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Abstract

Mobile ad hoc networks (MANET) are dynamic networks formed on-the-fly as mobile nodes move in and out of each
others’ transmission ranges. In general, the mobile ad hoc networking model makes no assumption that nodes know their
own locations. However, recent research shows that location-awareness can be beneficial to fundamental tasks such as
routing and energy-conservation. On the other hand, the cost and limited energy resources associated with common, low-
cost mobile nodes prohibits them from carrying relatively expensive and power-hungry location-sensing devices such as
GPS. This paper proposes a mechanism that allows non-GPS-equipped nodes in the network to derive their approximated
locations from a limited number of GPS-equipped nodes. In our method, all nodes periodically broadcast their estimated
location, in term of a compressed particle filter distribution. Non-GPS nodes estimate the distance to their neighbors by
measuring the received signal strength of incoming messages. A particle filter is then used to estimate the approximated
location, along with a measure of confidence, from the sequence of distance estimates. Simulation studies show that our
solution is capable of producing good estimates equal or better than the existing localization methods such as APS-Euclidean
for the more difficult scenario when the network connectivity is low.

1 Introduction

Mobile ad hoc networks (MANET) are constructed on the fly as the network nodes move in and out of the transmission
range of each other. A major challenge in protocol design forthis type of networks is to provide mechanisms that deal with
the dynamical topology change. Constant topology change makes it more difficult for fundamental tasks such as routing
since the routing algorithm cannot simply rely on its previous knowledge of the network topology. Furthermore, even after
a route has been successfully established, it can still be disrupted at any time due to the movement of the intermediate
nodes. For this reason, most protocols originally designedfor static networks cannot be adopted to ad hoc networks without
significant change. Many protocols have to be redesigned forad hoc networks in order to cope with the topology change.

Studies have shown that innovative algorithms can aid mobile ad hoc network (MANET) protocols if the nodes in the
network are capable of obtaining their own as well as other nodes’ location information. For instance, algorithms such
as LAR [8], GRID [11], and GOAFR+ [10] rely on the location information to provide more stable routes during unicast
route discovery. The location information is also applied to geocast (multicast based on geographic information) [7] for
algorithms such as LBM [9], GeoGRID [12] and PBM [14]. To minimize the power consumption, The GAF algorithm [23]
uses the location information to effectively modify the network density by turning off certain nodes at particular instances.

The algorithms listed earlier all rely on the availability of reasonably accurate location information. This assumption
is valid for networks in which some location sensing devices, such as GPS receivers, are available at all nodes. However,
in reality this is rarely the case; although GPS receivers are increasingly cheaper to produce and becoming more widely
available, they are still relatively expensive and power-hungry. GPS receivers also require line-of-sight to satellite, which
precludes indoor usage. Therefore, it is too general to assume that they will be applicable to every node in the ad hoc
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networks. For this reason different algorithms have been proposed to derive approximated locations ofall nodes based on
the relaxed assumption that direct location sensing devices (such as GPS) are available to only asubsetof the nodes.

This paper presents a solution to the location tracking problem based on particle filters. Given an ad hoc network with
limited number of location-aware nodes, our solution estimates the locations of all other nodes by measuring sensory data,
in this particular case the received signal strength indication (RSSI), from neighbors. For each node, the estimated location
is viewed as a probabilistic distribution maintained by a particle filter. Unlike other location tracking methods, our solution
has low overhead because it is purely based on local broadcasting and does not require flooding of the location information
over the entire network. Simulation studies show that even without flooding, our solution can still generate good estimates
comparable to other existing methods, given that the percentage of GPS nodes is not extremely low. In addition when
connectivity is low, our algorithm is still able to derive location information which is not the case with most of the other
approaches. While most algorithms either attempt to increase the accuracy of the estimate or to increase the coverage, our
algorithm recognizes the tradeoff between the two and provides a quantative measure for both. From the implementation
point of view, our algorithm can be easily implemented in distributed manner for both stationary and mobile networks. Most
importantly, our algorithm provides a probabilistic framework in which other sensory data (such as angle of arrival) can be
naturally incorporated in the future.

2 Related Works

Given a network graphG= (V,E) in which the number of location-aware nodes (also calledanchornodes)|Vgps| ≤ |V|, the
objective of the location tracking algorithm is to find the locations ofnon-anchornodes{V} −{Vgps}. In this section we
survey the previous work on the location tracking problem inad hoc networks.

Generally speaking, there are two categories of distributed localization methods depending on whether sensory data are
used. The methods that do not use sensory data are simpler buttend to perform poorly especially when anchor ratio is low
or the network is sparse. The methods that do use sensory datagenerally perform better but tend to be significantly more
complex. The performance in the latter case is also largely affected by the noise introduced to the sensory data which tends
to aggregate rapidly as sensory data is propagated through the network.

