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ABSTRACT
Power oversubscription in data centers may occasionally trig-
ger an emergency when the aggregate power demand ex-
ceeds the capacity. Handling such an emergency requires
a graceful power capping solution that minimizes the per-
formance loss. In this paper, we study power capping in a
multi-tenant data center where the operator supplies power
to multiple tenants that manage their own servers. Unlike
owner-operated data centers, the operator lacks control over
tenants’ servers. To address this challenge, we propose a
novel market mechanism based on supply function bidding,
called COOP, to financially incentivize and coordinate ten-
ants’ power reduction for minimizing total performance loss
(quantified in performance cost) while satisfying multiple
power capping constraints. We build a prototype to show
that COOP is efficient in terms of minimizing the total per-
formance cost, even compared to the ideal but infeasible
case that assumes the operator has full control over tenants’
servers. We also demonstrate that COOP is “win-win”, in-
creasing the operator’s profit (through oversubscription) and
reducing tenants’ cost (through financial compensation for
their power reduction during emergencies).

1. INTRODUCTION
The emergence of Internet and cloud services has signif-

icantly fueled demand for data centers worldwide, result-
ing in an aggregate power demand of 38GW as of 2012 (a
growth of 63% compared to 2011) [1]. Accommodating the
accelerated demand, however, is costly. It can be a multi-
million or even multi-billion dollar project to construct a
new data center or expand an existing data center’s capac-
ity (typically measured in IT critical power). For example,
power infrastructure, including back-up generation and un-
interrupted power supplies (UPS), is sized based on the crit-
ical power budget and estimated at U.S.$10-25 per watt [2].
The capital expense (CapEx) in power and cooling infras-
tructure even exceeds 1.5 times of the total energy cost of
operating a data center over a 15-year lifespan [2–4]. More-
over, other limitations, such as space and grid capacity, may
also prohibit the expansion of data center capacity.

In view of the high CapEx and practical constraints for
building new capacity, data center operators aggressively over-
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subscribe the existing infrastructure throughout the power
hierarchy (e.g., UPS level and PDU level) by deploying more
servers than the power budget/capacity allows. This is equiv-
alent to under-provisioning the capacity to reduce CapEx for
new data center construction: to deploy the same number of
servers, the data center capacity can be downsized to save
CapEx. The rationale underlying oversubscription is that, in
most cases, not all servers simultaneously run at their peak
powers and thus, the servers’ aggregate power usage remains
well below the power budget with a very high probability, as
illustrated by measurements in [3, 5].

A dangerous consequence of oversubscription is the emer-
gence of power emergencies that bring significant challenges
for data center uptime. Although uncommon, when loads
on many servers peak simultaneously, the aggregate power
demand will exceed the capacity (e.g., overloading UPS),
thus compromising the desired power availability and even
leading to unplanned downtime incidents [4,6]. Such power
emergencies have become a major cause of unplanned data
center outages, which may take several hours or even days
to fully recover and incur significant economic losses (esti-
mated average of $901,560 per incident) [7, 8].

Naive techniques to handle emergencies, e.g., arbitrarily
putting involved servers into low power states or switching
them off, are not appealing [3, 6, 9], because they may re-
sult in significant performance degradation and even busi-
ness disruption. Instead, a graceful power capping solution
is required to coordinate servers’ power usage at a minimum
performance loss. Towards this end, prior research has stud-
ied various techniques, e.g., judiciously scaling down CPU
frequency [6], admission control, and workload migration
(to public clouds and/or other servers not subject to power
emergency) [5, 10, 11]. These studies, although promising,
are only applicable for owner-operated data centers (e.g.,
Google), where data center operators have control over the
physical servers and hence can easily coordinate the servers
to minimize performance impact.

In sharp contrast, we study power capping in multi-tenant
data centers, an under-explored but even more common type
of data center. In a multi-tenant data center, multiple indi-
vidual tenants house and manage their own physical servers,
while the data center operator is responsible for power and
cooling infrastructure support. Like owner-operated data cen-
ters, multi-tenant data center operators also aggressively over-
subscribe capacity to gain more revenue and/or save CapEx
by selling the capacity to more tenants than it allows.
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To handle a power emergency due to oversubscription,
however, multi-tenant data center operators cannot directly
apply existing power capping techniques (e.g., through server
and workload management [5, 6]), because of lack of con-
trol over tenants’ servers. Thus, a common practice today
for a multi-tenant data center operator is to simply take the
risk of capacity overloading when many tenants’ power de-
mands peak simultaneously. In other words, whether or not
an outage will occur depends largely on the robustness of in-
frastructure. Consequently, according to a 2014 Uptime In-
stitute survey, 25% of the tenants have experienced at least
one power outage (for which capacity overloading is a major
cause) over the past year [7, 8, 12].

