
Challenges and Lessons in
Developing Middleware
on Smart Phones

Oriana Riva
ETH Zürich

Jaakko Kangasharju
Helsinki University of Technology

Several research projects pursuing middleware architectures

to support pervasive applications on smart phones reveal

the importance of careful resource management, lightweight

communication protocols, and asynchronous programming.

S
mart phones are the most promising heralds of future pervasive
computing. With increasingly powerful capabilities in compu-
tation, communication, and sensing, these devices have evolved
from simple communication devices into consumers of various
types of information services as well as sensor hubs for health-

care monitoring systems, sports trainers, and the like.1
Programming phone applications that can properly perform in this

new computing landscape is not easy. Middleware platforms that can, for
example, abstract the complexity of network communication, fault toler-
ance, and component migration are useful tools to aid the development of
distributed applications. However, while middleware traditionally seeks
to provide a useful layer of abstraction, an important design principle on
phones must also be resource awareness, especially of resources such as
energy that are not a primary concern in desktop computing. Middleware
for smart phones calls for novel approaches.

During the past five years, we have participated in several research proj-
ects at the Helsinki Institute for Information Technology (www.hiit.fi) that
focus on middleware for pervasive applications. We have explored various
topics ranging from XML messaging and synchronization, to event-based
communication and service migration, to context monitoring and recon-
figuration. We have also built several prototype systems running on modern
phone platforms, and we have evaluated their performance in experimental
testbeds, in some cases organizing field trials for more extensive evalua-
tions. Based on these experiences, we have identified several middleware
research challenges along with possible solutions.

Smart-phone characteristics
Smart phones are relatively powerful mobile computing platforms. They

offer reasonable data-processing and -storage capabilities, incorporate vari-
ous communication technologies, and often include embedded devices such
as cameras or sensors. The most useful feature of smart phones as enablers

0018-9162/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society 	 October 2008	 23

C O M P U T I N G P R A C T I C E S

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

of pervasive computing is the possibility of installing
new applications, which in many cases anyone, not just
the manufacturer or operator, can write.

Hardware
Smart-phone CPUs generally use the ARM archi-

tecture due to its power efficiency. Clock frequency in
modern models is usually around 200-250 MHz, but
recent high-end models exceed 300 MHz. Total RAM
is normally between 64 and 128 Mbytes, but programs
can use only a fraction of this, typically 10-20 Mbytes.
External storage is provided by flash memory cards with
capacity up to 8 Gbytes, but because smart phones’ oper-
ating systems do not support virtual memory, this can-
not automatically be used as an extension to RAM.

Most smart phones use lithium-ion batteries due to their
small form factor. Charge ranges between 780 and 1,200
milliamp hours (mAh), which is sufficient for several days
of standby operation or a few hours of phone calls.

The primary data communica-
tion technology on smart phones
is the mobile phone network oper-
ated in packet-switched mode, usu-
ally either Enhanced Data Rates
for GSM Evolution (EDGE) or the
Universal Mobile Telecommunica-
tions System (UMTS), although
some networks only have the lower-
speed General Packet Radio Service
(GPRS) available. Bluetooth and
infrared technologies are available for short-range com-
munication, but infrared is rarely useful due to its line-
of-sight requirement. Modern business models increas-
ingly also offer Wi-Fi (IEEE 802.11b/g) connectivity.

A modern smart phone is not only a communica-
tion device but also functions as a media center with
the inclusion of cameras as well as music and video
players. Global Positioning System (GPS) receivers are
available as external accessories and are integrated into
some recent phone models. Screen size and resolution,
keyboard size, and keypad design have also advanced,
facilitating applications such as Web browsers, e-mail,
and video players.

Software
The most widely used operating system on smart

phones is Symbian OS, with more than 70 percent of
the market share. Symbian is an open platform specifi-
cally designed for resource-constrained mobile devices,
with a focus on small memory footprint and low energy
consumption. Symbian’s native programming language
is a dialect of C++, but it supports Java and other pro-
gramming languages such as Python, Visual Basic, and
Perl as well.