The Centroid method [2] provides the most straight-forwardsolution that does not use sensory data. Assuming that a
non-anchor node is capable of receiving the location information from multiple anchor nodes, the Centroid method derives
the location of a non-anchor node as the average of its neighboring anchor nodes’ locations. The method is simple and
efficient, but it requires the anchor nodes to redundantly cover large areas for an acceptable performance. The APIT method
[5] estimates the node location by isolating the area using various triangles formed by anchor nodes. The location of thenode
is narrowed down by analyzing overlapping triangles to determine whether the node is contained within the triangles. Both
the Centroid method and the APIT method require the transmission range of anchors to be much greater than non-anchors
(by an order of magnitude [5]) in order for nodes to obtain reasonable location estimates.

The DV-Hop method [18] allows the location information fromanchor nodes to propagate through multiple hops. The
locations of anchors are periodically flooded throughout the network much like the routing packets in a distance vector
routing protocol. The locations of non-anchor nodes are derived geometrically by performing trilateration of the distance
estimates from at least three anchor nodes. Here the distance estimates are obtained by multiplying the number of hops tothe
anchor node to a predefined average-distance-per-hop value. The DV-Hop method does not require a greater transmission
range of anchors, and it works well even when the ratio between anchor and non-anchor nodes is low. However, the message
complexity is rather high due to the flooding of the location information. Furthermore, because the average-distance-per-
hop is an estimated value over the entire network, the accuracy of the location estimation suffers when the nodes are not
uniformly placed over the network.

Other, significant location tracking methods make use of additional sensors. In [13], the location, velocity and accelera-
tion of mobile nodes are estimated by measuring the receivedsignal strength indicator (RSSI) from multiple base stations
in a cellular network. The measured power levels are fed intoa Kalman filter to smooth out (filter) the erratic readings
and thus be able to derive the distance. Since base station locations are assumed to be well-known in a cellular network,
mobile nodes can use them as reference points for location estimation. In [17], the authors assume that non-anchor nodes
are equipped with devices that measure the incoming signal directions. The directional information allows the receivers
to obtain the angle of arrival (AoA) of the signal thus allowing more accurate location estimates than the pure DV-Hop
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method. The DV-Distance method [18] is similar to the DV-Hopmethod but uses the estimated distance instead of the hop
count during trilateration. In [20] after obtaining the initial location estimates from the DV method, the nodes obtainthe
estimated locations from the neighbors via local broadcast. The RSSI readings also provide the distance estimates fromthe
neighbors. Using the distance estimates along with the estimated locations from the neighbors, the nodes can refine their
initial location estimates via trilateration.

Hardware-wise, sensors that measure RSSI are widely available to mobile devices. Indeed, most off-the-shelf technolo-
gies implicitly provide such information (e.g., most Wi/Ficards provide with RSSI). Based on RSSI and an underlying
signal propagation model, the distance to the sender can be estimated. Because of the noise caused by multipath fading and
far field scattering during the signal transmission, the distance estimates derived from RSSI suffer accordingly, especially
when a large number of obstacles present. However, a number of mechanisms have been proposed to improve the accuracy
of such estimates, such as the ones that use a more robust acoustic ranging system [3], device calibration on the RSSI
sensors [22], and Kalman filters to smooth out the odd readings from the sensors [6]. Experiments have shown that the
distance estimation error can be drastically reduced by using those methods. Thus, the RSSI-based methods are becoming
more practical solutions to the location tracking problem in ad hoc networks.

3 Particle Filter Solution

“Geometrically speaking,” in order to find the location of a node in a 2-dimensional space, the distances and locations ofat
least three anchors need to be known (as each of these anchorsdefine a circle where the target node could be). In a network
where the percentage of anchors is low, the major challenge is to obtain the distances and locations of anchors when the node
is several hops away from the anchors. Previous works resolve this problem by either 1) assuming a greater transmission
range of anchors [2, 5] (thus, anchors are always 1-hop away), or 2) broadcasting the anchor locations hop-by-hop over the
entire network [18, 17, 20]. The assumption made in the first solution requires the network to be heterogeneous in the node
types (in which anchors’ radios are considered different than those of non-anchors) and requires homogeneity (uniformity)
for anchor nodes’ location over the area. The flooding of the location packets in the second solution requires extra overhead.
This overhead can be especially heavy when nodes are mobile,where location packets need to be re-broadcasted repeatedly
by nodes. Furthermore, most methods in [18, 17, 21] requiresmultiple phases of operations such as a phase of initial
location discovery followed by a phase of refinement. However, in a more general network model in which nodes are can
come online and go offline at different time, it becomes more difficult to define the start and the end of a phase. Lastly, due
to the geometric and algorithmic limitations, most existing methods produce the location estimates for a limited percentage
of nodes. But, their estimates lack a measure that qualifies the estimates. In other words, one cannot tell how good those
estimates are.