To address the lack of coordination among tenants to shed
power during a power emergency, we propose a novel CO-
Ordinated Power management solution, called COOP, that
leverages a market mechanism called supply function bid-
ding [13] commonly used in electricity markets in order to
incentivize and coordinate individual tenants’ power demand
reduction. The challenge in designing such a mechanism is
that the mechanism must not bring much overhead and the
overall impact of power reduction on tenants’ application
performance needs to be as little as possible (similar to the
design objective of power capping techniques, e.g., [5,6], for
owner-operated data centers). COOP achieves both. It only
solicits one bidding parameter from each participating ten-
ant which, when plugged into the supply function, specifies
the amount of power reduction and corresponding reward
the tenant is willing to accept. More importantly, the over-
all performance impact across all the participating tenants is
small: the total performance cost incurred by the tenants is
very close to the ideal case where the data center operator is
assumed to have full control over tenants’ servers.

Contribution. The novelty of this study is that COOP
is the first market-based solution for handling an emergency
caused by capacity oversubscription in a multi-tenant data
center, an important yet rarely-studied type of data center.

Concretely, this paper makes the following contributions.
First, we introduce and formulate the problem of multi-level
power capping in a multi-tenant data center. Second, we
propose a supply function bidding based mechanism, mo-
tivated by the literature on electricity markets [13, 14], to
incentivize and coordinate tenants’ power reduction during
a power emergency, capping the aggregate power demand
while minimizing the total performance cost. Third, we val-
idate COOP using realistic settings on a testbed. Our results
show that COOP is efficient in terms of minimizing total
performance cost and that COOP is “win-win”, increasing
the operator’s profit and reducing tenants’ cost (through fi-
nancial compensation).

2. OPPORTUNITIES AND CHALLENGES
Multi-tenant data centers are common in practice. There

are over 1,400 multi-tenant data centers in the U.S. alone
[15]. As a quickly growing data center segment, it consumes
as much as five times energy of those Google-type owner-
operated data centers combined together (37.3% v.s. 7.8%,
in percentage relative to all data center energy usage, exclud-
ing tiny server closets) [16]. It provides a cost-effective and
scalable data center solution to many industry sectors, in-

Figure 1: Data center infrastructure.

cluding major websites (e.g., Twitter), banking, content de-
livery provider (e.g., Akamai) [17], and even IT giants (e.g.,
Microsoft) that leverage third-party data centers to comple-
ment their own facilities [18].

Despite their importance, multi-tenant data centers have
been less investigated than the more visible owner-operated
data centers (like Google). They present new challenges due
to the operator’s lack of central control over servers. This
means that standard approaches for handling power emer-
gencies do not apply to multi-tenant data centers [5, 6, 11].

2.1 Power in Multi-Tenant Data Centers
While different designs (e.g., using fuel cell as the main

power source [19]) are emerging, most data centers, includ-
ing new constructions, still heavily rely on diesel generators,
uninterrupted power supplies (UPS), and power distribution
units (PDU) for achieving high power availability. Fig. 1 il-
lustrates the infrastructure commonly found in today’s multi-
tenant data centers: electricity first enters data center through
a utility substation; next, through AC/DC and DC/AC dou-
ble conversions, power goes to PDUs, which then distribute
power to individual tenants’ server racks. By default, the au-
tomatic transfer switch (ATS) takes power from the utility
and, in the event of a grid failure, switches to the back-up
generator. As the generator cannot be instantly turned on, a
UPS will be discharged to supply continuous power until the
diesel generator is fully activated.