Smart phones use the Java Platform, Micro Edition
(http://java.sun.com/javame/technology), a reduced ver-

sion of the Java Platform, Standard Edition (Java SE),
that is designed to cope with small devices’ resource con-
straints. Conceptually, Java ME is divided into configu-
rations, which provide the requirements on the device
hardware and Java virtual machine (JVM), and pro-
files, which provide the APIs and libraries available to
the application programmer. On phones, two standard
configurations are available.

The Connected Limited Device Configuration
is designed for smaller devices. CLDC is a severely
restricted version of Java, with older versions not pro-
viding support even for floating-point types. It works in
conjunction with the Mobile Information Device Profile,
a stripped-down version of the Java SE 1.1 library with
MIDP-specific user interface and networking libraries.
To save resources and still retain Java’s safety proper-
ties, the compiler performs most of the required class file
verification during the preverification phase.

The Connected Device Configuration is designed for
more-capable devices. CDC pro-
files are arranged in a stack, with
the Foundation Profile providing
an almost complete Java SE 1.1
environment enhanced with the
Collections API. On top of this, the
Personal Basis Profile and Personal
Profile provide UI libraries.

Standard practice for software
development on smart phones is to
write the code using a specific tool-

kit and then test the program on an emulator running on
the development machine. Once the application is fully
debugged on the emulator, the developer installs it on the
actual target device and debugs it further there. Usually,
phone manufacturers provide emulators for their devices
to be plugged into the development toolkits to allow more
accurate emulation of the actual platform. Sun Microsys-
tems’ Java toolkits also provide generic emulators.

middleware Research projects
We carried out our middleware research in the context

of three main projects, whose focus areas are summa-
rized in Figure 1. We did our software development in
Java using Nokia Series 60 and Series 80 phones. The
platform specifics matter little, as the fundamental dis-
tinctions between phones from different manufacturers
are minor or nonexistent—the lessons we learned should
be equally applicable to most smart phones.

Fuego Core
The Fuego Core (www.hiit.fi/fi/fc) project focused on

three main topics:2 XML messaging,3 mobile distrib-
uted event-based communication, and XML synchro-
nization. Its main contribution has been the integration
of current fixed network trends, in particular XML,
into mobile computing environments. The project has

The most useful feature of
smart phones as enablers of
pervasive computing is the
possibility of installing new
applications, which in many

cases anyone can write.

	 24	 Computer

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Underline

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Sticky Note
Background material for software. This is useful if you wish to develop your own programs/ applications.

	 October 2008	 25

also contributed to several international standardiza-
tion forums, especially the Efficient XML Interchange
Working Group (www.w3.org/XML/EXI) of the World
Wide Web Consortium, in the area of efficient XML
representation.

Using the three Fuego Core components, we built Cap-
tio, an XML editor that supports concurrent editing of
XML documents by multiple users working on different
devices. The application either immediately propagates
changes to an edited XML document as events to the
other users or synchronizes them later using an XML-
aware merging algorithm.

DYNAMOS
The DYNAMOS (www.hiit.fi/fi/dynamos) project

focused on context provisioning issues. We developed
the Contory middleware4 to support mobile applications
that must be aware of both their local context, such as
spatial information or network resource availability, and
the context of remote entities or physical environments,
such as weather information.

Contory can achieve reliable and flexible context
provisioning by integrating three alternative sources
of context: It can employ local sensors integrated in or
connected to the phone, interact with external context
infrastructures using event-based communication and
XML messaging from the Fuego Core project, or collect
sensor information by migrating from node to node in a
mobile ad hoc network of sensing devices.

Finally, Contory offers a database abstraction of the
sensor-rich environment through an SQL-like program-
ming interface. Using Contory, we built several applica-
tions. As Figure 1 shows, WeatherWatcher can retrieve
weather-related information in user-specified geographi-
cal regions. The context-aware service recommender5
lets users receive prompt notifications of services avail-
able in the surrounding environment as well as generate
and share location-specific content.

