Logical agents

Chapter 7
Outline

♦ Knowledge-based agents

♦ Wumpus world

♦ Logic in general—models and entailment

♦ Propositional (Boolean) logic

♦ Equivalence, validity, satisfiability

♦ Inference rules and theorem proving
 – forward chaining
 – backward chaining
 – resolution
Knowledge bases

Inference engine \[\rightarrow\] domain–independent algorithms

Knowledge base \[\rightarrow\] domain–specific content

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
 Tell it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how implemented

Or at the implementation level
 i.e., data structures in KB and algorithms that manipulate them
A simple knowledge-based agent

function KB-Agent (percept) returns an action

static: KB, a knowledge base
 t, a counter, initially 0, indicating time

 Tell(KB, Make-Percept-Sentence(percept, t))
 action ← Ask(KB, Make-Action-Query(t))
 Tell(KB, Make-Action-Sentence(action, t))
 t ← t + 1

return action

The agent must be able to:
 Represent states, actions, etc.
 Incorporate new percepts
 Update internal representations of the world
 Deduce hidden properties of the world
 Deduce appropriate actions
Wumpus World PEAS description

Performance measure
- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators Left turn, Right turn,
- Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
Observable??
Wumpus world characterization

Observable?? No—only local perception

Deterministic??
Wumpus world characterization

Observable? No—only local perception

Deterministic? Yes—outcomes exactly specified

Episodic?
Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static??

Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete??
Wumpus world characterization

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observable</td>
<td>No—only local perception</td>
</tr>
<tr>
<td>Deterministic</td>
<td>Yes—outcomes exactly specified</td>
</tr>
<tr>
<td>Episodic</td>
<td>No—sequential at the level of actions</td>
</tr>
<tr>
<td>Static</td>
<td>Yes—Wumpus and Pits do not move</td>
</tr>
<tr>
<td>Discrete</td>
<td>Yes</td>
</tr>
<tr>
<td>Single-agent</td>
<td>??</td>
</tr>
</tbody>
</table>
Wumpus world characterization

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature
Exploring a wumpus world

OK

OK

A
Exploring a wumpus world
Other tight spots

Breeze in (1,2) and (2,1)
⇒ no safe actions

Assuming pits uniformly distributed,
(2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1)
⇒ cannot move

Can use a strategy of coercion:
shoot straight ahead
wumpus was there ⇒ dead ⇒ safe
wumpus wasn’t there ⇒ safe
Logic in general

Logics are formal languages for representing information such that conclusions can be drawn.

Syntax defines the sentences in the language.

Semantics define the “meaning” of sentences; i.e., define truth of a sentence in a world.

E.g., the language of arithmetic.

\[x + 2 \geq y \] is a sentence; \[x^2 + y > \] is not a sentence.

\[x + 2 \geq y \] is true iff the number \(x + 2 \) is no less than the number \(y \).

\[x + 2 \geq y \] is true in a world where \(x = 7, \ y = 1 \).

\[x + 2 \geq y \] is false in a world where \(x = 0, \ y = 6 \).
Entailment means that one thing follows from another:

\[KB \models \alpha \]

Knowledge base \(KB \) entails sentence \(\alpha \)
if and only if
\(\alpha \) is true in all worlds where \(KB \) is true

E.g., the KB containing “the Giants won” and “the Reds won” entails “Either the Giants won or the Reds won”

E.g., \(x + y = 4 \) entails \(4 = x + y \)

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)
Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.

We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \).

\(M(\alpha) \) is the set of all models of \(\alpha \).

Then \(KB \models \alpha \) if and only if \(M(KB) \subseteq M(\alpha) \).

E.g. \(KB = \) Giants won and Reds won
\(\alpha = \) Giants won
Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for ?'s assuming only pits

3 Boolean choices \Rightarrow 8 possible models
Wumpus models
$KB = \text{wumpus-world rules} + \text{observations}$
$KB = \text{wumpus-world rules} + \text{observations}$

$\alpha_1 = \text{"[1,2] is safe"}$, $KB \models \alpha_1$, proved by model checking
$KB = \text{wumpus-world rules + observations}$
\(KB = \text{wumpus-world rules} + \text{observations} \)

\(\alpha_2 = \text{"[2,2] is safe"}, \ KB \not\models \alpha_2 \)
Inference

\(KB \vdash_i \alpha = \) sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

Consequences of \(KB \) are a haystack; \(\alpha \) is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: \(i \) is sound if
whenever \(KB \vdash_i \alpha \), it is also true that \(KB \models \alpha \)