The power hierarchy. In a multi-tenant data center, the
power hierarchy often has a tree-type structure. At the top
level sits the centralized UPS, which supports multiple cluster-
level PDUs at a lower level. Each cluster-level PDU typ-
ically has a capacity of 200-300kW, supporting around 50
racks which then distributes power to servers at the lowest
level. Individual tenants may have highly diverse power de-
mands, ranging from a few kW (often in a retail multi-tenant
data center) to hundreds of kW or even larger, depending on
their needs. Each PDU or even rack may also have its own
dedicated UPS (e.g., lead-acid battery, not shown in Fig. 1),
which complements or even fully substitutes the centralized
UPS while enhancing power availability at a lower cost [4].

The data center operator also provides reliable cooling.
Among various designs, multi-tenant data center usually uses
mechanical chiller or direct-expansion air conditioning as
the cooling mechanism, depending on the data center size.

Tenants’ power usage. A crucial motivation for power
oversubscription is the heterogeneity of tenant power usage.
We present in Fig. 2 the temporal analysis of power mea-
surement in a commercial multi-tenant data center collected
from May to July, 2015. The data includes the server power
usage of 10 tenants, subscribing approximately 500kW in
total and ranging from sectors of utility, education, media,
content distribution and public clouds. Fig. 2 shows the cu-
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Figure 2: CDF of measured power usage.

mulative density function (CDF) of the power consumption
by different groups of tenants, from 1 tenant to 10 tenants.
The x-axis is normalized with respect to the sum of the max-
imum power usage of all the servers within that group of
tenants.

We see that with more tenants (i.e., power hierarchy moves
up from rack to clusters), statistical multiplexing effects of
power demands become more significant, and it is even rarer
for all tenants’ servers to peak simultaneously. For example,
for one tenant, the probability that the normalized power ex-
ceeds 80% of its peak is roughly 13%, whereas this number
reduces to less than 3% for 10 tenants. Such observation
has also been reported for owner-operated data centers like
Google [9], whose sever clusters are equivalent to tenants’.
While the specific CDF of power usage varies with differ-
ent data centers, the qualitative insights hold widely: power
oversubscription is safe in most cases.

2.2 Opportunities for Oversubscription
Leasing data center capacity with power and cooling (typ-

ically $150/kW/month in the U.S. [20]) is the most signifi-
cant revenue source for a multi-tenant data center operator.
Naturally, through oversubscription, the operator can earn
extra revenue by serving more tenants without upgrading the
power/cooling infrastructure.1 Except for increased risk of
downtime (due to capacity overloading), there is almost no
additional operating expense resulting from the operator’s
oversubscription, because in many large (especially whole-
sale) multi-tenant data centers, the energy cost will be split
across tenants depending on their actual usage.

In Table 1, we show the potential economic benefit of
oversubscription for multi-tenant operators, based on a leas-
ing cost of $150/kW/month [20]. For each kW capacity,
with x% oversubscription, the operator earns an extra rev-
enue of $150× 12× x% per year. Overloading probabil-
ity is obtained based on measured power usage of the 10-
tenant cluster shown in Fig. 2: with x% oversubscription,
overloading occurs if the aggregate power demand exceeds
100/(100+ x) of its maximum.

We see from Table 1 that there is a great economic oppor-
tunity for oversubscription. The last row in Table 1 shows
the maximum reward rate for power reduction that can be
offered to tenants without decreasing the operator’s profit
(assuming that during each power emergency, the tenants’
server power demand reaches the peak, i.e., rated capacity
plus the oversubscribed amount). If the operator is not too
aggressive and oversubscribes its capacity by less than 20%,
it can offer a reward rate at more than 200 times of the mar-
ket electricity price without losing profit.

1A tenant may also oversubscribe its reserved capacity to reduce
leasing cost, but it must handle resulting emergencies by itself.
Thus, this is addressed by prior research [5, 6].