Migratory Services
The Migratory Services project, in collaboration with

the New Jersey Institute of Technology and Rutgers

Figure 1. Middleware research projects: research areas, relationships between projects and to external technologies, and examples
of applications developed.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

University, has focused on designing and implement-
ing the context-aware migratory services6 platform to
support client-service interactions in mobile ad hoc net-
works. Unlike a regular service that always executes on
the same node, a migratory service constantly monitors
its execution context—possibly through Contory’s con-
text-provisioning support—and transparently migrates
to different nodes in the network to carry out its assigned
task. Despite network volatility and dynamically chang-
ing execution contexts, migratory services can support
continuous and long-running interactions with client
nodes.

Using migratory services, we built TJam, a migratory
service that predicts traffic jams in a given region of a
highway by using only car-to-car short-range wireless
communication.

Lessons learned
Although smart phones are becoming increasingly

powerful, their computing power,
memory, and network bandwidth
are still very limited compared to
desktop computers. This was evi-
dent during our experimental anal-
ysis and led us to conclude that the
approach of first developing soft-
ware for desktop computers and
then porting it to phones has few
chances to succeed.

Background communication power demands
In spite of their ever-increasing resources, smart

phones will always be dependent on a limited energy
source. In general, three main elements affect the phone
battery lifetime: CPU, display, and wireless communica-
tion. In our experimental analysis, we investigated the
effects of processing and communication operations on
power consumption.

Power consumption. To measure power consumption
on phones, we used a multimeter connected in series to
a Nokia 6630 phone’s battery.4 Test results showed that
power consumption in the idle state is less than 6 mil-
liwatts; with the back light and display turned on, it
reaches 76 mW.

Bluetooth’s cost lies mostly in the discovery process,
with peaks of 292 mW of consumption, while actual
communication is relatively inexpensive. For example,
transferring 136 bytes costs less than 0.1 joule, which
is one-fiftieth of what the discovery process consumes.
Having Wi-Fi connected at full signal draws a constant
current of 300 mA, which leads to an average power
consumption of 1,190 mW. This means that having Wi-
Fi connected is more than 100 times more energy-con-
suming than having Bluetooth in inquiry mode.

Turning on the GSM radio causes additional power
consumption that comes in peaks of 450-480 mW every

50-60 seconds. UMTS is also relatively expensive, espe-
cially due to the cost for initializing the radio channel,
which causes 1-W peaks of consumption for several
seconds.

Communication versus computation. We ran a sec-
ond type of experiment to determine the relationship
between energy consumed for communication and for
computation.7 This experiment included both commu-
nication of large amounts of data and several seconds’
worth of computation. Our results show that on a mid-
end phone, the Nokia 7610, transmitting 1 byte over
GPRS consumes approximately the same amount of
energy as computing for 1.5 ms. We also ran the same
experiment using the more powerful Nokia 9500 Com-
municator. In this case, the byte-equivalent computation
time is only 170 µs. While these results demonstrate that
compressing data prior to transmission is often benefi-
cial, they also show that the precise gains depend strongly
on factors such as device type and network latency.

The fact that wireless communi-
cation can be much more expensive
than computation, especially on
smaller devices, leads us to con-
clude that sometimes it is better to
trade communication for computa-
tion. This contravenes the common
belief that offloading computation
from phones to remote sites saves

resources, but, as we have seen, migrating a task and
retrieving the results can become very expensive. Fur-
ther, this high communication cost is an obstacle for
many pervasive applications that rely on constantly
available background communication for periodic data
synchronization or publish-subscribe interactions.

Energy savings. We also experimented with con-
trol policies and reconfiguration mechanisms to adjust
energy consumption in both Contory and Migratory
Services. In our experience, policy-based approaches,
despite their popularity, simply are not flexible enough.
A priori specification of reconfiguration rules is impos-
sible due to the required close coupling with the platform
characteristics. Instead, we believe a learning approach
is more promising and potentially capable of identify-
ing the right tricks for saving energy on each specific
device.

Fully addressing the energy problem requires energy-
aware mechanisms at all system levels. Middleware must
be energy-aware in performing network selection, aggre-
gating data, and suspending and resuming applications.
The operating system must be energy-aware in managing
hardware devices and scheduling data transfers. In addi-
tion, the OS must serve as a central monitoring unit for
the entire device and propagate contextual information
to the upper layers. Finally, it is necessary to coordinate
energy-saving actions, resolve potential conflicts, and
prioritize tasks whenever possible.

