but the basic algorithm remains the same. In fact, it
is easy to implement our method with multiple types of measants coexisting in the network. The same particle filter
method can be used in a network where an arbitrary portiorodés are capable of measuring RSSI, another part of the
nodes are capable of measuring AoA, and some are capableastintgg both. This makes our method truly versatile and
ideal for such heterogeneous networks.

References

[1] P. Bahland and V.N. Pamanabhan, RADAR: An in-Building-B&sed user Location and Tracking System, In Proceed-
ings of the IEEE INFOCOM’00, March 2000.

[2] N.Bulusu, J. Heidemann, and D. Estrin, "GPS-less lowt cosdoor localization for very small devices,” IEEE Perabn
Communications Magazine, vol. 7, no. 5, pp. 28-24, Octoben2



Location Tracking in Mobile Ad Hoc Networks using Particldtér 16

[3] L. Girod and D. Estrin, Robust Range Estimation using éstic and Multimodal Sensing, In Proceedings of IROS 01,
Maui, Hawaii, October 2001.

[4] N. Gordon, Bayesian Methods for Tracking, PhD thesisiversity of London, 1993.

[5] T. He, C. Huang, B. M. Blum,J. A. Stankovic,and T. F. Abzigher. "TRange-Free Localization Schemes in Large Scale
Sensor Networks”, CS-TR2003 -06. Submit to MobiCom 2003.

[6] R. Huang, G.V. Zaruba, and M. Huber, Link Longevity KamEstimator for Ad Hoc Networks, To appear in the
Proceedings of the VTC2003, IEEE 54th Vehicular Technologpference, 2003.

[7] X.Jiang and T. Camp. Review of geocasting protocols fmadile ad hoc network. In Proceedings of the Grace Hopper
Celebration (GHC), 2002.

[8] V. Ko and N. H. Vaidya, "Location-Aided Routing (LAR) Male Ad Hoc Networks,” MOBICOM '98, Dallas, TX,
1998.

[9] Y. Ko and N. Vaidya. Geocasting in Mobile Ad Hoc Networksocation-Based Multicast Algorithms. In IEEE Work-
shop on Mobile Computing Systems and Applications (WMCSA&R9.

[10] F. Kuhn, R. Wattenhofer, Y. Zhang and A. Zollinger: Gestnic ad-hoc routing: of theory and practice. PODC 2003:
63-72.

[11] W.-H. Liao, Y.-C. Tseng, and J.-P. Sheu. GRID: A fullycation-aware routing protocol for mobile ad hoc networks.
Telecommunication Systems, 18(1):37-60, 2001.

[12] W.-H. Liao, Y.-C. Tseng, K.-L. Lo, and J.-P. Sheu. GadgA geocasting protocol for mobile ad hoc networks based
on grid. Journal of Internet Technology, 1(2):23-32, 2000.

[13] T. Liu, P. Bahl, and I. Chlamtac, "A hierarchical positi-prediction algorithm for efficient management of resesr
in cellular networks,'Proceedings of the IEEE GLOBECOM'97hoenix, Arizona, November 1997.

[14] M. Mauve, H. Fuler, J. Widmer, and T. Lang. Position-Ba$/ulticast Routing for Mobile Ad-Hoc Networks. Tech-
nical Report TR-03-004, Department of Computer Sciencéyessity of Mannheim, 2003.

[15] A. B. McDonald and T. Znati, "A mobility-based framewofor adaptive clustering in wireless ad-hoc networks,”
IEEE Journal on Selected Areas in Communicapecial Issue on Wireless Ad-Hoc Networks, vol. 17, no. 8dsi
1999.

[16] D. Niculescu and B. Nath, "Ad hoc positioning system @PProceedings of the IEEE GLOBECOM’0%an Anto-
nio, 2001.

[17] D. Niculescu and B. Nath, "Ad hoc positioning system @Rising AoA,"Proceedings of the IEEE INFOCQOMNan
Francisco, 2003.

[18] D. Niculescu and B. nath, DV Based Positioning in AdhoetWorks, to appear in journal of Telecommunication
Systems, 2003.

[19] P.J. Nordlund, F. Gunnarsson, and F. Gustafsson,itlRafiiters for positioning in wireless network€roceedings
of the XI. European Signal Processing Conference (EUSIRZ@)1.

[20] C. Savarese, J. Rabay and K. Langendoen, Robust Rosdié\lgorithms for Distributed Ad-Hoc Wireless Sensor
Networks, USENIX Technical Annual Conference, Montere%, Qune 2002.

[21] A. Savvides, H. Park and M. B. Srivastava, The n-Hop Matkration Primitive for Node Localization Problems.
Mobile Networks and Applications 8(4): 443-451, August 300

[22] K. Whitehouse and D. Culler, Calibration as Parametimiation in Sensor Networks, In First ACM International
Workshop on Wireless Sensor Networks and Application,i&daGA, September 2002.

[23] Y. Xu, J. Heidemann, and D. Estrin. Geography-inforneegrgy conservation for adhoc routing. In Proc. seventh
Annual ACM/IEEE International Conference on Mobile Comipgtand Networking (MobiCom), pages 70-84, 2001.

[24] G.V.Zaruba, M. Huber, and F. A. Karmangar, Monte C&#ompling Based In-Home Location Tracking with Minimal
RS Infrastructure Requirements, to be published, 2003.



