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Limitations of Propositional Logic 

• In the 4x4 wumpus world, how can we say that pits 
cause breezes in adjacent squares? 
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 B_1_2 <=> (P_1_1  OR  P_2_2  OR  P_1_3) 

• How can we say that adding 1 to an even number 
produces an odd number? 
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Limitations of Propositional Logic 

• In the 4x4 wumpus world, how can we say that pits 
cause breezes in adjacent squares? 

– We need 16 different rules like this: 
 B_1_2 <=> (P_1_1  OR  P_2_2  OR  P_1_3) 

• How can we say that adding 1 to an even number 
produces an odd number? 

– We need infinite symbols and infinite rules. 

– A symbol O1 for “1 is odd”, a symbol E2 for “2 is even”, … 

• What do these limitations buy us? 

– Simple syntax: just symbols and connectives. 

– Inference algorithms (like TT-Entails) that are horribly slow 
(exponential time), but at least terminate in finite time. 6 



First-Order Logic 

• In first-order logic, we have a richer language, that 
can explicitly represent: 

– Objects (called constants). 
• John, Mary, house backpack, Arlington, Texas… 

– Relations (also called predicates). These are boolean 
functions (they can only evaluate to true or false). 

• Siblings(John, Mary) 

• >(100, 5) 

• Red(laptop551) 

• Team(John, Mary, Sue, Jim) 

– Functions. 
• Capital(Texas) 

• Mother(John) 

• 25 + 12  (here, + is a function). 
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Relations and Functions 

• Should "sibling" be a relation or a function? 

– Relation: siblings(John, Mary) 

– Function: sibling(John) returns Mary. 
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Relations and Functions 

• Should "sibling" be a relation or a function? 

– Relation: siblings(John, Mary) 

– Function: sibling(John) returns Mary. 

• "Sibling" should be a relation, because someone can 
have many (or no) siblings. A function can only 
return one value.  
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Relations and Functions 

• Should "sibling" be a relation or a function? 

– Relation: siblings(John, Mary) 

– Function: sibling(John) returns Mary. 

• "Sibling" should be a relation, because someone can 
have many (or no) siblings. A function can only 
return one value. 

• Should "mother" be a relation or a function? 

– Relation: mother(Liz, John) 

– Function: mother(John) returns Liz. 

• "Mother" can be either a relation or a function.  

– A person (or animal) has only one mother. 
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Basic Elements of First Order Logic 

• In propositional logic we only had symbols and 
connectives. 

• In first-order logic we have NO SYMBOLS. Instead, 
we have: 

– Constants. 

– Predicates. 

– Functions. 

– Connectives (and, or, not, if, iff). 

– The equal sign = (a "special" predicate). 

– Variables. 

– Quantifiers, ∀ (for every), ∃ (there exists). 
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Variables and Quantifiers 

• Variables can only be used together with quantifiers. 

• Quantifiers need variables in order to be used. 

• Examples: 

– ∀ x, y: brothers(x, y) => siblings(x, y) 

– ∃ x: 2*5 + x = 18. 

13 



Examples 

• For the wumpus world, to say that "pits cause breezes 
in adjacent squares" using propositional logic, we need 
16 rules like this: 

 

    B_1_2 <=> (P_1_1  OR  P_2_2  OR  P_1_3) 

 

• In first-order logic, how can we say the same thing? 
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Examples 

• For the wumpus world, to say that "pits cause breezes 
in adjacent squares" using propositional logic, we need 
16 rules like this: 

 

    B_1_2 <=> (P_1_1  OR  P_2_2  OR  P_1_3) 

 

• In first-order logic, how can we say the same thing? 
 
∀ x1, y1: Breeze(x1, y1) <=>  
                  ∃ x2, y2: Pit(x2, y2)  AND Adjacent(x1, y1, x2, y2) 
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Examples 

• For the wumpus world, to say that "there is only one  
monster" using propositional logic, we need 16 rules 
like this: 

 

    M_2_3 => not(M_1_1  OR  M_1_2  OR  M_1_3 …) 

 

• In first-order logic, how can we say the same thing? 
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Examples 

• For the wumpus world, to say that "there is only one  
monster" using propositional logic, we need 16 rules 
like this: 

 

    M_2_3 => not(M_1_1  OR  M_1_2  OR  M_1_3 …) 

 

• In first-order logic, how can we say the same thing? 
 
∀ x1, y1 : Monster(x1, y1) =>  
                      ∀  x2, y2 : Monster(x2, y2) => (x1, y1) = (x2, y2) 
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Representing Integers 

• How do we represent integers in propositional logic? 

– We cannot, at least not explicitly. Propositional logic has 
no room for objects or constants, just for symbols. 

