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Several research projects pursuing middleware architectures 

to support pervasive applications on smart phones reveal 

the importance of careful resource management, lightweight 

communication protocols, and asynchronous programming.

S
mart phones are the most promising heralds of future pervasive 
computing. With increasingly powerful capabilities in compu-
tation, communication, and sensing, these devices have evolved 
from simple communication devices into consumers of various 
types of information services as well as sensor hubs for health-

care monitoring systems, sports trainers, and the like.1 
Programming phone applications that can properly perform in this 

new computing landscape is not easy. Middleware platforms that can, for 
example, abstract the complexity of network communication, fault toler-
ance, and component migration are useful tools to aid the development of 
distributed applications. However, while middleware traditionally seeks 
to provide a useful layer of abstraction, an important design principle on 
phones must also be resource awareness, especially of resources such as 
energy that are not a primary concern in desktop computing. Middleware 
for smart phones calls for novel approaches.

During the past five years, we have participated in several research proj-
ects at the Helsinki Institute for Information Technology (www.hiit.fi) that 
focus on middleware for pervasive applications. We have explored various 
topics ranging from XML messaging and synchronization, to event-based 
communication and service migration, to context monitoring and recon-
figuration. We have also built several prototype systems running on modern 
phone platforms, and we have evaluated their performance in experimental 
testbeds, in some cases organizing field trials for more extensive evalua-
tions. Based on these experiences, we have identified several middleware 
research challenges along with possible solutions.

Smart-phone characteristics
Smart phones are relatively powerful mobile computing platforms. They 

offer reasonable data-processing and -storage capabilities, incorporate vari-
ous communication technologies, and often include embedded devices such 
as cameras or sensors. The most useful feature of smart phones as enablers 
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of pervasive computing is the possibility of installing 
new applications, which in many cases anyone, not just 
the manufacturer or operator, can write.

Hardware
Smart-phone CPUs generally use the ARM archi-

tecture due to its power efficiency. Clock frequency in 
modern models is usually around 200-250 MHz, but 
recent high-end models exceed 300 MHz. Total RAM 
is normally between 64 and 128 Mbytes, but programs 
can use only a fraction of this, typically 10-20 Mbytes. 
External storage is provided by flash memory cards with 
capacity up to 8 Gbytes, but because smart phones’ oper-
ating systems do not support virtual memory, this can-
not automatically be used as an extension to RAM.

Most smart phones use lithium-ion batteries due to their 
small form factor. Charge ranges between 780 and 1,200 
milliamp hours (mAh), which is sufficient for several days 
of standby operation or a few hours of phone calls.

The primary data communica-
tion technology on smart phones 
is the mobile phone network oper-
ated in packet-switched mode, usu-
ally either Enhanced Data Rates 
for GSM Evolution (EDGE) or the 
Universal Mobile Telecommunica-
tions System (UMTS), although 
some networks only have the lower-
speed General Packet Radio Service 
(GPRS) available. Bluetooth and 
infrared technologies are available for short-range com-
munication, but infrared is rarely useful due to its line-
of-sight requirement. Modern business models increas-
ingly also offer Wi-Fi (IEEE 802.11b/g) connectivity.

A modern smart phone is not only a communica-
tion device but also functions as a media center with 
the inclusion of cameras as well as music and video 
players. Global Positioning System (GPS) receivers are 
available as external accessories and are integrated into 
some recent phone models. Screen size and resolution, 
keyboard size, and keypad design have also advanced, 
facilitating applications such as Web browsers, e-mail, 
and video players.

Software
The most widely used operating system on smart 

phones is Symbian OS, with more than 70 percent of 
the market share. Symbian is an open platform specifi-
cally designed for resource-constrained mobile devices, 
with a focus on small memory footprint and low energy 
consumption. Symbian’s native programming language 
is a dialect of C++, but it supports Java and other pro-
gramming languages such as Python, Visual Basic, and 
Perl as well.

Smart phones use the Java Platform, Micro Edition 
(http://java.sun.com/javame/technology), a reduced ver-

sion of the Java Platform, Standard Edition (Java SE), 
that is designed to cope with small devices’ resource con-
straints. Conceptually, Java ME is divided into configu-
rations, which provide the requirements on the device 
hardware and Java virtual machine (JVM), and pro-
files, which provide the APIs and libraries available to 
the application programmer. On phones, two standard 
configurations are available.