Fully addressing the
energy problem requires

energy-aware mechanisms
at all system levels.

	 26	 Computer

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

	 October 2008	 27

Lightweight protocols and data aggregation
A communication protocol consists of framing and

formatting messages. In particular, choosing a suitable
data format is crucial for reducing the amount of com-
munication, and thereby energy consumption. Hand-
optimized binary formats are beneficial for this, but they
often lack extensibility and debugability.

Generic formats such as Java serialization and XML
can easily accommodate new kinds of data and are well-
specified for debugging, but they can be heavyweight.
Java serialization is based on slow reflection, and in our
experiments consumed over a quarter of the total time
when transferring 1-Kbyte messages in Wi-Fi networks.
Recent work on XML encoding, though, shows that it is
possible to retain the benefits of XML without sacrific-
ing efficiency.8

Two key elements of network performance are
bandwidth and latency. To acquire a wide understand-
ing, we ran experiments with both a newer phone, the
Nokia E61 (announced in 2006), as well as two older
phones, the Nokia 9500 and 7610 (both announced
in 2004).

Bandwidth. Our bandwidth measurements over real
wireless networks, reported in Table 1, showed that the
actual data rate is far from the theoretical maximum
even with stationary phones and minimal interference.
We could not transfer a sufficiently large amount of
data with Bluetooth’s streaming Radio Frequency Com-
munications (RFCOMM) protocol to get useful mea-
surements. Attempts to send large amounts of data too
quickly invariably crashed the receiving phone’s VM.
Our best measurement, for a very small piece of data,
was approximately 35 Kbps.

Latency. Our latency measurements on the E61
showed that a network round-trip with Wi-Fi is only 10
ms, while EDGE latency is over 300 ms, and even UMTS
has a latency approaching 200 ms. EDGE latency on
the older 9500 was even larger, on the order of 600-700
ms, comparable to the GPRS latency of 600 ms on the
7610. Moreover, the overhead of the Transmission Con-
trol Protocol (TCP) three-way handshake and slow start
phase, which are necessary when communicating over
the Internet, have their largest effect on small amounts
of transferred data. For example, to periodically syn-
chronize the device location with the remote server, our
location-based system transfers less than 1,700 bytes of
data, and this transfer over UMTS took roughly 770 ms
with a deviation of more than 160 ms.

Considering the high latencies of most wireless net-
works and the TCP overhead, we have two clear recom-
mendations. First, communication connections should
be kept open to the extent feasible and reused for further
communication. Second, the middleware should aggre-
gate application messages to be sent simultaneously to
avoid too many round-trips for sending a sequence of
small messages.

Local processing pitfalls
In our applications, the cost of data communication

eclipsed that of local processing and memory accesses.
However, this does not mean that local processing can
be completely ignored in favor of optimizing commu-
nication. Unexpected problems do exist, and lessons
learned on desktop computers do not automatically
apply to smart phones.

For example, access to flash memory can dramatically
increase overall application latency. Our measurements
on XML parsing on a Nokia 9500 phone showed that
flash memory access decreases performance by an order
of magnitude compared to what would be expected by
just comparing processor and memory speeds with a
desktop computer.

Likewise, the main bottleneck of the Captio XML edi-
tor depicted in Figure 1 turned out to be refreshing the
screen. This surprised us—because each key press was
echoed through a remote server over Wi-Fi, we expected
the messaging to determine the application responsive-
ness, but it turned out that just repainting the screen takes
500-800 ms,9 well above the latency for communicating
over Wi-Fi.

While CPU usage is not usually a bottleneck in the
applications considered here, it cannot be neglected.
As indicated previously, CPU usage due to Java seri-
alization can highly affect an application’s communi-
cation latency. Moreover, some specific applications,
such as those that do cryptographic processing, can
spend a large proportion of their total time using
the CPU. For example, we measured signature veri-
fication to take over 2 seconds on the Nokia 7610
phone.7

No connectivity, no sensor access
The need for sensor information on mobile devices

has grown with the advent of context-aware applications
such as tourist information services, healthcare moni-
tors, sport trainers, and navigators. Sensor devices range
from common GPS receivers for positioning informa-
tion to advanced accelerometers for activity recognition,

Table 1. Wireless network data rates on Nokia E61 and

7610 phones.