– We can only represent properties of integers. We can use 
symbols to represent boolean statements about integers. 

– Example: symbol O143 can represent the statement “143 
is an odd number”, which is a true statement. 

– Example: symbol P143 can represent the statement “143 
is a prime number”, which is a false statement. 

• Overall, we need an infinite number of symbols and 
rules, to express basic properties like “the sum of 
two odd numbers is an even number”. 
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Representing Integers 

• How do we represent integers in first-order logic? 

– Define 0, a constant. 

– Define a successor function.  
1 = successor(0) 
2 = successor(successor(0)) 

– We do not have to explicitly define constants 1, 2, and so 
on. They are implicitly defined as return values of the 
successor function. 

– We can define predicates such as odd(number), 
even(number), prime(number) and so on. 

• How can we specify which numbers are odd and 
which numbers are even, with finitely many 
statements? 
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Representing Integers 

• How can we specify which numbers are odd and 
which numbers are even, with finitely many 
statements? 
 
even(0) 
∀ x: even(x) => odd(successor(x)) 
∀ x: odd(x) => even(successor(x)) 

 

• These three statements describe for infinitely many 
integers whether they are even or odd. 

• Contrast that to propositional logic, where you 
would need infinitely many symbols and rules. 
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Adjacency in the Wumpus World 

• For the wumpus world, to say that "pits cause breezes 
in adjacent squares" using first-order logic, we use this 
rule: 
 

∀ x1, y1: Breeze(x1, y1) <=>  
                  ∃ x2, y2: Pit(x2, y2)  AND Adjacent(x1, y1, x2, y2) 
 

• How can we define the Adjacent relation? 
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Adjacency in the Wumpus World 

• For the wumpus world, to say that "pits cause breezes 
in adjacent squares" using first-order logic, we use this 
rule: 
 

∀ x1, y1: Breeze(x1, y1) <=>  
                  ∃ x2, y2: Pit(x2, y2)  AND Adjacent(x1, y1, x2, y2) 
 

• How can we define the Adjacent relation? 
 

• ∀ x1, y1:  Adjacent(x1, y1, successor(x1), y1) 

• ∀ x1, y1:  Adjacent(x1, y1, x1, successor(y1)) 

• ∀ x1, y1, x2, y2:  Adjacent(x1, y1, x2, y2) <=>             

                  Adjacent(x2, y2, x1, y1) 22 



Examples from the Textbook 

• How do we say that brothers are siblings? 
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Examples from the Textbook 

• How do we say that brothers are siblings? 
 
∀ x, y : Brothers(x, y) => Siblings(x, y) 
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Examples from the Textbook 

• How do we say that “siblings” is a symmetric 
relation? 
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Examples from the Textbook 

• How do we say that “siblings” is a symmetric 
relation? 
 
∀ x, y : Siblings(x, y) => Siblings(y, x) 
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Examples from the Textbook 

• How do we say that one’s mother is one’s female 
parent? 
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Examples from the Textbook 

• How do we say that one’s mother is one’s female 
parent? 
 
∀ x, y : (x = Mother(y)) => (Female(x) ∧ Parent(x, y)) 

 

• Alternative: making Mother a relation. 
 
∀ x, y : Mother(x, y) => (Female(x) ∧ Parent(x, y)) 
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Examples from the Textbook 

• How do we say that a first cousin is a child of a parents’ 
sibling? 
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Examples from the Textbook 

• How do we say that a first cousin is a child of a parents’ 
sibling? 
 
∀ x, y : FirstCousin(x, y) <=>  
               ∃ p, ps : Parent(p,x) ∧ Sibling(ps,p) ∧ Parent(ps,y) 
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First-Order Logic Syntax 

• What is the simplest possible sentence in first-order 
logic? 
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First-Order Logic Syntax 

• What is the simplest possible sentence in first-order 
logic? 

– A predicate applied to constants: 
 
predicate(constant1, … constantn) 
 

• Examples: 
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First-Order Logic Syntax 

• What is the simplest possible sentence in first-order 
logic? 

– A predicate applied to constants: 
 
predicate(constant1, … constantn) 
 

• Examples: 

 
Siblings(John, Mary) 

>(5, 3) 
White(cloud) 
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First-Order Logic Syntax 

• Are these valid first-order logic sentences? 
 

1 

John 

Mother(Mary) 

Mother(Father(Mother(Mary))) 
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First-Order Logic Syntax 

• Are these valid first-order logic sentences? 
 

1 

John 

Mother(Mary) 

Mother(Father(Mother(Mary))) 
 

• No.  Each of these lines refers to an object. 

• In first-order logic you can refer to an object in three ways: 
– Using a constant, like 1, John. 

– Using a variable (that has been introduced using a quantifier). 