Recognizing various shortcomings of previous approaches,we propose a different location tracking method that is based
on Bayesian filters using Monte Carlo sampling (also known asparticle filters) introduced in [4]. Our method can be
considered as a probabilistic approach in which the estimated location of each node is regarded as a probability distribution
captured by samples, thus the term particles. The distribution of particles (the probability distribution of a node’s location
over the area) is continuously updated as the node receives location estimates from its neighbors along with the distance
estimates from RSSI reading. Essentially, the nodes estimate their own locations by interchanging the location distributions
with their neighbors.

Our method has the following advantages over most existing localization methods:

1. Provide a measure of estimation quality. DV based algorithms can generate location estimates to a subset of nodes.
The coverage of the estimates depends on the nature of the algorithm. There is always tradeoff between the coverage
and the quality of the estimates. Some algorithms (such as DV-Hop) give better coverage, while other (such as
Euclidean) gives better estimates. Our method, however, generates location estimates for all nodes in the network.
Each estimate is qualified by a variance, which serves as the quality measure. Thus, the coverage of our estimates is
not a fixed value but a function of the variances. In practice,certain applications might desire better estimation quality
while other might desire better coverage. Previously, different localization methods need to be applied separately
to accomplish the two objectives. Our method, however, produces the result satisfies both scenarios all in same
probabilistic framework.
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2. Single phase operation. Many algorithms employ multiple phases during the localization process. For instance, DV-
Hop requires a first phase to calculate per-hop distance and asecond phase to propagate the result. The multilateration
methods [21] contains three phrases of initial estimation,grouping and refinement. Our method, however, has the ad-
vantage of a single phase operation. From the implementation point of view, our algorithm can be easily implemented
in distributed fashion because nodes do not have to collectively maintain the state information of “which phase are we
in?” From the functional point of view, the probabilistic nature of our method simplifies the algorithm by eliminating
the need for multiple phases. In multilateral methods, an initial estimate is obtained based on a certain measure (dis-
tance or hops) to GPS nodes followed by phase of further refinement. The initial location estimate suffers because
infomation from non-GPS nodes are not used. The refinement phase is needed so that information from non-GPS
nodes can be incorporated into the estimates. Our method does not need separate phases, as the information from
non-GPS nodes is automatically applied as soon as it becomesavailable. In particular, as non-GPS nodes becomes
more aware of their locations, their variances decrease, which allows their estimates to be used by neighboring nodes.

3. Simple communication model and fast convergence. Our method employs a simple computation and communication
model which relies solely on local broadcast (broadcast to neighbors only). This allows our method to be naturally
integrated the periodical Hello messages used by mobile nodes in ad hoc networks to declear their existence. No new
type of control messages is needed. Furthermore, our simulation shows that comparing to existing method such as
APS, our method generally converges with less message overhead.

4. Mobile ready. Because of our algorithm eliminates multiple phases and uses a simple communication model, it can
be applied directly to mobile networks without any modification. While previous works do not generally provide
simulation result for mobile scenarios, we demonstrate viasimulation that our method can be effectively used in
mobile ad hoc networks.

5. Extensibility. Peering away the dependency to the RSSI signal readings, the core of our algorithm is a probabilistic
framework based on particle filtering that is extremely versatile. The framework can be easily extended to different
signal and network models. For instance, unlike DV-Hop, ourmethod does not assume that all nodes have the same
transmission range. Unlike Centeriod or APIT, our method does not require a greater range for GPS nodes, which
allows it to work in homogeneous networks. Furthermore, theframework is not tied to a particular signal propagation
model or a particular sensory data. Although we have not implemented it, we expect other sensory data such as angle
of arrival (AoA) can be used in place of RSSI as the input to ouralgorithm. More interestingly, the same probabilistic
framework will allow multiple sensory data working together to localize the network. In other words, a subset of
nodes is capable of AoA readings while another subset is capable of RSSI readings. The framework provided by our
algorithm can be adapted to solve such problem.

A similar Bayesian based approach has been proposed in [24] for the in-door location tracking problem. In [24], because
of the different obstacles (walls, windows and doors) presented in the in-door floor-plan, a signal strength (RSSI) map needs
to be obtained via measurement ahead of time. The location tracking problem then becomes a decision-making problem.
The problem can be solved using a measurement model that compares RSSI with the signal strength map to find the location
in the map that contains the largest probability of matchingthe current RSSI characteristics. While similar, our solution is
designed for our-door environment in which obstacles are assumed to be minimum, and fairly reliable distance estimates
can be obtained from RSSI readings and the signal propagation model. Based on those assumptions, our solution does not
require the RSSI map. The probability distributions of location estimates are updated solely from the distance and location
estimates from neighbors.