Table 1: Analysis of Capacity Oversubscription.
Oversubscription 10% 15% 20% 25%

Extra Revenue
($/kW/year) 180 270 360 450

Probability of
Overloading (%) 1% 1% 2% 3%

Est. Overloading
Time (hours/year) 88 88 175 262

Max. Reward for
Power Reduction

($/kW/hour)
22.60 23.63 12.32 8.56

2.3 Challenges for Oversubscription
The economic benefit of oversubscription is significant,

but the danger of creating power emergencies cannot be ig-
nored. While a power emergency may not necessarily lead to
a downtime given infrastructure redundancy (e.g., “2N” du-
plicating all power/cooling units), ignoring it without proper
attention is not a good practice, as IT critical loads exceeding
the design capacity will lose the desired redundancy protec-
tion and increases outage risk [4, 5]. In fact, according to
a recent survey [12], despite redundancy, 25% of the ten-
ants have experienced at least one unplanned power-related
downtime over the past year (for which IT loads’ exceeding
the design capacity is a major cause [7, 8]). Therefore, re-
gardless of redundancy protection, it is very critical to han-
dle power emergencies by gracefully capping the servers’
power demand below the design capacity.

One approach for handling power emergencies is to tem-
porarily “boost” power supply by discharging an energy stor-
age device (ESD, e.g., battery in UPS) [4, 21]. However, a
potential risk when leveraging ESD is that the cooling capac-
ity (typically sized based on the IT critical load due to high
CapEx) may still be exceeded [22, 23], because the servers’
actual aggregate power consumption (i.e., cooling load) is
not reduced to the designed level. As a result, discharging
ESD can safely handle power capacity overloading, but not
necessarily cooling capacity overloading, which can quickly
lead to server overheating and is another major cause for un-
planned outages [8]. Moreover, inappropriate/frequent dis-
charging may drain the ESD sooner and compromise data
center reliability (e.g., recent Google power failure incident,
for which Google cited “extended or repeated battery drain”
as a root cause [24]).

In this paper, we propose to handle power emergencies via
IT power reduction from the tenants. In practice, however,
the operator lacks control over tenants’ servers and hence
cannot enforce tenants’ power reduction during an emer-
gency, which is due to the operator’s fault of oversubscrip-
tion. Even assuming that the operator can somehow force
tenants to cut power, which tenants should reduce power and
by how much still needs to be decided so as to minimize ten-
ants’ performance degradation. This requires the knowledge
of tenants’ workloads and business values, which is private
information and unknown to the operator. Thus, despite the
huge economic benefit of power oversubscription, gracefully
capping tenants’ power to handle the resulting emergencies
with a minimum performance impact on tenants presents
significant challenges for multi-tenant data center operators.

3. THE DESIGN OF COOP
COOP is a market-based approach for extracting power



reduction from tenants when faced with a power emergency.
The design takes inspiration from and also extends litera-
ture [13, 14] in electricity markets. In an electricity market,
the market operator typically solicits bids from individual
generators to reveal their planned generation amounts and at
what prices, through a process called supply function bid-
ding. Supply function bidding allows simple bidding that
does not reveal private cost information. It also has strong
theoretical support: prior work has proven that it is cost ef-
ficient, even compared to the ideal case of centralized man-
agement [13, 14].

3.1 Problem Formulation
A data center typically oversubscribes capacity at multi-

ple interdependent power hierarchies (e.g., data center UPS-
level, cluster PDU-level, and even rack-level), each having
its own capacity below which the involved tenants’ aggre-
gate power demand should be capped at all times [5, 25].
COOP is not restricted to any particular levels. Like prior
research [5], we consider the most typical two-level power
oversubscription, i.e., cluster PDU-level and data center UPS-
level, referred to as low and high levels, respectively.

Model. Consider a power emergency that involves a cen-
tralized UPS supporting M cluster PDUs and a total of N
tenants denoted by a set N0 = {1,2, · · · ,N}. The i-th PDU
supplies power to a subset of tenants Ni ⊆N0, and the ten-
ants served by two different PDUs are non-overlapping (i.e.,
∪M

i=1Ni = N0 and Ni ∩N j = ∅ if i 6= j). The high-level
UPS capacity is exceeded by D0 ≥ 0, while the i-th low-level
PDU capacity is exceeded by Di ≥ 0. Suppose that tenant i
cuts power by si and incurs a cost of ci(si) that is increasing
in si. Cutting power may result in service quality or per-
formance degradation, and the cost ci(si) can therefore be
interpreted as the performance cost, which converts the per-
formance degradation into a monetary value. The function
ci(si) is decided at the tenant’s sole discretion as its private
information that is unknown to the operator.