Completeness: \(i \) is complete if
whenever \(KB \models \alpha \), it is also true that \(KB \vdash_i \alpha \)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).
Propositional logic: Syntax

Propositional logic is the simplest logic—illuminates basic ideas

The proposition symbols P_1, P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \iff S_2$ is a sentence (biconditional)
Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. \(P_{1,2} \quad P_{2,2} \quad P_{3,1} \)

\(true \quad true \quad false \)

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model \(m \):

- \(\neg S \) is true iff \(S \) is false
- \(S_1 \land S_2 \) is true iff \(S_1 \) is true and \(S_2 \) is true
- \(S_1 \lor S_2 \) is true iff \(S_1 \) is true or \(S_2 \) is true
- \(S_1 \Rightarrow S_2 \) is true iff \(S_1 \) is false or \(S_2 \) is true
 i.e., is false iff \(S_1 \) is true and \(S_2 \) is false
- \(S_1 \Leftrightarrow S_2 \) is true iff \(S_1 \Rightarrow S_2 \) is true and \(S_2 \Rightarrow S_1 \) is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

\(\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true \)
Truth tables for connectives

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
Let $P_{i,j}$ be true if there is a pit in $[i, j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

$\neg P_{1,1}$
$\neg B_{1,1}$
$B_{2,1}$

“Pits cause breezes in adjacent squares”
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i, j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

$\neg P_{1,1}$
$\neg B_{1,1}$
$B_{2,1}$

“Pits cause breezes in adjacent squares”

$B_{1,1} \iff (P_{1,2} \lor P_{2,1})$
$B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

“A square is breezy if and only if there is an adjacent pit”
Truth tables for inference

\(B_{1,1} \)	\(B_{2,1} \)	\(P_{1,1} \)	\(P_{1,2} \)	\(P_{2,1} \)	\(P_{2,2} \)	\(P_{3,1} \)	\(R_1 \)	\(R_2 \)	\(R_3 \)	\(R_4 \)	\(R_5 \)	\(KB \)	
false	true	true	true	true	true	false	false						
false	true	true	true	true	true	false	false						
...
false	true	false	false	false	false	false	true						
false	true	false	false	false	false	false	true						
false	true	false	false	false	true	false	true						
false	true	false	false	true	false	true							
false	true	false	true	false	false	true	false	true	true	true	true	true	true
true	true	true	true	false	true	false	true						

Enumerate rows (different assignments to symbols),
if \(KB \) is true in row, check that \(\alpha \) is too.
Inference by enumeration

Depth-first enumeration of all models is sound and complete

function TT-ENTAILS?\((KB, \alpha)\) **returns** true or false

inputs: \(KB\), the knowledge base, a sentence in propositional logic
\(\alpha\), the query, a sentence in propositional logic

\(\textit{symbols} \leftarrow \text{a list of the proposition symbols in } KB \text{ and } \alpha\)

return TT-CHECK-ALL\((KB, \alpha, \textit{symbols}, [])\)

function TT-CHECK-ALL\((KB, \alpha, \textit{symbols}, \textit{model})\) **returns** true or false

if Empty?\((\textit{symbols})\) **then**

if PL-True?\((KB, \textit{model})\) **then return** PL-True?\((\alpha, \textit{model})\)

else return true

else do

\(P \leftarrow \text{FIRST}(\textit{symbols}); \text{ rest } \leftarrow \text{REST}(\textit{symbols})\)

return TT-CHECK-ALL\((KB, \alpha, \text{ rest, EXTEND}(P, \text{ true, \textit{model}))\) and

TT-CHECK-ALL\((KB, \alpha, \text{ rest, EXTEND}(P, \text{ false, \textit{model}))\)

\(O(2^n)\) for \(n\) symbols; problem is co-NP-complete
Logical equivalence

Two sentences are **logically equivalent** iff true in same models:

