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GreenColo: A Novel Incentive Mechanism for Minimizing
Carbon Footprint in Colocation Data Center

Mohammad A. Islam,
Florida International University

Abstract—As an integral part of our digital economy, data
centers are growing rapidly, devouring a formidable amount
of energy and leaving a huge carbon footprint. While owner-
operated data centers (e.g., Google) can implement various
power management techniques to reduce energy consumption,
colocation data centers, which offer a “halfway” solution to users
who do not want to build their own data centers or completely
resort to public clouds, suffer from “split incentive” that creates
a barrier for greenness: colocation operator desires greenness
but does not have control over tenants’ servers; tenants who
own the servers may not be willing to manage their servers for
greenness unless they are properly incentivized. In this paper,
we aim at minimizing the carbon footprint of a colocation data
center while satisfying the colocation operator’s long-term budget
constraint. To break the split-incentive barrier and satisfy the
budget constraint, we develop a dynamic incentive framework,
called GreenColo, in which tenants can voluntarily submit energy
reduction bids along with their desired payment and, if accepted,
will be financially rewarded for energy reduction. GreenColo
can be implemented online based on the currently available
information (e.g., tenants’ bids and current carbon efficiency) and
dynamically select winning bids to minimize carbon footprint.
We demonstrate the effectiveness of GreenColo both analytically
and empirically. Our trace-based simulation results show that
GreenColo can reduce carbon footprint by 18%, while the
colocation operator does not incur any additional cost (compared
to the no-incentive baseline case) and tenants may save up to 25%
of their colocation costs.

I. INTRODUCTION

Data centers are so critical infrastructure in our digital
economy that we cannot live without them. Nonetheless,
data centers may each house tens of thousands of servers
and hence are very power-hungry, collectively accounting for
approximately 2% of the global electricity usage and resulting
in a growing trajectory of carbon footprint [19]. Consequently,
numerous efforts have been made to reduce the energy con-
sumption as well as carbon footprints of data centers (referred
to as “greenness” in this paper) [13, 20, 22, 36]. While the
progress towards “greenness” is undeniably encouraging, the
existing efforts have primarily focused on owner-operated data
centers such as Google and Amazon, leaving the “dirtiness” of
another distinctly different type of data center — colocation
data center — much less addressed.

Colocation data center, often simply called colocation or
colo, differs from owner-operated data centers (e.g., private
data center, cloud data center), where the operator owns and
has complete control over the server equipment. In a coloca-
tion, multiple tenants house their own servers in one shared
facility, whereas the colocation operator (i.e., facility manager)
is only responsible for facility operation (e.g., reliable power
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distribution and cooling system) without any control over
the tenants’ servers. There are two major business models
in colocation: retail and wholesale. Retail tenants typically
house their servers in a cage or cabinet with a smaller power
demand (e.g., less than 500KW), whereas wholesale tenants
usually lease a dedicated data center space (e.g., a full floor
or even the whole facility) and have greater power demand.
While colocation pricing varies widely in different markets,
a prevailing pricing model is that tenants are charged based
on their peak power subscriptions (even though tenants do
not use any energy during the leasing period) [10, 14, 25]. In
addition, other fees, such as space costs, bandwidth costs, and
actual energy costs (but typically only for wholesale tenants),
may also be charged.

Why is colocation important? Colocation is an integral
segment of data center industry and has been keeping a strong
momentum to grow. As noted by a recent book from Google
[8], “most large data centers are built to host servers from
multiple companies (often called colocation, or ‘colos’).” By
one estimate [9], there are more than 1,200 colocation data
centers in the U.S., and the combined peak power demand
by such facilities in New York areas are estimated to exceed
400MW (comparable to Google’s global data center power
demand) [5]. Moreover, the now U.S.$ 25billion global colo-
cation market is expected to grow to U.S.$ 43billion by 2018
with a projected annual compound growth rate of 11% [3].

The fast expansion of colocation market is driven by the
strong IT demand across all sectors. First, while public cloud
may satisfy some of the computing demands by small/medium
businesses, concerns with privacy, losing control of data,
and/or lack of technical skills still pervasively exist. Hence,
maintaining self-owned servers in colocations (e.g., private
cloud, hybrid cloud that only partially relies on public cloud)
are favored by many users. Second, although a few gigantic
cloud providers (e.g., Google and Amazon) can afford con-
structing self-owned customized data centers, many smaller-
scale cloud providers (e.g., Salesforce, Box) cannot and they
house their servers in colocations for providing public cloud
computing services [24]. Last but not least, some top-brand
IT companies also have a considerably large footprint in
colocations. For example, Akamai and Twitter are common
tenants in colocations [6, 15].