	 Theoretical 	 Measured

Network (phone)	 data rate (Kbps)	 data rate (Kbps)

Bluetooth (E61)	 721	 —
Wi-Fi (E61)	 11,000	 1,160
GPRS (7610)	 171.2	 32
EDGE (E61)	 474	 207
UMTS (E61)	 2,000	 328

Data transfer size = 16 Mbytes.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Underline

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Highlight

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Underline

	 28	 Computer

environmental sensors for weather estimation, and bio-
sensors for health monitoring.

Proper support for context-aware applications
requires these sensor devices to be available to the phone
and be able to produce real-time measurements. Cur-
rently, few phones integrate sensors; Nokia announced
the N95, the first smart phone to include integrated
GPS, in late 2006. The more common alternative,
external sensors, are usually connected via Bluetooth
with a Bluetooth-based programming API. Yet, apart
from Bluetooth GPS devices, most Bluetooth-based
sensors can provide only logs of sensor data, not real-
time measurements.

Based on our experiences, sensors also are not yet
sufficiently reliable, and communication problems
sometimes hamper the adoption of
remote context servers. In 2005,
we organized a sailing regatta in
which nine sailboats used the loca-
tion-based application developed in
the DYNAMOS5 project on Nokia
6630 phones with Bluetooth GPS
receivers. The application commu-
nicated periodically with a location
server using the 2G or 3G network
to send location updates and retrieve
location-based content. Several types of disconnections
occurred. The Bluetooth connection to the GPS device
went down once per hour. Whenever the 3G connection
was active and the phone had to make a handover to 2G,
it switched itself off. We had to severely optimize the
protocol for communicating with the location server to
reduce energy consumption and keep peak power con-
sumption below the limit over which the phone would
switch itself off.

Finally, deploying sensor-based applications remains
complicated. Because there is no standard API for man-
aging and controlling connected sensors, it is necessary
to program each sensor differently.

For Java ME, the Mobile Sensor API—Java Specifi-
cation Request (JSR) 256—is currently under develop-
ment, but it will take time for this work to be completed
and become available on actual devices. Meanwhile,
middleware can provide a temporary patch by unify-
ing different sensor data protocols. Even in this case,
designers must be careful not to bloat the middleware
by supporting too many types of sensors.

Ad hoc networks not yet spontaneous
Wi-Fi and Bluetooth, now commonly available on

smart phones, make ad hoc networks feasible. Wi-Fi
offers a more flexible solution and suits applications
requiring large data transfers or operating in complex
network topologies. Bluetooth is better suited to applica-
tions that open sporadic short-lived connections to other
devices and operate in more stable configurations.

Configurability and reliability. Our experiences with
using ad hoc networks of phones revealed configurability
and reliability problems. First, configuring an ad hoc net-
work of phones is not straightforward. For example, with
Nokia 9500 phones, an ad hoc network becomes active
when a phone first connects to the Internet access point
for that network. In our tests, a device could not connect
to an IAP without explicitly sending data out—opening
a socket and listening on it was insufficient. Moreover,
even when an address is assigned to the listening device,
other nodes do not have a Bluetooth-like mechanism to
discover this address. Rather, the application developer
must implement service discovery as well.

Wi-Fi and Bluetooth limitations. Currently, support
for Wi-Fi-based ad hoc networks on phones is woefully

lacking. The developer must imple-
ment all basic functions such as
routing, neighbor discovery, and
message aggregation. Further, only
Internet protocols are available for
programmers, so these must be
User Datagram Protocol (UDP)-
based systems.

Although most Bluetooth func-
tionality and protocols are available
directly to developers, Bluetooth-

based ad hoc networks present several other limitations.
In a Bluetooth piconet of phones, the master phone can
establish multiple links to at most seven phones. The
master-slave switch is generally not supported on phones,
preventing the creation of scatternets: It is impossible to
route messages across piconets. In addition, the Bluetooth
stacks on the phones we experimented with were rela-
tively unstable, often crashing the VM.