– Using a function call, like Mother(Mary), or more complicated, nested 
calls, like Mother(Father(Mother(Mary))) 
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First-Order Logic Syntax 

• Objects are an important part of first-order logic. 

• However, an object by itself cannot be a first-order 
logic sentence. 

– A sentence must have a boolean value. 

• Then, where do objects appear in sentences? 
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First-Order Logic Syntax 

• Objects are an important part of first-order logic. 

• However, an object by itself cannot be a first-order 
logic sentence. 

– A sentence must have a boolean value. 

• Then, where do objects appear in sentences? 

• Objects (constants, variables, function calls) appear: 

– As arguments to predicates. 

– On the left and right side of an equal sign. 
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First-Order Logic Syntax 

• At the top level, a first-order logic sentence must be one of 
the following: 
– An application of a predicate. 

 

Example: cousins(mother(Mary), father(father(John))) 
 

– An equality test. 
 

Example: mother(Mary) = Jane 
 

– An application of an existential or universal quantifier. 
 

Example: ∀ x, y : Mother(x, y) => (Female(x) ∧ Parent(x, y)) 
 

– An application of a connective to combine simpler sentences. 
 

Example: Female(Jane) ∧ Parent(Jane, Edward) 
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Number of Possible Worlds 

• In propositional logic, suppose that you have 100 
symbols. How many possible worlds do you have? 
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Number of Possible Worlds 

• In propositional logic, suppose that you have 100 
symbols. How many possible worlds do you have? 

– 2100. One for each row of the truth table. 
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Number of Possible Worlds 

• In propositional logic, suppose that you have 100 
symbols. How many possible worlds do you have? 

– 2100. One for each row of the truth table. 

• In first-order logic, how can we even count the 
number of possible worlds? 

• It is more complicated. 
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Number of Possible Worlds 

• Suppose that we have: 

– Five constants. 

– No functions. 

– One predicate, that takes one argument. 

• How many possible worlds can we have? 
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Number of Possible Worlds 

• Suppose that we have: 

– Five constants. 

– No functions. 

– One predicate, that takes one argument. 

• How many possible worlds can we have? 

• For each possible argument of the predicate, we 
must specify if the predicate returns true or false. 

• We have five possible arguments. 

• In total, 25 possible worlds. 
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Number of Possible Worlds 

• Suppose that we have: 

– Five constants. 

– No functions. 

– One predicate, that takes two arguments. 

• How many possible worlds can we have? 
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Number of Possible Worlds 

• Suppose that we have: 

– Five constants. 

– No functions. 

– One predicate, that takes two arguments. 

• How many possible worlds can we have? 

• For each possible combination of arguments of the 
predicate, we must specify if the predicate returns 
true or false. 

• We have 25 possible combinations of arguments. 

• In total, 225 possible worlds. 
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Number of Possible Worlds 

• Suppose that we have: 
– Five constants. 

– No functions. 

– Three predicates, that take two arguments. 

– One predicate that takes one argument. 

• How many possible worlds can we have? 
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Number of Possible Worlds 

• Suppose that we have: 
– Five constants. 

– No functions. 

– Three predicates, that take two arguments. 

– One predicate that takes one argument. 

• How many possible worlds can we have? 

• For each possible combination of arguments of each 
predicate, we must specify if the predicate returns true or 
false. 

• For two arguments, we have 25 combinations of arguments. 
We have three such predicates, so we must specify 75 values. 

• For one argument, we have 5 combinations of arguments. We 
have one such predicate, so we must specify 5 values. 

• In total, 25+75 = 280 possible worlds. 
47 



Inference via Propositionalization 

• Suppose that we have: 
– Five constants. 

– No functions. 

– Three predicates, that take two arguments. 

– One predicate that takes one argument. 

• In such cases, we can automatically convert our first-order 
logic knowledge base to an equivalent propositional logic 
knowledgebase. 

• For each possible combination of arguments of each 
predicate, we must define a symbol in the propositional logic 
version. 

• We have 80 total predicate values to specify, so we would 
need a propositional logic knowledge base with 80 symbols. 

• Then, we can do inference using TT-Entails. 
48 



Inference via Propositionalization 

• Inference via propositionalization can be an attractive option. 

• For example, in the wumpus world, we can use first-order 
logic for our knowledge base, so that we do not have to write 
16 different versions of every rule. 

• Then, our software can translate our knowledge base to 
propositional logic, and use TT-Entails. 

• This way, we get the elegance of first-order logic, and the 
finite-time inference algorithms of propositional logic. 
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Propositionalization: An Example 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have two predicates:  
– Tall, takes one argument. 

– Parent, takes two arguments. 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• What (and how many) symbols do we have to define to 
propositionalize this knowledge base? 
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Propositionalization: An Example 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have two predicates:  
– Tall, takes one argument. 