The Connected Limited Device Configuration 
is designed for smaller devices. CLDC is a severely 
restricted version of Java, with older versions not pro-
viding support even for floating-point types. It works in 
conjunction with the Mobile Information Device Profile, 
a stripped-down version of the Java SE 1.1 library with 
MIDP-specific user interface and networking libraries. 
To save resources and still retain Java’s safety proper-
ties, the compiler performs most of the required class file 
verification during the preverification phase.

The Connected Device Configuration is designed for 
more-capable devices. CDC pro-
files are arranged in a stack, with 
the Foundation Profile providing 
an almost complete Java SE 1.1 
environment enhanced with the 
Collections API. On top of this, the 
Personal Basis Profile and Personal 
Profile provide UI libraries.

Standard practice for software 
development on smart phones is to 
write the code using a specific tool-

kit and then test the program on an emulator running on 
the development machine. Once the application is fully 
debugged on the emulator, the developer installs it on the 
actual target device and debugs it further there. Usually, 
phone manufacturers provide emulators for their devices 
to be plugged into the development toolkits to allow more 
accurate emulation of the actual platform. Sun Microsys-
tems’ Java toolkits also provide generic emulators.

middleware Research projects
We carried out our middleware research in the context 

of three main projects, whose focus areas are summa-
rized in Figure 1. We did our software development in 
Java using Nokia Series 60 and Series 80 phones. The 
platform specifics matter little, as the fundamental dis-
tinctions between phones from different manufacturers 
are minor or nonexistent—the lessons we learned should 
be equally applicable to most smart phones.

Fuego Core
The Fuego Core (www.hiit.fi/fi/fc) project focused on 

three main topics:2 XML messaging,3 mobile distrib-
uted event-based communication, and XML synchro-
nization. Its main contribution has been the integration 
of current fixed network trends, in particular XML, 
into mobile computing environments. The project has 

The most useful feature of  
smart phones as enablers of 
pervasive computing is the 
possibility of installing new 
applications, which in many 

cases anyone can write.
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also contributed to several international standardiza-
tion forums, especially the Efficient XML Interchange 
Working Group (www.w3.org/XML/EXI) of the World 
Wide Web Consortium, in the area of efficient XML 
representation. 

Using the three Fuego Core components, we built Cap-
tio, an XML editor that supports concurrent editing of 
XML documents by multiple users working on different 
devices. The application either immediately propagates 
changes to an edited XML document as events to the 
other users or synchronizes them later using an XML-
aware merging algorithm.

DYNAMOS
The DYNAMOS (www.hiit.fi/fi/dynamos) project 

focused on context provisioning issues. We developed 
the Contory middleware4 to support mobile applications 
that must be aware of both their local context, such as 
spatial information or network resource availability, and 
the context of remote entities or physical environments, 
such as weather information. 

Contory can achieve reliable and flexible context 
provisioning by integrating three alternative sources 
of context: It can employ local sensors integrated in or 
connected to the phone, interact with external context 
infrastructures using event-based communication and 
XML messaging from the Fuego Core project, or collect 
sensor information by migrating from node to node in a 
mobile ad hoc network of sensing devices.

Finally, Contory offers a database abstraction of the 
sensor-rich environment through an SQL-like program-
ming interface. Using Contory, we built several applica-
tions. As Figure 1 shows, WeatherWatcher can retrieve 
weather-related information in user-specified geographi-
cal regions. The context-aware service recommender5 
lets users receive prompt notifications of services avail-
able in the surrounding environment as well as generate 
and share location-specific content.

Migratory Services
The Migratory Services project, in collaboration with 

the New Jersey Institute of Technology and Rutgers 

Figure 1. Middleware research projects: research areas, relationships between projects and to external technologies, and examples 
of applications developed.
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University, has focused on designing and implement-
ing the context-aware migratory services6 platform to 
support client-service interactions in mobile ad hoc net-
works. Unlike a regular service that always executes on 
the same node, a migratory service constantly monitors 
its execution context—possibly through Contory’s con-
text-provisioning support—and transparently migrates 
to different nodes in the network to carry out its assigned 
task. Despite network volatility and dynamically chang-
ing execution contexts, migratory services can support 
continuous and long-running interactions with client 
nodes. 