Fig. 1 demonstrates how our method solve the localization problem in a simple scenario. Here, node 2, 3 and 4 are GPS
nodes, and node 0 and 1 are non-GPS nodes. Of the non-GPS nodes, node 0 can receive signal from 1 and 4 only, and
node 1 can receive signal from node 1, 2 and 3 only. The probability distribution of the estimated location is represented
by the particles (dots) in the graph. In (a), node 0 can only receive signal from node 4. Thus, as the particle distribution
indicate, the probability distribution where node 0 locates at is a circle around node 4. In (b), node 1 can receive signal
from node 2 and 3. Thus, the probability where node 1 locates centers around two areas where circles around node 2 and
3 intersect. Intuitively, in order to localize itself a node-GPS node needs to receive location information from a minimum
three GPS-nodes either directly or indirectly. In both case(a) and case (b), the exact location of the non-GPS nodes 0 and1
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cannot be deduced because they do not receive location information from all three GPS nodes. In (c) and (d), node 0 and 1
are able to communicate to each other and exchange their probability distributions. Thus, their exact locations are identified
even though neither node receives location information from the all three GPS nodes directly.

3.1 Classic Monte Carlo Sampling-Based Bayesian Filtering

This section describes the theoretical background behind Bayesian filtering and how it can be applied to location estimation
using RSSI. Let us envision a grid system superimposed over the entire tracking area, and let the statest be the location
of the node to be tracked in the grid system at the timet . Our goal is to estimate the posterior probability distribution,
p(st |d1, . . . ,dt), of potential states -st , using the RSSI measurements,d1, . . . ,dt . The calculation of the distribution is
performed recursively using a Bayes filter:

p(st |d1, . . . ,dt) =
p(dt |st ) · p(st |d1, . . . ,dt−1)

p(dt |d1, . . . ,dt−1)

Assuming that the Markov assumption holds, i.e.,p(st |st−1, . . . ,s0,dt−1, . . . ,d1) = p(st |st−1), the above equation can be
transformed into the recursive form:

p(st |d1, . . . ,dt) =
p(dt |st) ·

R

p(st |st−1) · p(st−1|d1, . . . ,dt−1)dst−1

p(dt |d1, . . . ,dt−1)
,

wherep(dt |d1, . . . ,dt−1) is a normalization constant. In the case of the localizationof a mobile node from RSSI measure-
ments, the Markov assumption requires that the state contains all available information that could assist in predicting the
next state and thus, an estimate of the non-random motion parameters of the nodes is required as part of the state descrip-
tion. Starting with an initial, prior probability distribution, p(s0), a system model,p(st |st−1), representing the motion of
the mobile node (the mobility model), and the measurement model, p(d|s), it is then possible to drive new estimates of the
probability distribution over time, integrating one new measurement at a time. Each recursive update of the filter can be
broken into two stages:

Prediction: Use the system model to predict the state distribution based on previous readings

p(st |d1, . . . ,dt−1) =

Z

p(st |st−1) · p(st−1|d1, . . . ,dt−1)dst−1

Update: Use the measurement model to update the estimate

p(st |d1, . . . ,dt) =
p(dt |st )

p(dt |d1, . . . ,dt−1)
p(st |d1, . . . ,dt−1)

To address the complexity of the integration step and the problem of representing and updating a probability function
defined on a continuous state space (which therefore has an infinite number of states), the approach presented here uses a
sequential Monte Carlo filter to perform Bayesian filtering on a sample representation. The distribution is representedby
a set of weighted random samples and all filtering steps are performed using Monte Carlo sampling operations. Since we
have no prior knowledge of the state we are in, the initial sample distribution,pN(s0), is represented by a set of uniformly

distributed samples with equal weights,{(s(i)
0 ,w(i)

0 )|i ∈ [1,N],w(i)
0 = 1/N} and the filtering steps are performed as follows:

Prediction: For each sample,(s(i)
t−1,w

(i)
t−1), in the sample set, randomly generate a replacement sample according to the

system (mobility) modelp(st |st−1). This results in a new set of samples corresponding top(st |d1, . . . ,dt):

{(s̃(i)
t ,w(i)

t )|i ∈ [1,N],w(i)
t = 1/N}

Update: For each sample,(s̃(i)
t ,w(i)

t ), set the importance weight to the measurement probability of the actual measure-

ment,w̃(i)
t = p(dt |s̃

(i)
t ). Normalize the weights such that∑i η · w̃(i)

t = 1.0, and drawN random samples for the sample set

{(s̃(i)
t ,η ·w(i)

t )|i ∈ [1,N]} according to the normalized weight distribution. Set the weights of the new samples to 1/N, re-

sulting in a new set of samples{(s(i)
t ,w(i)

t )|i ∈ [1,N],w(i)
t = 1/N} corresponding to the posterior distributionp(st |d1, . . . ,dt).
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(a) Particle distribution of node 0 when node 1 isnot presented. (b) Particle distribution of node 1 when node 0 isnot presented.

(c) Particle distribution of node 0 when node 1is presented. (d) Particle distribution of node 1 when node 0is presented.