Objective. Like power capping for owner-operated data
centers [5,6], we consider an equivalent objective: minimiz-
ing tenants’ overall performance loss, formalized below.

min
si≥0,i=1,2,··· ,N

N

∑
i=1

ci(si) (1)

s.t., ∑
i∈N j

si ≥ D j, for j = 0,1,2, · · · ,M,

where the objective of (1) is a scalar measure of overall
performance loss and impact on tenants, and the constraint
specifies power capping requirements at the high (D0) and
low (D j for j = 1, · · · ,M) levels, respectively.

Tenants typically test power-performance profiles before
production deployment, since power is a major cost for ten-
ant’s leasing [5, 20]. Thus, given its own traffic load, tenant
knows how much power can be shed and at what cost. If
they are uncertain at runtime (due to, e.g., changes in power
profiles), tenants can evaluate costs conservatively (see Sec-
tion 5.6); hence, repeated profiling of ci(si) at runtime is not
necessary, and the overhead for participating tenant is small.

The ideal case is when the operator can directly minimize
the cost in (1), with full control over tenants’ servers as in

an owner-operated data center. We refer to the outcome of
this idealized, but not feasible in practice, case as OPT. The
choice of objective in (1) may seem counterintuitive, so let
us discuss it briefly. One might expect to have the objective
be operator profit. However, the operator has a priority of
minimizing the impact of power capping on tenants’ opera-
tion during an emergency since it is the operator’s fault (due
to oversubscription) the emergency occurred. This objective
is consistent with prior power capping research on owner-
operated data centers [5,6] and, further, in our context, if the
operator still attempts to make profits during an emergency,
power outage risk may increase, which is unacceptable since
downtime incidents will significantly damage the operator’s
business image as well as its long-term profit. Additionally,
note that the operator will not lose profit during emergency
events since it can always set an upper bound (according to
Table 1) to ensure that it will not lose profit due to oversub-
scription while minimizing tenant impact.

3.2 A Market-Based Solution
We propose a market mechanism COOP, based on pa-

rameterized supply function bidding [13], to incentivize and
coordinate tenants’ power reduction for power capping.

Like gathering cost information from generators to decide
cost-effective generation in an electricity market, COOP asks
tenants to report a pre-determined form of a supply function
to the operator, indicating how much power they can reduce
and at what prices. In our context, the operator has a demand
of power reduction, while the tenants (i.e., suppliers) bid to
fulfill the demand and receive rewards. The key to solving
(1) is to decide the amount of supply provided by each tenant
(i.e., power reduction), which is through a supply function
explained as follows.

We consider a parameterized supply function si(bi,r) =[
δi− bi

r

]+
, where δi with a unit of kW indicates tenant i’s

maximum possible power reduction, bi is its bid (with a unit
of $) and r is the reward ($ per kW, also called “price” in
mechanism design) offered by operator to all tenants. The
sign “+” in the supply function indicates that tenant cannot
supply negative power (i.e., increase power). Similar forms
of supply functions have also been considered in prior liter-
ature for power markets [13, 14].

The supply function si(bi,r) =
[
δi− bi

r

]+
indicates tenant

i’s willingness to reduce its power by si(bi,r) if the operator
offers r for each kW reduction. The actual power reduction
is jointly determined by the following sequence.

Step 1: Operator decides δi. The data center operator de-
cides δi and announces the form of supply function si(bi,r)=[
δi− bi

r

]+
to tenants by signalling to tenants’ server control

interfaces. Tenant i’s current power usage can be set as its
maximum possible power reduction δi (i.e., power reduction
if tenant i shuts down all its servers).

Step 2: Tenant decides bi. With the price r as an unknown
variable, tenant i individually chooses and submits a bid bi
to the operator. Essentially, tenant i reports to the operator
its power reduction flexibility: if offered a price of r, then
it will cut power by si(bi,r). In other words, given bi, the
actual power reduction is still a function of the variable r.
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Figure 3: Illustration of tenant’s bidding.

(We will discuss how to choose bi later.)
Step 3: Operator decides r. Once the operator receives

tenants’ bids, it needs to decide r (called market clearing

price), which is plugged into si(bi,r) =
[
δi− bi

r

]+
to deter-

mine tenant i’s power reduction.
How to choose bid bi? Tenants have the full discretion

to decide their own bids. We first illustrate the impact of
bid on tenant’s power reduction in Fig. 3. As a reference, we
also plot the tenant’s maximum power reduction without los-
ing profit: the maximum power reduction si such that tenant
i’s net profit, i.e., operator’s payment minus tenant’s private
performance cost, is non-negative. Given a price r, reduc-
ing more power than this reference value will incur a profit

loss for tenants. We see from both si(bi,r) =
[
δi− bi

r

]+
and

Fig. 3 that a larger bi means that tenant i is less willing to
cut power given the same price r. We also notice that a too
small bid may result in a profit loss when tenants are offered
higher prices (i.e., shaded area in Fig. 3).

An expected outcome is the equilibrium point, at which
each tenant i maximizes its net profit “r · si − ci(si),” thus
having no incentives to choose arbitrarily high bids and rep-
resenting a stabilized outcome. A brief explanation of equi-
librium is provided in the appendix, and readers may refer
to [13] for more details.

Setting too large a bid deviates from an equilibrium point,
since tenant will be priced out or only asked to reduce a
small amount of power when other participating tenants can
reduce power at lower prices. For example, if bi→∞, tenant
i will be excluded from the mechanism without being asked

to reduce any power, i.e., si(bi,r) =
[
δi− bi

r

]+
= 0.

Tenants have the discretion to decide their bids, but the
final price is set by the operator (which determines the actual
power reduction for each tenant) and rational tenants will bid
reasonably based on their private costs ci(si). One bidding
strategy is that bi is just large enough to avoid net profit loss
over a price range (i.e., as illustrated in dashed line in Fig. 3).

To guide tenants’ bidding towards the equilibrium, the op-
erator can tell the tenants its expected price range (e.g., mar-
ket price r will only be within [rmin,rmax]), such that ten-
ants can bid to avoid profit loss by considering this restricted
price range rather than the entire range.

How to decide price r? Given tenants’ bids, the opera-
tor’s goal is to set price r as low as possible, while satisfying
all the power capping constraints. It is clear that, to ensure
∑i∈N j si ≥ D j, the price r needs to satisfy ∑i∈N j si(bi,r) =

∑i∈N j

[
δi− bi

r

]+
≥ D j. Thus, the market price r can be de-

cided as r =minr′{r′ ∈ [rmin,rmax] |∑i∈N j si(bi,r′)=∑i∈N j [δi

− bi
r′ ]

+ ≥ D j, for j = 0,1, · · · ,M}, i.e., the minimum price
that satisfies all the power capping constraints and is within
the range [rmin,rmax]. If no such price exists, the operator
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Figure 4: API diagram for COOP.

needs to activate the failover mode (see Section 3.4).
Scalability. COOP is highly scalable, as determination of

the bid is performed by individual tenants in parallel and the
market price is decided based on a simple rule r =minr′{r′ ∈
[rmin,rmax] |∑i∈N j

[
δi− bi

r′

]+
≥ D j, for j = 0,1, · · · ,M}. In

practice, there are at most a few tens of tenants in wholesale
data centers, and typically no more than a few hundreds of
tenants in retail data centers. In either case, the complexity
of COOP is reasonably low (further shown in Section 5).

Theoretical support. COOP adapts supply function bid-
ding to the setting of power capping in multi-tenant data cen-
ters. Prior studies on supply function bidding in electricity
market contexts have theoretically proved the cost efficiency
of supply function bidding [13,14] by showing that the equi-
librium outcome never deviates much from the centralized
optimum. While these results are often based on different
contexts than we consider here, the core of the results can be
adapted to this context to provide a theoretical support and
justification for both our choice of a supply function bid-
ding mechanism and the form of supply function we adopt.
Further, we show through practical experiments in Section 5
that COOP can efficiently allocate power reduction among
tenants for power capping, yielding a total performance cost
close to that of the ideal case OPT.

3.3 Implementation
To implement COOP, we introduce a set of new APIs, for

both the operator and tenants, as illustrated in Fig. 4, where
new APIs are inside shaded boxes. The system flow is also
described in Algorithm 1, where we consider a general two-
level capping. Note that, if only a few low-level PDUs are
overloaded without exceeding the high-level UPS capacity
shared with other non-overloaded PDUs, then the operator
will only notify tenants served by these overloaded PDUs to
participate in COOP.
• Detecting power emergency. The operator monitors

power by accessing power meter API Power( ) at runtime,
which is already in place in multi-tenant data centers. While
short-duration load spikes (e.g., a few seconds) can be tol-
erated by the infrastructure itself [6, 8], a sustained power
emergency of capacity overloading should invoke the power
capping mode and execute COOP. The time threshold, i.e.,
Tw in Algorithm 1, for deciding power emergency depends
on how much the aggregate demand exceeds the capacity:
if not too much, a larger Tw (e.g., a few tens of seconds) is
used; and vice versa.
• Executing market mechanism. Upon a power emer-

gency, the market mechanism is executed following the steps
described in Section 3.2 using new APIs. Specifically, the



Algorithm 1 COOP: Coordinated Power Management

1: Input: UPS and PDU capacities Pcap
i for i = 0,1, · · · ,M

2: Monitor UPS and PDU power Pi(t) continuously.
3: if Pi(t)> Pcap

i for any i = 0,1, · · · ,M then
4: Start waiting timer Tw
5: end if
6: while Tw has not expired do
7: if Pi(t)≤ Pcap

i for all i = 0,1, · · · ,M then
8: Go back to Line 2
9: end if

10: end while
11: . Entering “power capping” mode
12: if Pi(t)> Pcap

i for any i = 0,1, · · · ,M then
13: Set Di←

[
Pi(t)−Pcap

i

]+
14: Announce si(bi,r) = [δi− bi

r ]
+ to tenant i

15: Tenant i decides its bid bi
16: Set price r = minr′{r′ ∈ [rmin,rmax] |∑i∈N j si(bi,r′)

≥ D j, for j = 0,1, · · · ,M}
17: Each tenant i reduces si(bi,r) power
18: end if
19: . Leaving “power capping” mode
20: wait until Pi(t)≤ Pcap

i −Di for all i = 0,1, · · · ,M
21: Start capping timer Tc and wait until Tc expires or

Pi(t)> Pcap
i −Di for any i = 0,1, · · · ,M

22: if Pi(t)> Pcap
i −Di for any i = 0,1, · · · ,M then

23: Go back to Line 20
24: end if
25: if Tc expires then
26: Notify tenants to resume normal operation
27: Calculate the power capping duration To
28: Provide tenant i with a reward of zi = To · r · si
29: Go back to Line 2
30: end if

operator communicates the supply function to tenants through
SuppFunc(δ ,r, · · ·) where the price r is a parameter to be
decided, and tenant decides its bid and submits it to the op-
erator through Bid(b, · · ·). Then, the operator sets the price
r using SetReward(r, · · ·) and announces it to tenants. Note
that, to guide the outcome towards equilibrium, the operator
can tell tenants its anticipated price range [rmin,rmax], such
that tenants can set bids to avoid a profit loss by only consid-
ering this restricted price range instead of all possible prices.
• Reducing power demand. After the execution of the

market mechanism, each participating tenant i cuts its power
by si(bi,r). It is at each tenant’s discretion to decide the
actual power reduction techniques, using a combination of
resource management APIs illustrated in Fig. 4 and/or its
existing built-in power capping solutions [5,6,11]. Note that
each knob has a different settling time for power reduction
(e.g., DVFS is faster than load migration) and, depending on
how much the power demand exceeds the capacity, the op-
erator can also specify a timing constraint to guide tenants’
selection of power reduction techniques.
• Resuming normal operation. When the tenants’ ag-

gregate power demand without power capping becomes lower
than the capacity for a duration exceeding threshold Tc, the
operator signals tenants to resume their normal operation us-

ing Resume(· · ·). Tenants are compensated based on the
power capping duration and price r.

3.4 Applicability of COOP
COOP applies to tenants who are interested in exchang-

ing a temporary performance loss (due to power reduction)
for financial compensation. It does not target tenants that
have no tolerance on temporary performance loss (e.g., those
running highly mission-critical workloads). These tenants
will be served as premium clients on separated infrastruc-
ture without oversubscription.

In practice, a large portion of the operator’s revenue (over
50%) comes from tenants running non-mission-critical work-
loads (e.g., R&D, lab computing, internal services, and re-
cently, Bitcoin) that exhibit a great scheduling flexibility for
temporarily reducing power [26]. Tenants also typically pro-
vision their servers based on the peak need, thus often having
a slackness for reducing server power [27, 28]. Further, in-
creasingly mature power capping techniques [6] and emerg-
ing techniques (e.g., approximate computing [29] that trades
service quality for resource/power saving), have been con-
stantly lowering the barrier for using COOP.