Using migratory services, we built TJam, a migratory 
service that predicts traffic jams in a given region of a 
highway by using only car-to-car short-range wireless 
communication.

Lessons learned 
Although smart phones are becoming increasingly 

powerful, their computing power, 
memory, and network bandwidth 
are still very limited compared to 
desktop computers. This was evi-
dent during our experimental anal-
ysis and led us to conclude that the 
approach of first developing soft-
ware for desktop computers and 
then porting it to phones has few 
chances to succeed.

Background communication power demands
In spite of their ever-increasing resources, smart 

phones will always be dependent on a limited energy 
source. In general, three main elements affect the phone 
battery lifetime: CPU, display, and wireless communica-
tion. In our experimental analysis, we investigated the 
effects of processing and communication operations on 
power consumption.

Power consumption. To measure power consumption 
on phones, we used a multimeter connected in series to 
a Nokia 6630 phone’s battery.4 Test results showed that 
power consumption in the idle state is less than 6 mil-
liwatts; with the back light and display turned on, it 
reaches 76 mW. 

Bluetooth’s cost lies mostly in the discovery process, 
with peaks of 292 mW of consumption, while actual 
communication is relatively inexpensive. For example, 
transferring 136 bytes costs less than 0.1 joule, which 
is one-fiftieth of what the discovery process consumes. 
Having Wi-Fi connected at full signal draws a constant 
current of 300 mA, which leads to an average power 
consumption of 1,190 mW. This means that having Wi-
Fi connected is more than 100 times more energy-con-
suming than having Bluetooth in inquiry mode. 

Turning on the GSM radio causes additional power 
consumption that comes in peaks of 450-480 mW every 

50-60 seconds. UMTS is also relatively expensive, espe-
cially due to the cost for initializing the radio channel, 
which causes 1-W peaks of consumption for several 
seconds.

Communication versus computation. We ran a sec-
ond type of experiment to determine the relationship 
between energy consumed for communication and for 
computation.7 This experiment included both commu-
nication of large amounts of data and several seconds’ 
worth of computation. Our results show that on a mid-
end phone, the Nokia 7610, transmitting 1 byte over 
GPRS consumes approximately the same amount of 
energy as computing for 1.5 ms. We also ran the same 
experiment using the more powerful Nokia 9500 Com-
municator. In this case, the byte-equivalent computation 
time is only 170 µs. While these results demonstrate that 
compressing data prior to transmission is often benefi-
cial, they also show that the precise gains depend strongly 
on factors such as device type and network latency.

The fact that wireless communi-
cation can be much more expensive 
than computation, especially on 
smaller devices, leads us to con-
clude that sometimes it is better to 
trade communication for computa-
tion. This contravenes the common 
belief that offloading computation 
from phones to remote sites saves 

resources, but, as we have seen, migrating a task and 
retrieving the results can become very expensive. Fur-
ther, this high communication cost is an obstacle for 
many pervasive applications that rely on constantly 
available background communication for periodic data 
synchronization or publish-subscribe interactions.

Energy savings. We also experimented with con-
trol policies and reconfiguration mechanisms to adjust 
energy consumption in both Contory and Migratory 
Services. In our experience, policy-based approaches, 
despite their popularity, simply are not flexible enough. 
A priori specification of reconfiguration rules is impos-
sible due to the required close coupling with the platform 
characteristics. Instead, we believe a learning approach 
is more promising and potentially capable of identify-
ing the right tricks for saving energy on each specific 
device.

Fully addressing the energy problem requires energy-
aware mechanisms at all system levels. Middleware must 
be energy-aware in performing network selection, aggre-
gating data, and suspending and resuming applications. 
The operating system must be energy-aware in managing 
hardware devices and scheduling data transfers. In addi-
tion, the OS must serve as a central monitoring unit for 
the entire device and propagate contextual information 
to the upper layers. Finally, it is necessary to coordinate 
energy-saving actions, resolve potential conflicts, and 
prioritize tasks whenever possible.