Figure 1: Location Distribution in Simple Scenarios.
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3.2 Modified Particle Filtering for Location Estimations

The classical Monte Carlo method is often implemented usingparticle filters. To apply the filter to the location tracking
problem a system model and a measurement model must be provided. We use a simple random placement model as our
system model (please note that this is the mobility model used in the filter which is different from the mobility model used
in the simulations to enable node movement). The model assumes that at any point in time the node moves with a random
velocity drawn from a Normal distribution with a mean of 0m/sand a fixed standard deviationσ. No information about the
environment is included in this model, and as a consequence,the filter permits the estimates to move along arbitrary paths.
Thus, our system model is simplyp(st |st−1) = N(0,σ), whereN is a Normal distribution. Note that while such system model
should work well in stationary networks, it’s not best suited for mobile networks. In reality, mobile nodes follow a certain
kind of movement profile instead of random motion. The systemmodel should closely resemble the current movement
profile of the node. However, since it’s difficult to obtain a reliable movement profile when the location is unknown, the
assumption of random movement is probably the best we can do at this stage.

The measurement data are obtained by observing the periodical location data broadcast from neighbors. To minimize
the impact of the measurement error, we apply a simple Kalmanfilter to the RSSI sensor readings [6] before feeding
the measurement data to the particle filter. When a nodeu receives broadcast location data from nodev, the broadcast
data consist of the unique identifier ofv, and the probability distribution,Xv, of the location estimate ofv at timet. The
Xv distribution is a compressed version of the actual particledistribution atv. The detail method of compressing and
decompressing the particle distribution is the topic of thenext section. For now, let us assume thatXv contains a set of sample
particles that representsv’s location. Along with the RSSI reading of the broadcast,RSSIv, the complete measurement
metricsdt is therefore(id,Xv,RSSIv).

After the measurement from the neighborv is collected, the particle filter at nodeu is updated. In the classic particle
filtering, particles are re-sampled based on weights, whichare in turn assigned based on the measurement. More weights
are assigned to the particle values that are more consistentwith the measurement reading. After re-sampling, the particle
distribution becomes more consistent with the current measurement. In our situation we have a unique scenario where the
measurement itself consists of a particle distribution,Xv. Furthermore, bothXu andXv areimprecise. Our task during the
update step is to modify the particle distributionXu so that it becomes more consistent withRSSIv while taking into account
the inherent impreciseness ofXu andXv. First, we obtain a distance estimate from the inverse of thesignal propagation
modelP:

D(RSSI) = P′(RSSIv)

Note thatP can be arbitrary as long as it depends on the distance from thesender to the receiver. Noise can be added to the
model, but we disregard it when calculating the inverse and let it be filtered out by the particle filtering (note, that in the
simulations noise is indeed added to the RSSI measurements).

For each particlexu in Xu, we randomly select a particlexv in Xv and calculate their distanceD(xu,xv). We then measure
the difference betweenD(xu,xv) andD(RSSI), and select a new location for re-sampling based on the difference as well as
the variances of the particle distributionXv andXu. For instance, before the update stepxu andxv are located at pointA
andB, respectively. Thus,D(xu,xv) = |AB|. Let A′ be the location ofxu based on the RSSI reading on the same line, i.e.,
D(RSSI) = |A′B|. Intuitively, if the location estimate given by the distributionXv is accurate and the actual location for node
v is indeed atxv, then the new location for particlexu should be at pointA′. Conversely, if the location estimate of the
distributionXu is accurate, the new location forxu should stay atA. Therefore, we select the new location based on the
perceived accuracy, i.e., the variances, of the distribution Xu andXv. Let the variance of a distributionX bevar(X). We
select the new location ofxu, x′u, along the line|AA′| such that

|Ax′u|
|x′uA|

=
var(Xu)

var(Xv)

A new particle is then randomly re-sampled by a Normal distribution centered atx′u with the variance being the average of
the variances ofXu andXv. We consider the variances of bothXu andXv during re-sampling because the spread of both
distributions affects the spread of the updated distributionX′

u.
Comparing to the re-sampling method of classic particle filters, our method is different in that we do not use a weight

based re-sampling method. Instead, we re-sample by comparing the two distributions together against the measurement
reading. But, the concept is the same as we are updating the distribution to fit the measurement readings. Our re-sampling
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method has a number of advantages over the traditional method. First, our method does not re-sample directly from the
original particle location using a weight based Gaussian distribution. Instead, it re-samples from a more accurate location
influenced by neighbor’s distribution. Thus, our method requires less amount of random probing and converges more
quickly. Secondly, since our method requires less amount ofrandom probing, a significantly smaller number of particles
are required. With less particles, the particle filter update procedure computes more efficiently.

