Informed search algorithms

Chapter 4, Sections 1–2
Outline

◊ Best-first search
◊ A* search
◊ Heuristics
Review: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure

fringe ← Insert(Make-Node(Initial-State[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test[problem] applied to State(node) succeeds return node
 fringe ← InsertAll(Expand(node, problem), fringe)

A strategy is defined by picking the order of node expansion
Best-first search

Idea: use an *evaluation function* for each node
- estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
- greedy search
- A* search
Greedy search

Evaluation function $h(n)$ (heuristic)

$= \text{estimate of cost from } n \text{ to the closest goal}$

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal
Greedy search example

Arad
366
Greedy search example

Chapter 4, Sections 1–2
Greedy search example
Greedy search example

Chapter 4, Sections 1-2
Properties of greedy search

Complete??
Properties of greedy search

Complete?? No—can get stuck in loops, e.g., with Oradea as goal, Neamt → Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time??
Properties of greedy search

Complete

No—can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time

$O(b^m)$, but a good heuristic can give dramatic improvement

Space
Properties of greedy search

Complete? No—can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time? $O(b^m)$, but a good heuristic can give dramatic improvement

Space? $O(b^m)$—keeps all nodes in memory

Optimal?
Properties of greedy search

Complete?? No—can get stuck in loops, e.g.,
 Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$—keeps all nodes in memory

Optimal?? No
A* search

Idea: avoid expanding paths that are already expensive

Evaluation function \(f(n) = g(n) + h(n) \)

\(g(n) = \) cost so far to reach \(n \)
\(h(n) = \) estimated cost to goal from \(n \)
\(f(n) = \) estimated total cost of path through \(n \) to goal

A* search uses an admissible heuristic

i.e., \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \).
(Also require \(h(n) \geq 0 \), so \(h(G) = 0 \) for any goal \(G \).)

E.g., \(h_{SLD}(n) \) never overestimates the actual road distance

Theorem: A* search is optimal
A* search example

Arad

366 = 0 + 366
A* search example

- Sibiu: 393 = 140 + 253
- Timisoara: 447 = 118 + 329
- Zerind: 449 = 75 + 374
A* search example
A* search example

Chapter 4, Sections 1-2
A* search example

Chapter 4, Sections 1-2
Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

$$f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0$$

$$> g(G_1) \quad \text{since } G_2 \text{ is suboptimal}$$

$$\geq f(n) \quad \text{since } h \text{ is admissible}$$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Properties of A*

Complete??
Properties of A*

Complete?
Yes, unless there are infinitely many nodes with \(f \leq f(G') \)

Time?

Properties of A*

Complete? Yes, unless there are infinitely many nodes with $f \leq f(G')$

Time? Exponential in [relative error in $h \times$ length of soln.]

Space?
Properties of A*

Complete Yes, unless there are infinitely many nodes with $f \leq f(G')$

Time Exponential in [relative error in $h \times$ length of soln.]

Space Keeps all nodes in memory

Optimal
Properties of A*

Complete?? Yes, unless there are infinitely many nodes with \(f \leq f(G') \)

Time?? Exponential in [relative error in \(h \times \) length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand \(f_{i+1} \) until \(f_i \) is finished

A* expands all nodes with \(f(n) < C^* \)
A* expands some nodes with \(f(n) = C^* \)
A* expands no nodes with \(f(n) > C^* \)
IDA*

Series of Depth-First Searches

Like Iterative Deepening Search, except use A* cost threshold instead of depth threshold

Ensures optimal solution

queueing-fn is enqueue-at-front if \(f(\text{child}) \leq \text{threshold} \)

Threshold is \(h(\text{root}) \) for first pass

Next threshold is \(f(\text{min}_\text{child}) \),
where \(\text{min}_\text{child} \) is cutoff child with minimum \(f \) value

This conservative increase ensures cannot look past optimal cost solution
Example

Click mouse to advance to next frame.

\[
\text{limit} = f(C) = 2
\]
Example

Click mouse to advance to next frame.

limit = f(C) = 2
Example

Click mouse to advance to next frame.

limit = f(C) = 2
Example

Click mouse to advance to next frame.