Fully addressing the  
energy problem requires  

energy-aware mechanisms  
at all system levels.
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Lightweight protocols and data aggregation
A communication protocol consists of framing and 

formatting messages. In particular, choosing a suitable 
data format is crucial for reducing the amount of com-
munication, and thereby energy consumption. Hand-
optimized binary formats are beneficial for this, but they 
often lack extensibility and debugability. 

Generic formats such as Java serialization and XML 
can easily accommodate new kinds of data and are well-
specified for debugging, but they can be heavyweight. 
Java serialization is based on slow reflection, and in our 
experiments consumed over a quarter of the total time 
when transferring 1-Kbyte messages in Wi-Fi networks. 
Recent work on XML encoding, though, shows that it is 
possible to retain the benefits of XML without sacrific-
ing efficiency.8

Two key elements of network performance are 
bandwidth and latency. To acquire a wide understand-
ing, we ran experiments with both a newer phone, the 
Nokia E61 (announced in 2006), as well as two older 
phones, the Nokia 9500 and 7610 (both announced 
in 2004).

Bandwidth. Our bandwidth measurements over real 
wireless networks, reported in Table 1, showed that the 
actual data rate is far from the theoretical maximum 
even with stationary phones and minimal interference. 
We could not transfer a sufficiently large amount of 
data with Bluetooth’s streaming Radio Frequency Com-
munications (RFCOMM) protocol to get useful mea-
surements. Attempts to send large amounts of data too 
quickly invariably crashed the receiving phone’s VM. 
Our best measurement, for a very small piece of data, 
was approximately 35 Kbps.

Latency. Our latency measurements on the E61 
showed that a network round-trip with Wi-Fi is only 10 
ms, while EDGE latency is over 300 ms, and even UMTS 
has a latency approaching 200 ms. EDGE latency on 
the older 9500 was even larger, on the order of 600-700 
ms, comparable to the GPRS latency of 600 ms on the 
7610. Moreover, the overhead of the Transmission Con-
trol Protocol (TCP) three-way handshake and slow start 
phase, which are necessary when communicating over 
the Internet, have their largest effect on small amounts 
of transferred data. For example, to periodically syn-
chronize the device location with the remote server, our 
location-based system transfers less than 1,700 bytes of 
data, and this transfer over UMTS took roughly 770 ms 
with a deviation of more than 160 ms.

Considering the high latencies of most wireless net-
works and the TCP overhead, we have two clear recom-
mendations. First, communication connections should 
be kept open to the extent feasible and reused for further 
communication. Second, the middleware should aggre-
gate application messages to be sent simultaneously to 
avoid too many round-trips for sending a sequence of 
small messages.

Local processing pitfalls
In our applications, the cost of data communication 

eclipsed that of local processing and memory accesses. 
However, this does not mean that local processing can 
be completely ignored in favor of optimizing commu-
nication. Unexpected problems do exist, and lessons 
learned on desktop computers do not automatically 
apply to smart phones.

For example, access to flash memory can dramatically 
increase overall application latency. Our measurements 
on XML parsing on a Nokia 9500 phone showed that 
flash memory access decreases performance by an order 
of magnitude compared to what would be expected by 
just comparing processor and memory speeds with a 
desktop computer.

Likewise, the main bottleneck of the Captio XML edi-
tor depicted in Figure 1 turned out to be refreshing the 
screen. This surprised us—because each key press was 
echoed through a remote server over Wi-Fi, we expected 
the messaging to determine the application responsive-
ness, but it turned out that just repainting the screen takes 
500-800 ms,9 well above the latency for communicating 
over Wi-Fi.

While CPU usage is not usually a bottleneck in the 
applications considered here, it cannot be neglected. 
As indicated previously, CPU usage due to Java seri-
alization can highly affect an application’s communi-
cation latency. Moreover, some specific applications, 
such as those that do cryptographic processing, can 
spend a large proportion of their total time using 
the CPU. For example, we measured signature veri-
fication to take over 2 seconds on the Nokia 7610 
phone.7

No connectivity, no sensor access
The need for sensor information on mobile devices 

has grown with the advent of context-aware applications 
such as tourist information services, healthcare moni-
tors, sport trainers, and navigators. Sensor devices range 
from common GPS receivers for positioning informa-
tion to advanced accelerometers for activity recognition, 

Table 1. Wireless network data rates on Nokia E61 and 

7610 phones.

	 Theoretical 	 Measured 

Network (phone)	 data rate (Kbps)	 data rate (Kbps)

Bluetooth (E61)	 721	 —
Wi-Fi (E61)	 11,000	 1,160
GPRS (7610)	 171.2	 32
EDGE (E61)	 474	 207
UMTS (E61)	 2,000	 328

Data transfer size = 16 Mbytes.
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environmental sensors for weather estimation, and bio-
sensors for health monitoring.

Proper support for context-aware applications 
requires these sensor devices to be available to the phone 
and be able to produce real-time measurements. Cur-
rently, few phones integrate sensors; Nokia announced 
the N95, the first smart phone to include integrated 
GPS, in late 2006. The more common alternative, 
external sensors, are usually connected via Bluetooth 
with a Bluetooth-based programming API. Yet, apart 
from Bluetooth GPS devices, most Bluetooth-based 
sensors can provide only logs of sensor data, not real-
time measurements.

Based on our experiences, sensors also are not yet 
sufficiently reliable, and communication problems 
sometimes hamper the adoption of 
remote context servers. In 2005, 
we organized a sailing regatta in 
which nine sailboats used the loca-
tion-based application developed in 
the DYNAMOS5 project on Nokia 
6630 phones with Bluetooth GPS 
receivers. The application commu-
nicated periodically with a location 
server using the 2G or 3G network 
to send location updates and retrieve 
location-based content. Several types of disconnections 
occurred. The Bluetooth connection to the GPS device 
went down once per hour. Whenever the 3G connection 
was active and the phone had to make a handover to 2G, 
it switched itself off. We had to severely optimize the 
protocol for communicating with the location server to 
reduce energy consumption and keep peak power con-
sumption below the limit over which the phone would 
switch itself off.

Finally, deploying sensor-based applications remains 
complicated. Because there is no standard API for man-
aging and controlling connected sensors, it is necessary 
to program each sensor differently.

For Java ME, the Mobile Sensor API—Java Specifi-
cation Request (JSR) 256—is currently under develop-
ment, but it will take time for this work to be completed 
and become available on actual devices. Meanwhile, 
middleware can provide a temporary patch by unify-
ing different sensor data protocols. Even in this case, 
designers must be careful not to bloat the middleware 
by supporting too many types of sensors.

Ad hoc networks not yet spontaneous
Wi-Fi and Bluetooth, now commonly available on 

smart phones, make ad hoc networks feasible. Wi-Fi 
offers a more flexible solution and suits applications 
requiring large data transfers or operating in complex 
network topologies. Bluetooth is better suited to applica-
tions that open sporadic short-lived connections to other 
devices and operate in more stable configurations.

Configurability and reliability. Our experiences with 
using ad hoc networks of phones revealed configurability 
and reliability problems. First, configuring an ad hoc net-
work of phones is not straightforward. For example, with 
Nokia 9500 phones, an ad hoc network becomes active 
when a phone first connects to the Internet access point 
for that network. In our tests, a device could not connect 
to an IAP without explicitly sending data out—opening 
a socket and listening on it was insufficient. Moreover, 
even when an address is assigned to the listening device, 
other nodes do not have a Bluetooth-like mechanism to 
discover this address. Rather, the application developer 
must implement service discovery as well.

Wi-Fi and Bluetooth limitations. Currently, support 
for Wi-Fi-based ad hoc networks on phones is woefully 

lacking. The developer must imple-
ment all basic functions such as 
routing, neighbor discovery, and 
message aggregation. Further, only 
Internet protocols are available for 
programmers, so these must be 
User Datagram Protocol (UDP)-
based systems. 

Although most Bluetooth func-
tionality and protocols are available 
directly to developers, Bluetooth-

based ad hoc networks present several other limitations. 
In a Bluetooth piconet of phones, the master phone can 
establish multiple links to at most seven phones. The 
master-slave switch is generally not supported on phones, 
preventing the creation of scatternets: It is impossible to 
route messages across piconets. In addition, the Bluetooth 
stacks on the phones we experimented with were rela-
tively unstable, often crashing the VM.