Performance. Finally, performance is a serious prob-
lem with ad hoc networking on phones. Over a one-hop
Wi-Fi network, we measured a round-trip time of 340
ms for a 1-Kbyte message, and over Bluetooth an RTT
between 450 and 600 ms. Frequent interference prob-
lems occurred in places with a medium or high density
of wireless devices, rendering Bluetooth mostly unusable
in practice.

Awkward asynchronous programming
Pervasive applications are essentially reactive and must

constantly monitor their surrounding environment and
act upon changes in it. Asynchronous programming
models and languages are therefore preferable.

Support for asynchronous programming in Java ME
is poor. The programmer must create a separate moni-
toring thread for each potential event to be captured.
Each thread then blocks waiting for its specific event
and becomes active when the event happens. If several
monitoring threads become active concurrently, they
must compete for CPU time, leading to a severe degra-
dation in performance.

Proper support for context-
aware applications requires

sensor devices to be
available to the phone and

be able to produce real-time
measurements.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Underline

Mohan Kumar
Underline

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

Mohan Kumar
Highlight

	 October 2008	 29

In addition, multithreading on smart phones is not
recommended, especially if the number of threads can
increase without bounds. As smart-phone OSs are not
specifically designed for good multitasking perfor-
mance, context switches can be very expensive, and all
threads, even those not running, will consume applica-
tion memory.

A further problem with Java is its high level of abstrac-
tion. Normally, a Java program handles I/O in a uniform
manner, independently of whether it comes from a net-
work or local storage. With pervasive computing, this
model breaks down, as local I/O can often be expressed
synchronously, but network I/O must always be asyn-
chronous. Thus, the correct level of abstraction for I/O
must distinguish between high- and low-latency opera-
tions, which makes even the Unix model of descriptors
unsuitable.

Symbian C++ offers better asyn-
chronous programming facilities.
The active objects system provides
a centralized event handler that
uses registered observers to handle
the events using only a single thread.
While the active object system is not
the easiest to use, its design is suffi-
cient for pervasive applications.

Finally, both Java and C++ are languages fundamen-
tally built around synchronous processing, and adding
asynchronous functionality requires attention from the
programmer. If the languages were initially designed for
a concurrent-processing environment where nodes are
expected to be unreliable, it would be possible to provide
a more adequate reactive programming model.

Laborious software development process
Programming smart-phone platforms introduces

additional limitations that make application design and
development on phones different from, and usually more
laborious than, the standard process.

Concurrent programs. Java ME does not support the
execution of multiple independent programs concur-
rently. When running, the Java VM monopolizes the
phone and must terminate a running program to allow
another to run. This impacts application design, as every
component must be written as a library to link into the
running program.

The usual solution to let part of a program run as a
separate component is to implement its functionality
as a C++ program that listens on a local socket. The
main program will then be able to communicate with
the other program as if it were a network server. This is
inefficient and also necessitates designing the protocol
through which the two programs communicate.

Memory usage. Another important consideration in
designing a phone application is its memory usage pat-
tern. Current smart phones, even high-end ones, usu-

ally do not have more than 10-20 Mbytes of memory
for a running application, so designers must completely
rethink allocation behavior and program composition.
This is especially a concern with Java, where the ME
platform’s similarity to the SE version can encourage
programmers to port existing software with minimal
effort. Tommi Mikkonen10 provides advice on designing
programs for phones that basically amounts to forget-
ting many established object-oriented design principles.

Debugging applications. The debugging process is
also rather complicated and calls for running applica-
tions both on an emulator and the target devices. So-
called emulators do not really emulate an actual phone
but essentially just run the phone code on the develop-
ment machine, thus they cannot reliably provide an
accurate model of the actual target device. Moreover,

debugging must often be done
directly on actual devices simply
because emulators do not support
some features. This is particularly
true when debugging multiphone
applications, as some environments
do not support running two emula-
tors or provide network communi-
cation between them.

Target device. The actual target
device presents an additional complication. Different
phones have various OS versions, VMs, and so on. This
means that to build a truly robust application, the devel-
oper must test the program code on all target devices,
not just one of them.

Related work
Numerous other research projects have focused on

middleware for pervasive computing. However, most
of the proposed systems were built using technologies
that smart phones do not support or that require exces-
sive resources unavailable on phones. Only a fraction of
this research work has targeted practical development
on phones.