\[\alpha \equiv \beta \text{ if and only if } \alpha \models \beta \text{ and } \beta \models \alpha \]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Equivalent Expression</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha \land \beta))</td>
<td>((\beta \land \alpha))</td>
<td>commutativity of (\land)</td>
</tr>
<tr>
<td>((\alpha \lor \beta))</td>
<td>((\beta \lor \alpha))</td>
<td>commutativity of (\lor)</td>
</tr>
<tr>
<td>(((\alpha \land \beta) \land \gamma))</td>
<td>((\alpha \land (\beta \land \gamma)))</td>
<td>associativity of (\land)</td>
</tr>
<tr>
<td>(((\alpha \lor \beta) \lor \gamma))</td>
<td>((\alpha \lor (\beta \lor \gamma)))</td>
<td>associativity of (\lor)</td>
</tr>
<tr>
<td>(\neg(\neg \alpha))</td>
<td>(\alpha)</td>
<td>double-negation elimination</td>
</tr>
<tr>
<td>((\alpha \implies \beta))</td>
<td>((\neg \beta \implies \neg \alpha))</td>
<td>contraposition</td>
</tr>
<tr>
<td>((\alpha \implies \beta))</td>
<td>((\neg \alpha \lor \beta))</td>
<td>implication elimination</td>
</tr>
<tr>
<td>((\alpha \iff \beta))</td>
<td>(((\alpha \implies \beta) \land (\beta \implies \alpha)))</td>
<td>biconditional elimination</td>
</tr>
<tr>
<td>(\neg(\alpha \land \beta))</td>
<td>((\neg \alpha \lor \neg \beta))</td>
<td>De Morgan</td>
</tr>
<tr>
<td>(\neg(\alpha \lor \beta))</td>
<td>((\neg \alpha \land \neg \beta))</td>
<td>De Morgan</td>
</tr>
<tr>
<td>((\alpha \land (\beta \lor \gamma)))</td>
<td>(((\alpha \land \beta) \lor (\alpha \land \gamma)))</td>
<td>distributivity of (\land) over (\lor)</td>
</tr>
<tr>
<td>((\alpha \lor (\beta \land \gamma)))</td>
<td>(((\alpha \lor \beta) \land (\alpha \lor \gamma)))</td>
<td>distributivity of (\lor) over (\land)</td>
</tr>
</tbody>
</table>
Validity and satisfiability

A sentence is valid if it is true in all models,

- e.g., True, \(A \lor \neg A \), \(A \Rightarrow A \), \((A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the Deduction Theorem:

- \(KB \models \alpha \) if and only if \((KB \Rightarrow \alpha) \) is valid

A sentence is satisfiable if it is true in some model

- e.g., \(A \lor B \), \(C \)

A sentence is unsatisfiable if it is true in no models

- e.g., \(A \land \neg A \)

Satisfiability is connected to inference via the following:

- \(KB \models \alpha \) if and only if \((KB \land \neg \alpha) \) is unsatisfiable

i.e., prove \(\alpha \) by reductio ad absurdum
Proof methods divide into (roughly) two kinds:

Application of inference rules
- Legitimate (sound) generation of new sentences from old
- **Proof** = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search alg.
 - Typically require translation of sentences into a normal form

Model checking
- truth table enumeration (always exponential in n)
- improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
- heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms
Forward vs. backward chaining

FC is **data-driven**, cf. automatic, unconscious processing,
 e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is **goal-driven**, appropriate for problem-solving,
 e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be **much less** than linear in size of KB
Resolution

Conjunctive Normal Form (CNF—universal)

conjunction of disjunctions of literals clauses

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

Resolution inference rule (for CNF): complete for propositional logic

\[
\ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n \\
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \cdots \lor \ell_k \lor m_1 \lor \cdots \lor m_{j-1} \lor m_{j+1} \lor \cdots \lor m_n
\]

where \(\ell_i\) and \(m_j\) are complementary literals. E.g.,

\[
P_{1,3} \lor P_{2,2}, \quad \neg P_{2,2} \\
P_{1,3}
\]

Resolution is sound and complete for propositional logic
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. Eliminate \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)\).

\[(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \]

2. Eliminate \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten:

\[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
Resolution algorithm

Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

function PL-Resolution(KB, α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

$clauses \leftarrow$ the set of clauses in the CNF representation of $KB \land \neg \alpha$
$new \leftarrow \{\}$

loop do
 for each C_i, C_j in $clauses$ do
 $resolvents \leftarrow$ PL-Resolve(C_i, C_j)
 if $resolvents$ contains the empty clause then return true
 $new \leftarrow new \cup resolvents$

 if $new \subseteq clauses$ then return false
 $clauses \leftarrow clauses \cup new$
Resolution example

\[KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \land \alpha = \neg P_{1,2} \]
Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions.

Basic concepts of logic:
- **syntax**: formal structure of sentences
- **semantics**: truth of sentences wrt models
- **entailment**: necessary truth of one sentence given another
- **inference**: deriving sentences from other sentences
- **soundness**: derivations produce only entailed sentences
- **completeness**: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses.
Resolution is complete for propositional logic.

Propositional logic lacks expressive power.