Performance. Finally, performance is a serious prob-
lem with ad hoc networking on phones. Over a one-hop 
Wi-Fi network, we measured a round-trip time of 340 
ms for a 1-Kbyte message, and over Bluetooth an RTT 
between 450 and 600 ms. Frequent interference prob-
lems occurred in places with a medium or high density 
of wireless devices, rendering Bluetooth mostly unusable 
in practice.

Awkward asynchronous programming
Pervasive applications are essentially reactive and must 

constantly monitor their surrounding environment and 
act upon changes in it. Asynchronous programming 
models and languages are therefore preferable.

Support for asynchronous programming in Java ME 
is poor. The programmer must create a separate moni-
toring thread for each potential event to be captured. 
Each thread then blocks waiting for its specific event 
and becomes active when the event happens. If several 
monitoring threads become active concurrently, they 
must compete for CPU time, leading to a severe degra-
dation in performance.

Proper support for context-
aware applications requires 

sensor devices to be 
available to the phone and 

be able to produce real-time 
measurements.
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In addition, multithreading on smart phones is not 
recommended, especially if the number of threads can 
increase without bounds. As smart-phone OSs are not 
specifically designed for good multitasking perfor-
mance, context switches can be very expensive, and all 
threads, even those not running, will consume applica-
tion memory.

A further problem with Java is its high level of abstrac-
tion. Normally, a Java program handles I/O in a uniform 
manner, independently of whether it comes from a net-
work or local storage. With pervasive computing, this 
model breaks down, as local I/O can often be expressed 
synchronously, but network I/O must always be asyn-
chronous. Thus, the correct level of abstraction for I/O 
must distinguish between high- and low-latency opera-
tions, which makes even the Unix model of descriptors 
unsuitable.

Symbian C++ offers better asyn-
chronous programming facilities. 
The active objects system provides 
a centralized event handler that 
uses registered observers to handle 
the events using only a single thread. 
While the active object system is not 
the easiest to use, its design is suffi-
cient for pervasive applications.

Finally, both Java and C++ are languages fundamen-
tally built around synchronous processing, and adding 
asynchronous functionality requires attention from the 
programmer. If the languages were initially designed for 
a concurrent-processing environment where nodes are 
expected to be unreliable, it would be possible to provide 
a more adequate reactive programming model.

Laborious software development process
Programming smart-phone platforms introduces 

additional limitations that make application design and 
development on phones different from, and usually more 
laborious than, the standard process.

Concurrent programs. Java ME does not support the 
execution of multiple independent programs concur-
rently. When running, the Java VM monopolizes the 
phone and must terminate a running program to allow 
another to run. This impacts application design, as every 
component must be written as a library to link into the 
running program.

The usual solution to let part of a program run as a 
separate component is to implement its functionality 
as a C++ program that listens on a local socket. The 
main program will then be able to communicate with 
the other program as if it were a network server. This is 
inefficient and also necessitates designing the protocol 
through which the two programs communicate.

Memory usage. Another important consideration in 
designing a phone application is its memory usage pat-
tern. Current smart phones, even high-end ones, usu-

ally do not have more than 10-20 Mbytes of memory 
for a running application, so designers must completely 
rethink allocation behavior and program composition. 
This is especially a concern with Java, where the ME 
platform’s similarity to the SE version can encourage 
programmers to port existing software with minimal 
effort. Tommi Mikkonen10 provides advice on designing 
programs for phones that basically amounts to forget-
ting many established object-oriented design principles.

Debugging applications. The debugging process is 
also rather complicated and calls for running applica-
tions both on an emulator and the target devices. So-
called emulators do not really emulate an actual phone 
but essentially just run the phone code on the develop-
ment machine, thus they cannot reliably provide an 
accurate model of the actual target device. Moreover, 

debugging must often be done 
directly on actual devices simply 
because emulators do not support 
some features. This is particularly 
true when debugging multiphone 
applications, as some environments 
do not support running two emula-
tors or provide network communi-
cation between them.

Target device. The actual target 
device presents an additional complication. Different 
phones have various OS versions, VMs, and so on. This 
means that to build a truly robust application, the devel-
oper must test the program code on all target devices, 
not just one of them.

Related work
Numerous other research projects have focused on 

middleware for pervasive computing. However, most 
of the proposed systems were built using technologies 
that smart phones do not support or that require exces-
sive resources unavailable on phones. Only a fraction of 
this research work has targeted practical development 
on phones.

Smart Messages
Rutgers University has undertaken several research 

activities in this area. Of particular interest is the 
Smart Messages11 platform for cooperative computing 
in mobile ad hoc networks. With Smart Messages, the 
application’s execution is sequentially distributed over 
a series of nodes using execution migration. Nodes are 
named by properties and discovered dynamically using 
application-controlled routing. We used this platform to 
program mobile ad hoc networks in Migratory Services 
and Contory.

CAPNET
At the University of Oulu, the CAPNET (context- 

aware pervasive networking) research program  

Pervasive applications are 
essentially reactive and must 

constantly monitor their 
surrounding environment  
and act upon changes in it.
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(www.mediateam.oulu.fi/projects/capnet) has focused 
on designing a component-based middleware offering 
functionality for sensor monitoring, context recogni-
tion, context-based reasoning, application adaptability, 
service discovery, and so on. For example, CAPNET 
researchers developed a radio-frequency-identification-
based application for requesting services. When a user 
activates an RFID tag via his phone, this generates a con-
text event, and the application reacts either by providing 
the requested service or by forwarding the request to an 
external component.

ContextPhone
At the University of Helsinki, the Context project devel-

oped ContextPhone,12 a software platform providing 
open source C++ libraries and source code components 
to support context-aware applications on Nokia Series 
60 phones. For example, ContextContacts is a prototype 
application that permits visualizing the current contex-
tual state of all contacts listed in the phonebook.

Wearable computing and HCI
Finally, research on wearable computing and human-

computer interaction is relevant to our work. Carnegie 
Mellon University’s SenSay13 prototype relies on sen-
sor data and user information to infer the user’s status 
and situation and adapts its behavior accordingly. For 
example, it can inform a remote caller when the user is 
unavailable or hide incoming calls when the user is busy, 
as well as increase the ringtone volume when necessary. 
SenSay employs light, motion, and microphone sensors 
placed on the human body that communicate with a cen-
tral sensor box worn at the waist. 

In the same research vein, Jani Mäntyjärvi and col-
leagues14 proposed a touch-detection system for mobile 
devices. The system uses two sensor pads placed on the 
phone, and skin impedance measurements to detect the 
presence of a hand or other objects.

W hen comparing middleware for desktop com-
puters to middleware for smart phones, energy 
management is the most prominent difference. 

Because achieving good application performance usually 
also leads to higher energy consumption, good middle-
ware for smart phones is not what can provide all conceiv-
able services, but rather what understands the acceptable 
tradeoffs between level of performance and resources 
needed and can adjust its behavior accordingly.

However, the middleware layer is too high for fine-
grained resource management, thus energy management 
needs help from lower layers too. The OS is ultimately 
responsible for the resources, and it can distribute energy 
to competing tasks based on user preferences and task 
priorities. Going even lower, smart batteries that provide 
information on current capacity, drain rate, and voltage 

can help configure the entire system’s energy profile.
Consider, for example, how this cross-layer energy 

management applies to network communication. The 
middleware is responsible for making the communica-
tion protocol compact and deciding what to transfer. 
The OS must time the data sending properly to avoid 
continuous manipulation of the radio interface. And at 
the lowest layer, the physical and link layer protocols 
need to be designed to permit low energy consumption 
for communication.

Middleware on smart phones must also consider an 
inherent property of most pervasive applications: their 
need to constantly react to external events. Middleware 
can help meet this goal by acting as a framework instead 
of a library component, but developers must nevertheless 
rethink existing programming languages to fully enable 
programming pervasive applications.

In addition to addressing these core issues, researchers 
building middleware for smart phones should test their 
solutions on actual devices. While programming phones 
is a tedious task due to limitations and software bugs, 
the behavior of real devices is too variable and unpredict-
able to be captured through simulation alone. ■
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