3.3 Compressing and Decompressing Particle Filter Distribution

The previous section makes the assumption that the completelocation distribution is received from the neighbor. Sincethe
complete distribution consists of a large number of particles with their location data, doing so is obviously not very practical
due to the limited bandwidth of ad hoc networks. Therefore, we propose a simple yet effective compressing mechanism that
allows the particle distribution to be transmitted in a compact form.

Given a particle distributionX, we locate the expected value, ˆx, as the particle in the distribution that has the mini-
mum overall distance between itself and other particles, i.e., x̂ = argminx∈X (∑y∈Y |x−y|). In other words, ˆx is the most
representative particle of the entire distribution. From ˆx, we count the number of particlesn within the predefined range
r. We then calculate the variance,σ2 within thosen particles. Thus, we obtain a quadruple(x̂, r,n,σ2). From there, we
remove then particles in the previous quadruple from the distribution and repeat the process of finding the expected value,
a larger range (explained later) and the variance. By continuing the same process until all particles have been covered,we
obtain a sequences of quadruples that approximates the original particle distribution. When the quadruples are received by
the receivers, a decompressing algorithm runs to reproducethe distribution by randomly generating particles based onthe
expected value, range, particle number and variance for each quadruple.

For each broadcast, a fixed number of aforementioned quadruples are transmitted. The following algorithm is used to
progressively increase the ranger for each quadruple.

Q := number of quadruples desired

R := max range that covers the entire area

minQuota:= |X|/Q

rIncrement:= X2/3/R

xCount:= 0

r := 0

curRange:= 0

q′ := 1

FORq = 1 toQ

maxRange:= q · rIncrement3/2

WHILE curRange< maxRangeAND

number of particles incurRange+xCount< minQuota·q DO

curRange:= q′ · rIncrement3/2

q′ := q′ +1

rq := curRange

xCount:= xCount+ number of particles incurRange

The algorithm starts with an initial range ofX/R3/2 and a minimum quota of particle size|X|/Q for each quadruple.
As each quadruple is defined, a running sum,xCount, keeps track of the the total number of particles covered thus far. At
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Figure 2: Compressing the particle filter distribution.

each step, the range is incremented exponentially at each quadruple byr := r3/2, unless the running sum already exceeds
the minimum quota. The algorithm guarantees that all particles are covered by the predefined number of quadruple, and
the overall trends of the original distribution are maintained. Meanwhile, by using a quota limit with the exponential range
increment, more heavily populated areas are preserved withfiner detail. Our experiment has shown that the compression
method reduces the amount of data exchange by nearly 90 percent without a significant increase to the location estimation
error

Fig. 2 shows the compressed distribution, where the circlesshows the ranges.

4 Simulation Results

We have conducted a number of experiments to validate the effectiveness of our particle filter based solution. Our experi-
ments attempt to duplicate real world scenarios as closely as possible. In our simulations we assume a network in which all
nodes have an identical transmission power, with a certain percentage of nodes (simulation parameter) being GPS nodes.
For a network of fixed size, the connectivity of the network depends (almost solely) on the transmission range. When a node
is located within the transmission range of another node, weassume that it is capable of receiving signal from the sender
when noise is not present. The received signal strength depends on the distance to the sender as well as a signal propagation
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model and a noise model.
The signal propagation model is given byP= c·d−2, in which the power of the received signalP is inversely proportional

to the second power of the distanced. Here,c is an arbitrary constant. When the received signal powerP is below a threshold
Pmin, it is considered too weak to be captured by the receiver thusthe link breaks. For our simulations, we selectc = 106

andPmin = 1. Note thec andPmin selection does not affect the overall simulation results, as long as the same values are
used in the observation model of the filters. In fact, the samecan be said about all other signal propagation models - all we
require is a model that represents the receiving power as a function of distance, and we let the filter to filter out the noise.
For the particle filter itself, we use a total number of 200 particles at each node.

We use two types of networks, isotropic and anisotropic, of 100 randomly placed nodes. With isotropic networks, nodes
are randomly placed into a square with an average degree of 7.6. With anisotropic networks, nodes are placed into a C
shape area with an average degree of 7. Noise is added to the signal strength calculated via the signal propagation model as
a percentage of the calculated signal strength. For instance, a 10 percent noise means that the received signal strengthmay
vary within a plus-minus 10 percent range of the calculated signal strength (uniformly distributed). Note that our network
configuration and noise model is identical to that of the isotropic topology in [16], so that we can effectively compare our
method with APS.

We start by running the simulation on stationary networks, which resembles sensor network in the real world.

4.1 Filter Convergence

Figure 3 shows how the estimation error converges as more measurement readings are processed in a static network. We
are interested in how long and how many messages it takes for the error to reach an acceptable level from which it only
reduces marginally. We added a noise level of 50 percent to the measurement readings. The estimation error is calculated
as the difference between the most likely value given by the particle distribution and the actual location. The difference is
then measured in term of the ratio against the maximum transmission range. Thus, an estimation error of 1.0 means that
difference between the expected value and actual location equals to the maximum transmission range. The data is collected
of enough simulation runs to claim a 95 percent confidence, which shows as the vertical scale at each data point; the error
ratio is the average of all non-GPS nodes (i.e., the perfect “estimates” of GPS nodes are not biasing the results).

Two obvious facts can be observed from Figure 3: i) networks with higher GPS ratio produce better estimations and ii)
estimation error reduces quicker with higher GPS ratio. Both of those observations can be explained by the fact that GPS
ratio determines how fast and how accurate location information can be propagated through the network. With a higher GPS
ratio, non-GPS nodes will be able to obtain the necessary location information faster because non-GPS nodes are closer (i.e.,
less number of hops) to GPS nodes. Also, since measurement error is aggregated at each hop, the location information will
be more accurate with higher GPS ratio. GPS ratio also affects the confidence interval. This is because when GPS ratio is
low, the estimation error depends greatly on the position ofthe GPS nodes. When their position does not spread out evenly
through the network (for instance, GPS nodes is concentrated around one edge of the network), it becomes more difficult
for the the nodes further away to obtain good estimates. As the GPS ratio increase, the chances of bad positions reduces,
and thus the variance of the estimation error reduces.

Figure 3 also shows that the estimation error converges to the minimum between 2 to 5 seconds depending on the GPS
ratio. Considering that the location broadcast occurs every 0.5 seconds, it takes about 4 to 10 rounds of broadcasts for
the error to reach the minimum. Since the average degree of the network is 7.5 with a total of 100 nodes, each round of
broadcast is equivalent to 750 messages. Therefore, it takes about 3000 to 7500 messages to minimize the error depending
on the GPS ratio. Note that when even in the worst case where the GPS ratio is low, error converges very quickly and is
close the minimum after 2 seconds. The results are at least asgood as those of APS, where the “DV-distance” method uses
6500 messages (when GPS ratio is 0.1) to 9000 messages (when GPS ratio is 0.9), and the “Euclidean” method takes from
3000 to 8500 messages (results taken from Figures 7 and 11 of [16]). Note that our method converges quicker and takes
less number of messages when the GPS ratio is high.

4.2 Minimum Estimation Error

Fig. 4 compares the estimation error of our particle filter method with other methods. Again, the simulation scenario is
duplicated from that of the isotropic topology in APS [16], with a rather dense network of degree averages at 7.6. One
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Figure 3: Filter Convergence.

advantage of our method is that our method produces the location estimate along with a variance indicating its quality.
Thus, by varying the variance threshold, we are able to control the effective estimation coverage. Fig. 4(a) plots the actual
filter variances against the estimates for the scenario where GPS ratio is to 5 percent. Here, a trend can be observed that the
variances increase linearly with the estimates. Fig. 4(b) shows relationship between the coverage and estimation error when
the GPS ratio varies. Other methods such as DV-Hop, DV-Distance and Euclidean generate estimates with fixed coverage,
and thus they are plotted as single points in the graph. Note that when GPS Ratio is 10 percent, our method generates similar
estimation error as Euclidean when adjusted to the same coverage, but DV-Hop and DV-Distance give better estimation with
the same coverage.

Fig. 4(c) through Fig. 4(e) shows the result of a more detailed comparison against DV-Hop, DV-Distance and Euclidean.
We compare the estimation error of our method with other methods by obtaining the average estimation error when its
corresponding coverage matches the other method. The figures show that DV-Hop and DV-Distance give lower estimation
error when the GPS ratio is less than 20 percent. With a higherGPS ratio, our method gives better result. Similar result can
be observed when comparing to Euclidean, but the cut-off point here is around 10 percent GPS ratio. The higher error at
low GPS ratio can be explained by the fact that the particle filter method prefers the scenarios where GPS nodes are located
around all edges of the network forming a near convex hull, inwhich case the location information from various GPS nodes
can utilized more effectively. When GPS ratio is low, such ideal scenarios are less likely to occur, and there will be nodes
outside the convex hull that are more difficult to localize. DV based methods, however, are affected less by those scenarios,
since they uses globally collected data such as distance-per-hop to perform the triangulation.

4.3 Connectivity

Simulation results in previous work are based on a rather dense network with an average degree of 7.67. Similar networks
were used in [16], and thus allow a more sensible comparison.Fig. 5 shows the estimation error of our particle filter
based localization method in more sparse networks. Here, wevary the network connectivity by changing the transmission
range while maintaining the network size (100 nodes). Fig. 5(a) shows that as expected more error is introduced in sparser
networks. Roughly speaking, the error halves when the network connectivity doubles. Fig. 5(b) through Fig. 5(d) shows the
result of direct comparison the estimation error between our method and others under the same coverage. When the network
is sparser, our method clearly out-performs all other threemethods. In theory a node needs to receive signal readings from
a minimum of three neighbors in order to pinpoint its location. Thus, a network with degree of at least three will be needed
to localize all its nodes. With our localization method, respectable estimations are obtained even with very sparse networks
of degrees less than three (no other approaches are able to derive estimates for such situations).
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Figure 4: Effect of GPS Ratio on Estimation Error.
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4.4 Compression vs. No Compression

Fig. 6 and Fig. 7 demonstrate the effectiveness of our compression algorithm on transmitting the particle distribution. The
same scenario is repeated when a complete particle distribution is transmitted instead of the compressed version. The
results are compared side by side. While the localization algorithm works better when the complete distribution is sent,
the differences are rather minimal. While the original particle distribution consists of 200 particles, each of which contains
two decimal numbers to designate the location, the compressed version consists of 10 quadruples, each of which contains
five decimal numbers. The compression method archives a total bandwidth saving of 87.5% at each location exchange.
Given that the network bandwidth can be expensive, one can easily justifies the minimal tradeoff of performance using our
compression scheme.

4.5 Results on Mobile Networks

Previous work on MANET localization generally do not contain extensive simulation and analysis when the network is in-
deed mobile (as the definition of MANETs imply). As discussedearlier, many previous methods are specifically designed to
work in stationary sensor networks, in which it is sufficientto complete one round of localization and there is no requirement
for further adjustment when topology changes. Thus, adapting them to work in mobile networks can be quite challenging.
In the worst case, the entire localization scheme has to be rerun. Our method, however, are specifically designed to work in
mobile networks.

This section discusses simulation results on running our the particle filter localization method on mobile networks.
Again, we use a network with a population of 100 nodes and average degree of 7.5. We use the epoch-based mobility model
of [15] to simulate node movement, which is widely accepted as a good mobility model for ad hoc networks - more realistic
than, e.g., simple Brownian motion models. The entire movement path of the node is defined by a sequence of “epochs,”
i.e., (e1,e2, · · · ,en). The duration of each epoch is I.I.D. exponentially distributed with a mean of 1/λ. Within each epoch
nodes move with a constant velocity vector. At the end of eachepoch, nodes randomly select a new velocity vector. The
direction of the movement is I.I.D. uniform between 0 and 2π. The absolute value of the velocity is I.I.D. normal with a
meanµ of and a variance ofσ2. Our simulation uses a fixed mean and variance such thatµ = σ. The result is obtained by
varyingµ andσ from 0m/s to 40m/s. The expected amount of time a node maintains its current velocity is set to 5 seconds,
i.e.,λ = 5.

Figure 8 shows the filter convergence on mobile networks withmeasurement noise level set to 50%. Here, all nodes
in the network moves at 10m/s in average, i.e.,µ = σ = 10. Comparing to the results of stationary networks in Figure 3,
the random movement of the nodes causes the estimation errorto swing. However, the error variances are not very high
once the nodes determine their initial locations after the first couple of seconds. This indicates that the filter is able to
adapt to the node movement well enough to maintain its overall estimation accuracy. Figure 9 shows the average estimation
error of mobile networks. The error does increases gracefully as the speed increases. Considering that neighbors exchange
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location information every 0.5s, in a network with an average nodal speed of 40m/s nodes move an average of 20 meters
per observation; yet our method is capable of producing usable location estimates. From the above result, one can foresee
that it is possible to reduce the rate of localization exchanges between the neighbors after the initial localization completes,
while still maintaining reasonable good estimates. A challenge of future works is to find out the ideal rate of exchanges for
a given amount of network mobility.

5 Conclusions

This paper described a novel solution to the location tracking problem for mobile ad hoc networks that uses a Monte
Carlo sampling-based Bayesian filtering (i.e., particle filtering) method. The estimated location for nodes is regarded as
a probability distribution represented by a collection of sample points. The location information from the GPS nodes
is propagated through the network via local broadcasting ofthe location estimates. When a node receives the location
estimates from neighbors, it updates its location distribution using the particle filtering method. Simulation study has shown
that the particle filter solution is capable of producing good estimates equal or better than the existing localization methods
such as APS-Euclidean. Our solution also performs quite well when the network connectivity is low. Study has also shown
that the solution is resilient to network topology change, making it suitable for ad hoc networks with significant mobility.

Our particle filter based localization method currently uses RSSI as the sole measurement. However, because our method
is based on a rather generic algorithm of probabilistic filters, it can be easily extended to incorporate other measurement
types such as angle of arrival (AoA). To do so, only the filter update step needs to be changed in order to meaningfully
update the filter according to the properties of the new measurement, but the basic algorithm remains the same. In fact, it
is easy to implement our method with multiple types of measurements coexisting in the network. The same particle filter
method can be used in a network where an arbitrary portion of nodes are capable of measuring RSSI, another part of the
nodes are capable of measuring AoA, and some are capable of measuring both. This makes our method truly versatile and
ideal for such heterogeneous networks.
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