limit = f(C) = 2

Nodes on frontier: B (3+4=7), O(2+2=4), P(2+3=5)
New limit = f(O) = 4
Example

Click mouse to advance to next frame.

limit = f(0) = 4
Example

Click mouse to advance to next frame.

limit = f(O) = 4
Example

Click mouse to advance to next frame.

limit = f(O) = 4
Example

Click mouse to advance to next frame.

\[\text{limit} = f(O) = 4 \]
Example

Click mouse to advance to next frame.

limit = f(O) = 4

Nodes on frontier: B (3+4=7), P (2+3=5)
I (6+1=7), N (7+44=51)

New limit = f(P) = 5
Example

Click mouse to advance to next frame.

limit = f(P) = 5
Example

Click mouse to advance to next frame.

limit = f(P) = 5
Example

Click mouse to advance to next frame.

\[
\text{limit } = f(P) = 5
\]
Example

Click mouse to advance to next frame.

limit = f(P) = 5
Example

Click mouse to advance to next frame.

limit = f(P) = 5
Example

Click mouse to advance to next frame.

limit = f(P) = 5
Example

Click mouse to advance to next frame.

limit = f(P) = 5
Example

Click mouse to advance to next frame.

limit = f(L) = 6

Nodes on frontier: B (3+4=7), I (6+1=7), N (7+44=51)
L (6+0=6), F (7+8=15), D (7+10=17)
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Example

Click mouse to advance to next frame.

limit = f(L) = 6
Eight Puzzle Example
Eight Puzzle Example

Iteration 2 (T=9)

initial, h=7

Eight Puzzle Example

Iteration 3 (T=11)
Analysis

Some redundant search, but small amount compared to work done on last iteration

Dangerous if f values are very close

If threshold = 21.1 and next value is 21.2, probably only include 1 new node each iteration

Time: $O(b^m)$ Space: $O(m)$

SMA* search can be used to remember some nodes from one iteration to the next.
Proof of lemma: Consistency

A heuristic is consistent if

\[h(n) \leq c(n, a, n') + h(n') \]

If \(h \) is consistent, we have

\[
\begin{align*}
 f(n') &= g(n') + h(n') \\
 &= g(n) + c(n, a, n') + h(n') \\
 &\geq g(n) + h(n) \\
 &= f(n)
\end{align*}
\]

I.e., \(f(n) \) is nondecreasing along any path.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]

\[h_2(n) = \text{total Manhattan distance} \]

\((\text{i.e., no. of squares from desired location of each tile}) \)

\[
\begin{align*}
\text{Start State} & \quad \text{Goal State} \\
7 & 2 & 4 & 1 & 2 & 3 \\
5 & 6 & 8 & 4 & 5 & 6 \\
3 & 1 & & & & \\
\end{align*}
\]

\[h_1(S) = ?? \]

\[h_2(S) = ?? \]
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]
\[h_2(n) = \text{total Manhattan distance} \]

(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
7 & 2 & 4 \\
5 & 6 & \\
8 & 3 & 1 \\
\end{array}
\]

Start State

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

Goal State

\[
\begin{array}{c}
h_1(S) =?? \quad 6 \\
h_2(S) =?? \quad 4+0+3+3+1+0+2+1 = 14 \\
\end{array}
\]
Dominance

If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
then \(h_2 \) dominates \(h_1 \) and is better for search

Typical search costs:

\[
\begin{align*}
 d = 14 & \quad \text{IDS} = 3,473,941 \text{ nodes} \\
 & \quad A^*(h_1) = 539 \text{ nodes} \\
 & \quad A^*(h_2) = 113 \text{ nodes} \\
\end{align*}
\]

\[
\begin{align*}
 d = 24 & \quad \text{IDS} \approx 54,000,000,000 \text{ nodes} \\
 & \quad A^*(h_1) = 39,135 \text{ nodes} \\
 & \quad A^*(h_2) = 1,641 \text{ nodes} \\
\end{align*}
\]

Given any admissible heuristics \(h_a, h_b, \)

\[
h(n) = \max(h_a(n), h_b(n))
\]

is also admissible and dominates \(h_a, h_b \)
Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem.
Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$
and is a lower bound on the shortest (open) tour
Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest \(h \)
- incomplete and not always optimal

A* search expands lowest \(g + h \)
- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems