NP-Complete
Chapter 8

Polynomial Algorithms

- Problems encountered so far are polynomial time algorithms
- The worst-case running time of most of these algorithms is $O(n^k)$ time, for some constant k.
- All problems cannot be solved in polynomial time
- There are problems that cannot be solved at all – Unsolvable
- There are problems that can be solved but not in $O(n^k)$ time for some constant time.
- Problems that are solvable in polynomial time by polynomial-time algorithms are said to be tractable (or easy or efficient).
- Problems that require superpolynomial time are said to be intractable or hard.
P and NP

- Class P problems are solvable in polynomial time.
- Class NP problems are verifiable in polynomial time.
 - For example, given a problem, we can verify the solution in polynomial time
- Any problem in P is also in NP
- \(P \subseteq NP \)
- It is NOT KNOWN whether P is a proper subset of NP.

NP

- **What are NP-complete Problems?**

 A problem is said to be NP-Complete if it is as ‘hard’ as any problem in NP.
- No polynomial time algorithm has yet been discovered for an NP-Complete problem.
- However, it has not been proven that NO polynomial time algorithm can exist for an NP-Complete problem.
- This problem was first posed by Cook in 1971.
- The issue of, \(P=NP \) or \(P \neq NP \) is an open research problem.
Examples of NP-Complete problems

- Shortest vs. longest simple paths
- Finding the shortest paths from a single source in a directed graph \(G=(V,E) \) can be completed in \(O(VE) \) time. Even with negative edge weights. **However, finding the longest simple path between two vertices is NP-complete. It is NP-Complete even if each of edge weights is equal to one.**
- An Euler tour of a connected directed graph \(G=(V,E) \), can be completed in \(O(E) \) time. **However, the Hamiltonian Cycle is NP-Complete.**

 The traveling salesman problem is a variation of the Hamiltonian cycle.

Polynomial Time Reductions

- **Decision Problems**: Problems whose answer is yes or no!!
 Most problems can be converted to decision problems.
- Language recognition problem is a decision problem.
- Suppose \(L \subseteq U \) is the set of all inputs for which the answer to the problem is yes –
 - \(U \) is the input space and \(L \) is the language that returns a ‘true’ or ‘yes’
 - \(S = (x1+x2+x3)(x1+x2+x3)(x1+x2+x3) \)
- \(L \) is called the language corresponding to the problem (Turing machines).
 The terms language and problem are used interchangeably.
- Given a problem, with an input language \(X \),
- Now the decision problem can be defined as the problem to recognize whether or not \(X \) belongs to \(L \).
Reductions Contd.

- Definition: Let **L1** and **L2** be two languages from input spaces **U1** and **U2**. We say that **L1** is polynomially reducible to **L2** if there exists a polynomial-time algorithm that converts each input \(u_1 \in U_1\) to another input \(u_2 \in U_2\) such that \(u_1 \in L_1\) if and only if \(u_2 \in L_2\).

- The algorithm is polynomial in the size of the input \(u_1\).

- If we have an algorithm for **L2** then we can compose the two algorithms to produce an algorithm for **L1**.

- If **L1** is polynomially reducible to **L2** and there is a polynomial-time algorithm for **L2**, then there is a polynomial-time algorithm for **L1**.

- Reducibility is not symmetric

- **L1** is polynomially reducible to **L2** does not imply **L2** is polynomially reducible to **L1**

The Satisfiability (SAT) Problem

- **S** – Boolean expression in Conjunctive Normal Form (CNF) (Product (AND) of Sums (ORs)

- For example \(S = (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + x_3)\)

- The SAT problem is to determine whether a given Boolean expression is Satisfiable (without necessarily finding a satisfying assignment)

- We can guess a truth assignment and check that it satisfies the expression in polynomial time.

- SAT is NP hard

- A Turing machine and all of its operations on a given input can be described by a Boolean Expression. The expression will be satisfiable if and only if the Turing machine will terminate at an accepting state for the given input.

- http://www.nada.kth.se/~viggo/problemlist/compendium.html
Clique Problem

\[(x + y + z) \cdot (x + y + z) \cdot (\overline{x} + y + z)\]
Clique Problem

\[(x + y + z) \bullet (x + y + z) \bullet (x + y + z)\]
Clique Problem

\[(x + y + z) \cdot (x + y + z) \cdot (x + y + z)\]

Vertex Cover problem
A vertex cover of \(G = (V, E)\) is a set of vertices such that every edge in \(E\) is incident to at least one of the vertices in the vertex cover.
Vertex Cover problem
A vertex cover of $G = (V,E)$ is a set of vertices such that every edge in E is incident to at least one of the vertices in the vertex cover.

G

G'
complement of G

G has a maximum clique of size $|V| - k$
Vertex Cover problem
A vertex cover of $G = (V,E)$ is a set of vertices such that every edge in E is incident to at least one of the vertices in the vertex cover.

G' has a minimum vertex cover of size k if and only if G has a maximum clique of size $|V| - k$.

G' complement of G

10/3/2005 Kumar CSE5311 18
Dominating Set

- \(G = (V,E) \) is an undirected graph. A dominating set \(D \) of \(G \) is a set of vertices (a subset of \(V \)) such that every vertex of \(G \) is either in \(D \) or is adjacent to at least one vertex from \(D \).

\[A \quad D \quad B \quad C \]

\(G \) has a vertex cover of size \(m \)
Dominating Set

• $G = (V, E)$ is an undirected graph. A dominating set D of G is a set of vertices (a subset of V) such that every vertex of G is either in D or is adjacent to at least one vertex from D.

G has a vertex cover of size m

G' has a dominating set of size m if and only if G has a vertex cover of size m
Dominating Set

- G = (V,E) is an undirected graph. A dominating set D of G is a set of vertices (a subset of V) such that every vertex of G is either in D or is adjacent to at least one vertex from D.

G' has a dominating set of size m if and only if G has a vertex cover of size m.

Dealing with NP Complete problems

- Proving that a given problem is NP-Complete does not make the problem go away!! Udi Manber
- An NP-Complete problem cannot be solved precisely in polynomial time
 - We make compromises in terms of optimality, robustness, efficiency, or completeness of the solution.
- Approximation algorithms do not lead to optimal solutions
 - Probabilistic algorithms
 - Branch and bound
 - Backtracking