Smart Messages
Rutgers University has undertaken several research

activities in this area. Of particular interest is the
Smart Messages11 platform for cooperative computing
in mobile ad hoc networks. With Smart Messages, the
application’s execution is sequentially distributed over
a series of nodes using execution migration. Nodes are
named by properties and discovered dynamically using
application-controlled routing. We used this platform to
program mobile ad hoc networks in Migratory Services
and Contory.

CAPNET
At the University of Oulu, the CAPNET (context-

aware pervasive networking) research program

Pervasive applications are
essentially reactive and must

constantly monitor their
surrounding environment
and act upon changes in it.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Underline

Mohan Kumar
Comment on Text
This will change with multi-core architectures.

Mohan Kumar
Underline

Mohan Kumar
Underline

(www.mediateam.oulu.fi/projects/capnet) has focused
on designing a component-based middleware offering
functionality for sensor monitoring, context recogni-
tion, context-based reasoning, application adaptability,
service discovery, and so on. For example, CAPNET
researchers developed a radio-frequency-identification-
based application for requesting services. When a user
activates an RFID tag via his phone, this generates a con-
text event, and the application reacts either by providing
the requested service or by forwarding the request to an
external component.

ContextPhone
At the University of Helsinki, the Context project devel-

oped ContextPhone,12 a software platform providing
open source C++ libraries and source code components
to support context-aware applications on Nokia Series
60 phones. For example, ContextContacts is a prototype
application that permits visualizing the current contex-
tual state of all contacts listed in the phonebook.

Wearable computing and HCI
Finally, research on wearable computing and human-

computer interaction is relevant to our work. Carnegie
Mellon University’s SenSay13 prototype relies on sen-
sor data and user information to infer the user’s status
and situation and adapts its behavior accordingly. For
example, it can inform a remote caller when the user is
unavailable or hide incoming calls when the user is busy,
as well as increase the ringtone volume when necessary.
SenSay employs light, motion, and microphone sensors
placed on the human body that communicate with a cen-
tral sensor box worn at the waist.

In the same research vein, Jani Mäntyjärvi and col-
leagues14 proposed a touch-detection system for mobile
devices. The system uses two sensor pads placed on the
phone, and skin impedance measurements to detect the
presence of a hand or other objects.

W hen comparing middleware for desktop com-
puters to middleware for smart phones, energy
management is the most prominent difference.

Because achieving good application performance usually
also leads to higher energy consumption, good middle-
ware for smart phones is not what can provide all conceiv-
able services, but rather what understands the acceptable
tradeoffs between level of performance and resources
needed and can adjust its behavior accordingly.

However, the middleware layer is too high for fine-
grained resource management, thus energy management
needs help from lower layers too. The OS is ultimately
responsible for the resources, and it can distribute energy
to competing tasks based on user preferences and task
priorities. Going even lower, smart batteries that provide
information on current capacity, drain rate, and voltage

can help configure the entire system’s energy profile.
Consider, for example, how this cross-layer energy

management applies to network communication. The
middleware is responsible for making the communica-
tion protocol compact and deciding what to transfer.
The OS must time the data sending properly to avoid
continuous manipulation of the radio interface. And at
the lowest layer, the physical and link layer protocols
need to be designed to permit low energy consumption
for communication.

Middleware on smart phones must also consider an
inherent property of most pervasive applications: their
need to constantly react to external events. Middleware
can help meet this goal by acting as a framework instead
of a library component, but developers must nevertheless
rethink existing programming languages to fully enable
programming pervasive applications.

In addition to addressing these core issues, researchers
building middleware for smart phones should test their
solutions on actual devices. While programming phones
is a tedious task due to limitations and software bugs,
the behavior of real devices is too variable and unpredict-
able to be captured through simulation alone. ■

Acknowledgments
The authors thank the members and funders of the

Fuego Core, DYNAMOS, and Migratory Services proj-
ects. They also thank Cristian Borcea and Jussi Kan-
gasharju for their comments on an earlier draft of this
article.