In this paper, we focus on the fast-growing yet long-
neglected colocation industry, with a goal of greening colo-
cation data center — minimizing carbon footprint — while
satisfying colocation operator’s budget constraint. Our re-
search is mainly motivated by the following two facts. First,



according to Greenpeace’s latest report released in early 2014
[15], a handful of top-brand IT companies such as Google
and Apple have been doing an excellent job in making their
data centers green, but the “greenness” of colocations is still
lagging far behind. In fact, because of their global reach
and massive sizes, colocations are identified to possess far
greater potentials in driving the clean Internet, than even the
current industry leaders like Google [15]. Thus, colocations
imperatively need to get on board to reduce their carbon
footprints. This also helps colocation operators earn green
certifications (which bring tax benefits [35]) and brighten their
public images. Second, for financial interests, satisfying the
colocation operator’s budget constraint is certainly desired
when going green.

Greening colocation while satisfying budget constraint is a
challenging research problem. First, due to the lack of control
over tenants’ servers, the existing power management tech-
niques (e.g., turning off unused servers [22]) cannot be applied
by the colocation operator. Instead, the colocation operator
can only rely on facility management (e.g., upgrading cooling
systems) to improve energy efficiency, but it may require
substantial capital investment, especially for the existing colo-
cations. Hence, greening colocation data center is largely at
the mercy of tenants who own the servers. Nonetheless, there
is a “split incentive” hurdle: although greenness is desired by
colocation operator, tenants may not be willing to manage their
servers for greenness unless they are financially incentivized.
This is because tenants (especially retail tenants) pay for their
peak power subscriptions and, if without any financial benefits,
have little incentive to reduce actual energy usage. Moreover,
even though some large wholesale tenants may be charged
based on energy consumption, a flat rate is typically used
and hence mis-matches time-varying carbon efficiencies and/or
on-site renewables [13], (e.g., tenants’ energy usage pattern
may not follow carbon efficiency and/or renewable energy
supply variations). Second, as a common business practice,
colocation operator’s budget is determined before a fiscal year
and hence, satisfying budget constraint requires a long-term
cost budgeting process. Nonetheless, the complete information
(e.g., time-varying carbon efficiency, tenants’ workloads) over
the budgeting period is not available in practice, necessitating
an efficient online approach.

To break the “split incentive” hurdle, we employ an incen-
tive framework, called GreenColo, which rewards the partici-
pating tenants for energy reduction based on reverse auction.!
GreenColo takes root in economics theory and is further
inspired by a number of prior works that focus on different
contexts (e.g., demand response in smart grid [28, 37] and
wireless traffic offloading [38]). In our problem, tenants can
voluntarily submit bids, including planned energy reduction
(e.g., by turning off unused servers) and requested monetary
payment, to the colocation operator. Upon receiving the bids,

'Dynamically pricing tenant’s energy usage may not be desired for colo-
cation, because: (1) it implicitly enforces all tenants to accept time-varying
prices, causing business uncertainties and/or psychological concerns; and (2)
it may be subject to power utility regulations [14].

the colocation operator will determine wining bids, notify
respective tenants for energy reduction and then financially
reward them. GreenColo has the advantage of being non-
intrusive, as tenants enjoy the complete freedom in partici-
pating and deciding their bids.

While rewarding tenants for energy saving and greenness,
the colocation operator also needs to satisfy its long-term
budget constraint. In view of the practical constraint that
complete offline information is unknown, GreenColo contains
an online algorithm for deciding winning bids based on the
currently available information (i.e., current carbon efficiency
and currently submitted bids by tenants). The key idea of the
online approach is: keep track of budget deficit; if there is a
deficit, then give more emphasis on reducing operational cost
while minimizing carbon footprint. We also demonstrate the
effectiveness of GreenColo: trace-based simulations show that
carbon footprint can be reduced by 18% without any additional
cost (compared to the baseline case in which no incentive is
provided), while tenants may save up to 25% of their power
cost by participating in GreenColo.

To sum up, our main contribution is that we address a
timely yet critically important problem of reducing carbon
footprint of colocation for greenness, a long-neglected driving
factor for sustainable computing. We develop an efficient
online reverse auction-based incentive mechanism, GreenColo,
which can dynamically decide winning bids based on the
currently available information to minimize carbon footprint
while satisfying the colocation operator’s long-term budget
constraint. GreenColo creates a “win-win” situation: coloca-
tion becomes greener without increasing the operator’s budget;
tenants receive financial rewards without noticeably affecting
their applications performances. To our best knowledge, our
work represents the first effort in greening colocation subject
to long-term budget constraint, by breaking the split-incentive
hurdle between colocation operator and tenants.