– Parent, takes two arguments. 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• What (and how many) symbols do we have to define to 
propositionalize this knowledge base? 

• 6 symbols: 
– Tall_Edward, Tall_Mary. 

– Parent_Edward_Edward, Parent_Edward_Mary, 
Parent_Mary_Edward, Parent_Mary_Mary.  
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Propositionalization: An Example 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have two predicates:  
– Tall, takes one argument. 

– Parent, takes two arguments. 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• How do we translate the knowledge base to propositional 
logic? 
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Propositionalization: An Example 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have two predicates:  
– Tall, takes one argument. 

– Parent, takes two arguments. 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• How do we translate the knowledge base to propositional 
logic? 
 
Tall_Edward ∧ not(Tall_Mary) 
not(Parent_Edward_Mary) 
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Propositionalization: An Example 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• How do we translate the knowledge base to propositional 
logic? 
 
Tall_Edward ∧ not(Tall_Mary) 
not(Parent_Edward_Mary) 

 

• Note that the knowledge base does not use all six symbols. 

• For example, Parent_Mary_Edward is not used. 

• Then, why do we need to have such a symbol in the truth 
table? 
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Propositionalization: Symbols Needed 

• When we propositionalize a first-order logic knowledge base, 
we need symbols in the truth table not only for the 
knowledge base, but also for every possible statement we can 
form using the constants, predicates, and functions that are 
used. 

• Why? Because for any possible statement S, we may want to 
check if the knowledge base entails that statement S. 

• In order for the propositional logic translation to be 
equivalent to the first-order logic knowledge base, it should 
allow us to ask any question that we can ask using first-order 
logic. 

• Parent_Mary_Edward is not needed in the knowledge base, 
but we may want to ask if the knowledge base entails 
Parent_Mary_Edward. 
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Propositionalization Limitations 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have one predicate:  
– Tall, takes one argument. 

• Suppose that we have one function. 
– Mother, takes one argument. 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• What (and how many) symbols do we have to define to 
propositionalize this knowledge base? 
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Propositionalization Limitations 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have one predicate:  
– Tall, takes one argument. 

• Suppose that we have one function. 
– Mother, takes one argument. 

• Suppose we have this knowledge base: 
 

Tall(Edward) ∧ not(Tall(Mary)) 
not(Parent(Edward, Mary)) 

 

• What (and how many) symbols do we have to define to 
propositionalize this knowledge base? 

• Infinitely many symbols!!! 
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Propositionalization Limitations 

• Suppose we have two constants: Edward and Mary. 

• Suppose that we have one predicate:  
– Tall, takes one argument. 

• Suppose that we have one function. 
– Mother, takes one argument. 

• We need a symbol for Tall(Mary). 

• We need a symbol for Tall(Mother(Mary)). 

• We need a symbol for Tall(Mother(Mother(Mary))). 

• And so on, for ever. 
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Number of Worlds in First-Order Logic 

• In any first order logic domain where you do NOT 
have functions, you can do propositionalization. 

• Thus, the number of possible worlds is the same 
both in the first-order logic representation and in the 
propositional logic representation. 

• However, if you have even a single function, you 
cannot do propositionalization. 

– You would need infinitely many symbols. 

• Whenever you have even a single function, the 
number of all possible worlds is INFINITE. 
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Inference in First-Order Logic 

• If you have no functions, you can do inference using: 

– Propositionalization. 

– TT-Entails in the propositional-logic version. 

• The complexity of inference in that case is 
exponential, but finite. 
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Inference in First-Order Logic 

• If you have functions: we will NOT study any
inference algorithms for that case in this course.

– We will be briefly looking at the basics of those 
methods: resolution, and other inference methods.

• What I want you to know:

– For first-order logic, there is no sound and complete
inference algorithm that runs in finite time.

– There are sound and complete algorithms that:
• If the knowledge base entails the statement, the algorithms will

return true in a finite (exponential in the worst case) amount of
time.

• If the knowledge base does NOT entail the statement, the
algorithms might return false in a finite amount of time, but they
might also never terminate.

61 



Inference Recap 

• Inference takes exponential time (in the worst case) in 
propositional logic. 

• In first order logic, inference takes: 
– Exponential time (in the worst case) if the knowledge base entails the 

statement. 

– Infinite time (in the worst case) if the knowledge base does not entail 
the statement. 

• The time complexity of inference makes it difficult to solve 
large problems using propositional and first order logic. 

• In many interesting cases (but not all cases), there are 
alternatives that provide good trade-offs. 
– Languages that are somewhat similar to first-order logic. 

– Inference algorithms that are fast. 

• Such an interesting case will be our next topic: planning. 
62 