References
	 1.	G. Roussos, A.J. Marsh, and S. Maglavera, “Enabling Perva-

sive Computing with Smart Phones,” IEEE Pervasive Com-
puting, vol. 4, no. 2, 2005, pp. 20-27.

	 2.	S. Tarkoma et al., “Fuego: Experiences with Mobile Data
Communication and Synchronization,” Proc. 2006 IEEE
17th Int’l Symp. Personal, Indoor and Mobile Radio Com-
munications (PIMRC 06), IEEE Press, 2006.

	 3.	J. Kangasharju, T. Lindholm, and S. Tarkoma, “XML Mes-
saging on Mobile Devices: From Requirements to Implemen-
tation,” Computer Networks, vol. 51, no. 16, 2007, pp. 4634-
4654.

	 4.	O. Riva, “Contory: A Middleware for the Provisioning of
Context Information on Smart Phones,” Proc. ACM/IFIP/
Usenix 7th Int’l Middleware Conf. (Middleware 06), LNCS
4290, Springer, 2006, pp. 219-239.

	 5.	O. Riva and S. Toivonen, “The DYNAMOS Approach to Sup-
port Context-Aware Service Provisioning in Mobile Environ-
ments,” J. Systems and Software, vol. 80, no. 12, 2007, pp.
1956-1972.

	 6.	O. Riva et al., “Context-Aware Migratory Services in Ad Hoc
Networks,” IEEE Trans. Mobile Computing, vol. 6, no. 12,
2007, pp. 1313-1328.

	 30	 Computer

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

Mohan Kumar
Highlight

	 7.	J. Kangasharju, T. Lindholm, and S. Tarkoma, “XML Secu-
rity with Binary XML for Mobile Web Services,” Int’l J. Web
Services Research, vol. 5, no. 3, 2008, pp. 1-19.

	 8.	G. White et al., eds., “Efficient XML Interchange Measure-
ments Note,” World Wide Web Consortium working draft,
25 July 2007; www.w3.org/TR/exi-measurements.

	 9.	T. Lindholm and J. Kangasharju, “How to Edit Gigabyte
XML Files on a Mobile Phone with XAS, RefTrees, and
RAXS,” to appear in Proc. 5th Ann. Int’l Conf. Mobile and
Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous 08), IEEE CS Press, 2008.	

	10.	T. Mikkonen, Programming Mobile Devices: An Introduc-
tion for Practitioners, John Wiley & Sons, 2007.

	11.	N. Ravi et al., “Portable Smart Messages for Ubiquitous Java-
Enabled Devices,” Proc. 1st Ann. Int’l Conf. Mobile and
Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous 04), IEEE CS Press, 2004, pp. 412-425.

	12.	M. Raento et al., “ContextPhone: A Prototyping Platform
for Context-Aware Mobile Applications,” IEEE Pervasive
Computing, vol. 4, no. 2, 2005, pp. 51-59.

	13.	D. Siewiorek et al., “SenSay: A Context-Aware Mobile
Phone,” Proc. 7th IEEE Int’l Symp. Wearable Computers
(ISWC 03), IEEE CS Press, 2003, pp. 248-249.

	14.	J. Mäntyjärvi et al., “Touch Detection System for Mobile
Terminals,” Proc. 6th Int’l Symp. Mobile Human-Computer
Interaction (Mobile HCI 04), LNCS 3160, Springer, 2004,
pp. 331-336.

Oriana Riva is a senior researcher in the Department of
Computer Science of the Swiss Federal Institute of Technol-
ogy, Zürich (ETH Zürich). Her research interests include
mobile computing, middleware for resource-constrained
mobile devices, vehicular networks, and sensor networks.
Riva received a PhD in computer science from the Univer-
sity of Helsinki. Contact her at oriva@inf.ethz.ch.

Jaakko Kangasharju is a postdoctoral researcher in the
Department of Computer Science and Engineering at Hel-
sinki University of Technology. His research interests are
middleware, application development, and XML use on
small and mobile devices. Kangasharju received a PhD
in computer science from the University of Helsinki. He
is a member of the IEEE and the ACM. Contact him at
jkangash@cc.hut.fi.

	 October 2008	 31

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on January 12, 2010 at 18:45 from IEEE Xplore. Restrictions apply.