The rest of this paper is organized as follows. Section II
describes the incentive mechanism and model. In Section III,
we present the problem formulation and develop our online
algorithm GreenColo. Sections IV provides the simulation
results to support our analysis. Related work is reviewed
in Section V and finally, concluding remarks are offered in
Section VL.

II. GreenColo MECHANISM AND MODEL

In this section, we first describe how the incentive mechanis-
m works, and then formalize the models for tenants and colo-
cation operator. We will consider a widely-employed discrete-
time model by dividing the timescale of interest (e.g. one year)
into K equal-length time slots, indexedby t = 0,1, , K—1.
In our study, we focus on hourly time slot, although other
durations (e.g., 15 minutes) can also be considered.

A. GreenColo mechanism

We describe GreenColo as follows, which is executed at the
beginning of each time slot.



TABLE I
LIST OF KEY NOTATIONS.

Notation | Description Notation | Description
m;(t) # of servers turned off e;i(t) Server energy
~(t) PUE r(t) On-site renewables
u(t) Electricity price c(t) Carbon footprint
e(t) Electricity usage Z Total cost constraint
g(t) Operational cost d; Avg. delay constraint

e Step 1: Each tenant who voluntarily participates in
GreenColo decides and submits (a bundle of) bids. As will
be formalized in the next subsection, the bidding information
includes the number of servers to be turned off in the upcom-
ing time slot as well as the desired incentive payment from
the colocation operator as a compensation.

e Step 2: Upon receiving the bidding information from
tenants, the colocation operator selects bids by solving an
online optimization problem (as detailed in Section III) and
then notifies the tenants of the bidding outcome.

e Step 3: If its bid is accepted, the tenant will turn
off its servers as specified in the bid and also receive the
corresponding payment from the colocation operator. Power
metering tools in colocation can be leveraged to verify that
servers are turned off.

While tenants’ participation in GreenColo is purely volun-
tary, we envision that GreenColo acts as an economic stimulus
for tenants’ cooperation with with the colocation operator for
greenness. Our position is strengthened by increasing pressures
from environmental groups [15] and recent sustainability com-
mitment of major IT companies (e.g., Akamai and Salesforce,
which house servers in worldwide colocations [6]).

B. Model

In what follows, we model each tenant’s bidding decision
and the operation of colocation operator. Key notations are
listed in Table 1. For notational convenience, we suppress the
time index wherever applicable.

1) Tenant: We consider a colocation data center with N
tenants, each tenant ¢ having M; homogeneous servers housed
in the facility, for ¢ = 1,2,--- N. Note that our model is
extensible to heterogeneous servers by viewing a tenant with
heterogeneous servers as group of virtual tenants, each with
homogeneous servers. In our model, we consider that tenant 7
turns off m; servers to reduce energy [22, 28], although other
IT control knobs, such as scaling down CPU frequencies [21],
can also be considered.

Reducing energy via turning servers off may induce certain
“inconveniences/costs” for tenants such as possible perfor-
mance degradation, and hence, financial reward is needed
as a compensation. Next, we model the tenant cost as a
monotonically increasing function h;(m;) in terms of the
number of servers turned off. While the cost function can
have different forms (e.g. discrete, non-linear, etc.) and each
tenant has its own discretion to formulate the best suitable
cost function, we provide an example of cost function as
follows for explanation purposes. In particular, we consider

two specific types of costs: delay performance cost and server
unavailability cost.

e Delay performance cost: By consolidating workloads and
turning off some unused servers, applications may experience
delay performance degradation, causing “cost” to tenants
[22, 27]. Here, we adopt the widely-used queueing-theoretic
model to capture the delay cost. Specifically, by turning off
m; servers and considering an M/M/1 model at each active
server, we formulate the delay cost of tenant ¢ as

+

1
—dign | ey

di(mi, Ai) = Bi+ Ai - "
Hi = N =m;

where p; is the service rate of each server (measuring the
amount of workloads that can be processed in a unit time), A;
is the arrival rate of workload equally distributed across active
servers, (3; is a factor converting the experienced delay to an
equivalent monetary cost, the operator ( - )* = max{ - ,0},
and d; 45, is the average delay threshold (i.e., users are indiffer-
ent of the delay performance below the threshold). Each tenant

has an average delay constraint ——— < d;, which essen-

i = R —m;

tially translates into an equivalent maximum server utilization
constraint (a key metric for capacity autoscaling decisions on
commercial cloud platforms such as Amazon EC2 [7]). Note
that the considered performance model is only intended as a
guide for capacity provisioning, and other systems approaches
(e.g., resource demand modeling and prediction) can also be
applied for estimating delay performance.

e Server unavailability cost: In addition to delay perfor-
mance, turning off servers also results in other inconveniences
(e.g., it may take a longer time in response to unexpected
traffic spikes, etc.). Here, we collectively refer to these in-
conveniences as server unavailability cost. For illustration, we
model the server unavailability cost of tenant ¢ as a linearly
increasing function 7; - m;, where 7; > 0 is a scaling factor
and m; is the number of servers turned off.”

By combining both delay performance and server unavail-
ability costs, the total cost of turning off m,; servers for tenant
1 can be expressed as

hi(mg) = n; - my + di(mg, A;), ()

where the parameters are chosen at tenant ¢’s own discretion
when requesting payment from the colocation operator. Hence,
we can express bidding set of tenant ¢

B; € {(m;,hi(m;))| m; € ZT and d;(m;, N;) < d;}, ()

where ZT represents non-negative integers and the right-hand
side represents the feasible bidding set from which tenant ¢
can decide (a subset of) bids to the colocation operator.
Finally, we note our study is not restricted to the above
example cost; other costs, such as possible data transfers
among servers when turning off servers and migrating work-
loads, may also be incorporated at the tenants’ own discretion.

2We consider that the server unavailability cost for each time slot is 1; - m;,
when m; servers are turned off during two consecutive time slots.



Furthermore, we will show in simulations that asking for a
very high payment is against the tenants’ best interest, because
doing so will only reduce the chance of having their bids
accepted (i.e., reducing tenants’ financial rewards) without
noticeably improving their application performances.

2) Colocation operator: The colocation operator is respon-
sible for managing the facility such as power distribution
and cooling system. Next, we model the colocation operator’s
electricity usage, operational cost, and carbon footprint.

o Electricity usage: In colocation, IT energy is mainly
consumed by tenants’ equipment. For tenant 7, each server
has an idle/static power of p; s, dynamic power of p; 4, and
service rate of p;. With m; servers turned off (to be optimized
in the next section), the energy consumption® of each server
can be expressed as p; s + (M——/\n?%T “Pi,d, Where (M——);?nT
is the server utilization and J\; is the arrival rate of workload
equally distributed across M; — m,; servers. The linear power
model has been widely considered in prior work [22] and
shown to be fairly accurate in production systems [12, 26].
Thus, the total server energy consumption of tenant 7 is
ei = (My —my) - pis + % - pi,g- Thus, by capturing the
non-IT energy consumption using power usage effectiveness
(PUE, measuring the ratio of total energy to IT energy) and
considering that an amount of r on-site intermittent renewable
energy (e.g., solar panels) is available, we obtain the total
electricity usage of the colocation as

N

e= V'Z{(Mi—mi)-pi,s-i-/\—l_'pi,d —re . 4

= i
where 7 is the (possibly time-varying) PUE to offset a fraction
of electricity usage.

e Operational cost: We focus on operational cost rather than
capital cost (e.g., building the data center, installing on-site
renewables). Excluding costs such as human resources that
are irrelevant to our study, there are two types of operational
costs in GreenColo: electricity cost and incentives provided to
tenants. Given (possibly time-varying) electricity price of w,
the electricity cost is g = u-e, where e is the electricity usage
in (4). The total incentive payment is g, = S 0, hi(m;),
where h;(m;) is the incentive payment if tenant ¢’s bid of
turning off m,; servers is accepted by the colocation operator
(which we will optimize in the next section). Thus, the total
operational cost is

N
gzu-e—i-Zhi(mi). 3)

i=1
e Carbon footprint: The grid electricity comes from various
generation systems [1, 34] and, depending on the fuel type
used, has different carbon emission rates. Carbon efficiencies
of several common energy fuel mixes are shown in Table III (in
Section IV). As it is not possible to distinguish the energy fuel
type once the electricity enters the grid, we use the following

3Without causing ambiguity, we interchangeably use energy and power,
because they are equivalent given the equal-length time slot model.

formula to derive the average carbon efficiency (with a unit
of g/kWh) [13]

_ 2 rbs
by

where ¢ is the carbon efficiency of fuel type f and by is the
total electricity generation from fuel type f. Thus, we express
the data center carbon emission by ¢ = ¢-e+ ¢, -, where ¢,
is the carbon efficiency for on-site renewables (i.e., solar in
our study) and r is the amount of available renewables. Note
that due to time-varying energy fuel mixes to satisfy different
demands, as shown in Fig. 1(b), the resulting average carbon
efficiency ¢ also varies over time.

¢ (6)

III. ALGORITHM DESIGN OF GreenColo

In this section, we first present the problem formulation
for GreenColo and then, in view of the lack of complete
offline information, propose an online algorithm that can
decide winning bids submitted by tenants without foreseeing
the future information.

A. Problem formulation

The focus of our study is to optimally select tenants’
bids (i.e., deciding winning bids) for minimizing the carbon
footprint while ensuring that the long-term operational cost of
the colocation is kept under budget. We formulate the problem
as follows.

1 K—-1
P-1: minc= % [p(t)e(t) + o (t)r(t)]  (T)
t=0
K-1
st. Y g <7, ®)
t=0
[mi(t), hi(mi(t))] € Bi(t), ¥ i,t. )

where K is the total number of time slots over the entire
budgeting period, the objective (7) is the long-term average
carbon footprint, (8) is the long-term cost constraint (including
both electricity cost and incentive paid to tenants), and the
last constraint (9) requires that only those bids voluntarily
submitted by tenants can be chosen (i.e., colocation operator
cannot force tenants to turn off certain number of servers
against tenants’ will).

It is clear that P-1 is an offline problem formulation that
involves integer programming and requires complete offline in-
formation (e.g., tenants’ future bids, carbon efficiency), which,
however, is not possible to obtain in advance. Moreover, the
intermittent on-site renwables as well as time-varying energy
fuel mixes further add to the randomness of deciding winning
bids over the entire cost budgeting period. To address the
lack of offline information, we propose an online algorithm,
GreenColo, which only requires the currently available infor-
mation and approximately solves P-1 with a bounded deviation
from optimal offline solution.



Algorithm 1 GreenColo
1: Input (m;(t), hi(m;(t)), (), u(t) and r(t) at the be-
ginning of each time slot ¢ = 0,1,--- , K — 1 and for
1=1,2,---N.
2: Decide winning bids to minimize

+

N
P2: V- o(t) [VZei(t)_T(t) +¢r(t) - (1)

+q(t) - § u(t) lvzei(t) —r(t)

3: Update ¢(t) according to (10).

B. GreenColo

Building upon yet extending the recently-developed Lya-
punov technique [23], we propose GreenColo, which elim-
inates the necessity of future information to solve P-1.
GreenColo decouples the optimization decisions by replacing
the long-term cost constraint (8) with a dynamic virtual budget
deficit queue. Specifically, we construct a virtual budget deficit
queue that tracks the run-time deviation from the desired long-
term budget target and evolves as follows

71+
o+ 1) = a0+ 90~ 7| (10)
where ¢(t) is the electricity cost plus incentive payment, and
the queue length ¢(¢) indicates the colocation’s operational
cost surplus over the allocated budget thus far (assuming equal
budget allocation for ease of presentation [23]). Note that
the “allocated” budget is not enforced as a hard constraint;
instead, it is only intended as a guidance for GreenColo to
satisfying budget constraint. A positive queue length implies
that the colocation operator needs to give more weight on
cost saving to meet the long-term budget constraint. Thus,
leveraging this intuition and using the budget deficit queue as
a weight for operational cost in the online optimization, we
present the online algorithm in Algorithm 1, which will be
further explained below.

1) Working principle of GreenColo: As shown in Algorith-
m 1, we construct a new optimization problem P-2 consisting
of the original objective function (carbon footprint) scaled by
V > 0 (referred to as carbon parameter) plus the operational
cost multiplied by the budget deficit queue. The queue acts as
the weighting parameter for cost saving relative to carbon re-
duction. Specifically, if the colocation operator incurs a higher
cost than the budgeted amount, the queue length grows and
pushes the optimization problem P-2 towards cost saving in
consecutive time slots to mitigate the budget deficit. Thus, the
budget deficit queue dynamically guides online winning bids
decision towards satisfying the long-term budget constraint.
The parameter V' governs the impact of the queue length on
the optimization outcome. A larger V' causes the queue length
to have a less impact on the optimization and, as a result, the

TABLE 11
MODELLING PARAMETERS (U.S. CURRENCY).

Tenant #1 | Tenant #2 | Tenant #3
Delay cost 8 (cent/ms/10%jobs) 75 50 5
7 (cent/server/hour) 3 3 3
Power cost ($/kW/month) 145 145 145
Service rate (jobs/hour) 360,000 180,000 30
Soft threshold on avg. delay 12 ms 24 ms 175 s
Avg. delay constraint 20 ms 40 ms 300 s

potential deviation from long-term budget may be larger and
mitigated over a greater number of time slots; and vice versa.

Another appealing property of P-2 is its low computational
complexity. Specifically, in both of the two possible cases (i.e.,
on-site renewables are sufficient or insufficient to power the
colocation, respectively), the objective function in P-2 takes
an additive form and hence is decomposable across all the
tenants. Thus, at each time slot, P-2 has a complexity of O(N)
(i.e., linearly growing with the number of tenants), which is
practically favorable for large colocations with tens of tenants.

Finally, we note that one can rigorously prove based on
the sample-path Lyapunov technique [23] that GreenColo
is efficient: GreenColo achieves a close-to-minimum carbon
footprint compared to the optimal offline algorithm with future
information, while still being able to approximately satisfy the
long-term budget constraint with a bounded deviation. Thus,
as governed by V, there exists a tradeoff between carbon
footprint minimization and budget constraint satisfaction. This
observation will be further substantiated in simulations, while
the proof is available in [18] but omitted here for space
limitations.

IV. SIMULATION

In this section, we present a trace-based simulation study
to demonstrate the effectiveness of GreenColo. We show that
GreenColo can reduce colocation carbon emission by 18% and
save tenants’ cost by up to 25%, while incurring no additional
operational cost for the colocation operator (compared to the
baseline case without incentive mechanisms). We first present
our setup and then our simulation results.

A. Setup

We consider a colocation data center with three large (con-
solidated) tenants, each of which has 10,000 servers and may
represent multiple tenants in practice. The three tenants run
highly delay-sensitive, moderately delay-sensitive, and delay-
tolerant workloads, respectively. The modeling parameters
for tenants are shown in Table II, which we explain using
Tenant #1 as an example.

— The parameter 3 converts delay performance to monetary
value and quantifies the delay cost for every 105 requests, if
the resulting average delay exceeds the software threshold by
one millisecond. As shown in simulations, the values of 3
in Table II are already high enough to ensure that application
performances are not noticeably affected. Similar model is also
considered in prior work [22].



— The parameter 7 specifies the server unavailability cost
for turning off each server for one hour. While there is no pub-
lic disclosure of such data, we believe that 3 cent/server/hour
is reasonable: with a 150W idle power for each server (in our
setting), 3 cent/server/hour is already higher than the electricity
cost saving of turning off a server had the tenants run servers
in their own data centers (assuming a fair 15¢/kWh electricity
price). In other words, if tenants would like to turn off idle
servers for cost saving in their own data centers (as extensively
studied [22]), they should be more willing to do so if they
house their servers in colocations. As shown later, further
increasing the server unavailability cost beyond the level that
the colocation operator can afford will not benefit tenants,
because in that case, tenants cannot receive any financial
rewards or noticeably improve their application performance.

— We consider the prevailing peak power-based pricing
model [10, 25], and 145 U.S.$/kW/month is a fair market
value [25, 31]. Service rates indicate the average number of
jobs that can be processed, the soft delay threshold indicates
the desired average delay below which users are indifferent
with the service quality, and average delay constraint specifies
the acceptable service quality.

To limit free parameters, we consider that each server has an
idle power of 150W and peak power of 250W. The budgeting
period of our simulation is set to 1 year with each time slot
of 1 hour. The default yearly budget constraint is set to 1.27
million U.S. dollars, which is the total cost of the colocation
incurred when no incentive is provided and all servers are
turned on as the status quo. The peak power of the colocation
is 12MW and the PUE is set as 1.6, which is a fair value for
colocations although some owner-operated data centers such
as Google have reached a much lower PUE [11].

eWorkload. Tenants have their own workloads: tenant #1
is running “Hotmail”, tenant #2 is running “Wikipedia”, and
tenant #3 is running “MSR”. The workload identified as
“Hotmail” is taken from a 48-hour trace of 8 servers of
Hotmail [32]. “Wikipedia” traces are taken from [33], which
contain 10% of all user requests issued to Wikipedia from
a 30-day period of September 2007, and “MSR” workload
is a l-week I/O trace of 6 RAID volumes at Microsoft
Research Cambridge [32]. Due to lack of available traces
for the entire budgeting period, we add up to 30% random
variations and extend the available traces to get the 1-year
trace. The workloads are normalized to corresponding tenant’s
maximum processing capacity and, by default, scaled to have
an average utilization of 20% for tenants #1 and #2 and 30%
for tenant #3, which is quite high even for Google [8].

eElectricity price and on-site renewable energy. We take
the electricity price for business customers from PG&E [4],
one of the largest power utilities in California. We use the
“Time-of-Use” rates,* which have three different periods, off-
peak, partial-peak and peak, and different electricity prices
during different time periods. They also have different rates for

4Charges independent of energy consumption, such as administrative fees,
are excluded from our study.

TABLE III
U.S. CARBON EFFICIENCIES FOR FUEL TYPES (G/KWH) [13, 29].
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Fig. 1. Trace data. (a) Workload traces [32, 33], on-site renewable energy [1],
and electricity price data [4]. (b) Fuel mix and carbon emission rate [1, 29].
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Fig. 2. Impact of V' on carbon footprint and operational cost.

Winter (November to April) and Summer (May to October).
The electricity prices of 48 hours for Winter and Summer
are shown in Fig. 1(a). We collect the solar power generation
data from [1] for California for the year 2013 and use it as
the trace for on-site renewable energy. We scale the data so
that the maximum on-site renewable energy is 10% of the
colocation’s maximum peak energy.

e Carbon emission rate: Due to lack of utility-level energy
fuel mix data, we collect the fuel mix data from California
ISO [1] for the year of 2013, and use carbon emission rate for
energy fuel types presented in Table III to calculate carbon
emission rate. The first 3-day data is shown in Fig. 1(b).

B. Results

In this section, we present our simulation results. First,
we introduce three benchmarks with which we compare
GreenColo. Then, we examine the execution of GreenColo and
show the performance comparison. Finally, we demonstrate
the applicability of GreenColo in different scenarios. Unless
otherwise stated, all the results are hourly values.

1) Benchmarks: We consider three benchmarks as below.

e No Incentive (N-inc): This is a baseline case in which no
incentive is provided and the colocation is operated following
the existing practice.

e Direct Incentive (D-inc): In D-inc, the colocation oper-
ator directly forwards the current electricity price (multiplied
by an annualized PUE, reflecting the additional facility energy
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Fig. 3.

saving) to the tenants as an incentive for energy saving. Based
on the provided direct incentive, tenants individually determine
how many servers they would like to shut down to maximize
their own benefits (i.e., difference between incentive received
and cost incurred). D-inc does not exploit the time-varying
nature of carbon emission efficiencies.

e Optimal Offline (OPT): This is the optimal offline
algorithm which, with complete future information (e.g., future
bids submitted by tenants), solves the offline problem P-1 and
minimizes the carbon footprint subject to long-term budget
constraint. OPT is not feasible in practice, but provides a lower
bound on the carbon footprint that can be possibly achieved
by GreenColo.

2) Execution of GreenColo: We first show the impact of
control parameter V on the performance of GreenColo in
Fig. 2(a) and Fig. 2(b), where N-inc is the no-incentive base-
line case. We set the operational cost of N-inc as the budget
constraint. It can be seen that V' governs the tradeoff between
carbon footprint reduction and budget constraint satisfaction:
when V' increases, GreenColo focuses more on reducing
carbon footprint while caring less about operational cost, and
vice versa. When V' ~ 150, the desired budget constraint is
satisfied, while the carbon footprint is significantly reduced
compared to N-inc (by 18.2%).

3) Performance comparison: In Fig. 3, we compare the
performance of GreenColo with the benchmark algorithms,

Reduce tenants’ costs without noticeable performance
degradation. First, we show the cost savings and delay
performances of the three tenants under different algorithms.
When we calculate cost saving percentages, we only consider
power subscription cost based on 145 U.S.$/kW/month, as-
suming that tenants carefully subscribe to power based on their
peak server power; other costs, such as space and network
connectivity cost, vary widely by tenants and are often lower
than power subscription cost [25]. Fig. 3(a) shows that using
GreenColo, the tenant #3 has the highest cost saving of 25%
while tenant #1 saves the least (by about 15%). This is due
to differences between the tenants’ delay tolerance levels:
unlike tenant #1 running delay-sensitive workloads, tenant #3
runs delay-tolerant jobs and has a low delay cost, as well
as a high average delay constraint. As a result, as shown in
Fig. 3(b) and Fig. 3(c), tenant #3 can shut down many servers
(by nearly 30% on average) without substantially affecting
application performances. Tenant #1, on the other hand, turns
down fewer number of servers to ensure that the resulting

(c) Delay performance.

(d) Operational cost. (e) Carbon reduction.

Performance comparison between GreenColo and benchmarks.

impact on application performance is negligible. In Fig. 3(c),
we see that all the tenants’ application performances when
using incentive mechanism (i.e., GreenColo, OPT, D-inc) are
nearly the same as those in the N-inc case. This is because
tenants typically accept cost saving and green practices, only
when application performance is not compromised: tenants
set a sufficiently high delay performance cost parameter (3
to ensure that application performance is not significantly
degraded.

Reduce carbon footprint without increasing operational
cost. Next, we compare the operational cost and carbon
reduction under different algorithms. We see from Fig. 3(d)
that all the algorithms result in the same operational cost as
N-inc, which we use as a reference case. Moreover, GreenColo
provides a greater incentive payment to tenants than D-inc, be-
cause GreenColo is able to perform a joint optimization across
all tenants by taking the advantage of tenant heterogeneity
(e.g., tenant #3 voluntarily requests less payment than tenant
#1 for reducing the same amount of energy). In Fig. 3(e),
we show the carbon footprint reductions achieved by different
tenants under different incentive mechanisms, compared to N-
inc. It is observed that, although tenant #3 has the highest
average utilization (i.e., 30%), it contributes the most to carbon
footprint reduction, because its workloads are delay-tolerant in
our simulation. We also see that GreenColo achieves a much
higher carbon footprint reduction than D-inc by encouraging
tenants to turn off more servers. More remarkably, the carbon
footprint reduction achieved by GreenColo is fairly close to
that by OPT (18.2% versus 21.5%), demonstrating the effec-
tiveness of GreenColo even though only online information is
available.

Sensitivity studies, such as robustness of GreenColo against
tenants’ workload prediction errors, are deferred to [18].

V. RELATED WORK

In this section, we discuss the related work from the
following perspectives.

e Data center cost/carbon minimization: Making data
centers cost and/or carbon efficient has been studied by many
prior studies [13, 16, 22]. For example, dynamically scaling
server capacity provisioning to strike a balance between energy
cost and performance loss has been the primary focus of
several recent studies [16, 22]. Extending to a set of geo-
distributed data centers, [26, 27] considers geographic load
balancing to minimize the electricity cost and [13, 36] lever-
ages spatio-temporal carbon efficiency to make data centers



greener. These studies, however, focus on owner-operated data
centers in which resource management can be performed at the
data center operator’s discretion. Thus, while the technological
advances made by these studies are appealing, they cannot be
directly applied to colocation data centers unless tenants are
properly incentivized.

e Incentive design: Incentive mechanism has been suc-
cessfully applied in various engineering domains, such as
time-dependant pricing in wireless networks [17], rebate-based
incentive in smart grid [37], and coupon-based rewarding
scheme for WiFi traffic offloading [38]. Economics theory has
also been applied in computer science, such as auction-based
Amazon Spot Instance market [2], and auction-based schedul-
ing in high-performance computing [30]. While these works
all leverage incentive mechanisms for various purposes, none
of them have considered the context of greening colocation,
a unique yet fast-growing segment of data center industry.
The most recent work [28] investigated colocation demand re-
sponse to make power grid more sustainable/stable by reducing
energy upon requests by utilities, and hence it is a one-step
optimization problem (i.e., there is no coupling across different
time slots). In sharp contrast, our work focuses on making
colocation itself sustainable and addresses the following new
challenges: (1) greening colocation while satisfying colocation
operator’s yearly budget requires long-term efforts, presenting
challenges to making online decisions that cannot possibly
foresee users’ far future bidding information; (2) as shown in
Fig. 1(b), carbon efficiency varies over time, which must be
taken into account, but future carbon efficiencies may not be
known in advance.

VI. CONCLUSION

In this paper, we recognized that the split-incentive hurdle
between colocation operator and tenants is limiting the carbon
efficiency of colocation. To address this issue, we investigated
a reverse auction-based incentive mechanism, using which
tenants who voluntarily reduce energy consumption can re-
ceive financial rewards. We developed an online algorithm,
GreenColo, which, based on tenants’ bidding information, dy-
namically selects the number of servers to turn off and rewards
tenants while satisfying the long-term budget constraint. In
our trace-based simulation study, we showed that GreenColo
can achieve 18% carbon reduction for the colocation and save
tenant’s cost by up to 25%, while the colocation operator does
not incur any additional cost compared to the baseline case in
which no incentive is provided.
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