As shown in Table 1, the operator can offer more than
$20/hour for each kW reduction, which is nearly 200 times
of the market electricity price. If all tenants choose to neglect
the operator’s rewards and an unplanned downtime occurred,
tenants would experience a costly business interruption but
receive much less reward (around $3 per kW for each hour
of downtime [20, 30]). Thus, it is also in the tenants’ own
interest to reduce power for handling emergencies.

In practice, tenants have no knowledge of whom they are
sharing the PDU with. Further, if some tenants’ power ex-
ceeds their own capacities, they will be penalized and may
face involuntary power cut. Thus, in practice, it is very dif-
ficult and risky for (some) tenants to collude and create an
artificial power emergency for rewards.

Finally, whenever tenants’ aggregate power demand is not
capped below the capacity by using COOP for any reasons
(e.g., communication failure, or insufficient financial com-
pensation for incentiving enough power reduction), the oper-
ator may resort to other complementary power capping tech-
niques, e.g., discharging ESD [4] that avoids power capacity
overloading (albeit not applicable for handling cooling ca-
pacity overloading) [22]. In any event, using COOP will not
increase the risk of outages compared to the case in which
COOP is not used.

Combining all these factors, we have a good reason to
believe that COOP is appealing for reducing risks of outages
when power emergencies arise in a multi-tenant data center.

3.5 Comparison with Other Market Designs
Conceptually, our formulation in (1) can be viewed as a

multi-resource allocation problem where the resources are
“power reduction Di for i = 0,1, · · · ,M” [31, 32]. It is chal-
lenging because: first, “resources” in our context are interde-
pendent (e.g., high-level power capacity overlaps with low-
level capacity), whereas the resources to allocate are mostly
orthogonal in prior research (e.g., CPU and memory in clus-
ters [31]); and second, tenants have private cost information
ci(si) and manage their own servers without being controlled



Table 2: Testbed configuration.
Tenant Type No. of Tenant’s Location Cluster’s

Servers Max. Power Max. Power
#1 Web search 2 200 W

Cluster#A 740 W#2 KVS 2 310 W
#3 Hadoop 2 230 W
#4 Web search 3 300 W Cluster#B 530 W#5 Hadoop 2 230 W

by the operator.
While there are market-based studies (e.g., Nash bargain-

ing) for multi-resource allocation [31, 32], their focus is on
encouraging resource sharing (for improving utilization) and
balancing efficiency versus fairness, whereas we aim at min-
imizing tenants’ performance cost using a different mecha-
nism — supply function bidding.

Market-based power management in (multi-tenant) data
centers has recently received attention but differs from our
work in problem formulation (due to our multiple interde-
pendent power capping constraints) [32–39]. Further, most
of the prior studies have considered pricing-based or Vickrey-
Clarke-Groves (VCG)-based mechanisms, which are not suit-
able for our problem due to the following limitations.

Pricing-based mechanisms. Under a pricing-based mech-
anism, the operator offers a reward (also called“price”) to
incentivize tenants’ power reduction [34, 35, 38]. The chal-
lenge of such designs is the determination of the price. In
order to properly set prices such that tenants reduce a desired
amount of power, the operator needs to know a priori how
much power tenants would reduce in response to the offered
price, and prior literature [34] has shown that inaccurate pre-
diction can lead to undesired outcomes (e.g., power capping
violation in our context). Further, power emergencies often
occur unexpectedly and thus, estimating tenants’ responses
is inherently highly noisy during such periods.

VCG-based mechanisms. Another commonly-studied ap-
proach to solving (1) is the VCG auction mechanism [40,
41], i.e., the data center operator treats the power reduc-
tion quota as a resource and auctions it to tenants. Such
designs require that tenants submit complex bids disclosing
their full cost functions ci(·), which are private information.
Further, under such designs the payments made to tenants
may be unbounded and reward rates for different tenants’
power reduction are significantly different (creating unfair-
ness issues). Thus, VCG auction mechanisms are rarely used
in real large-scale systems (see [13] for a longer discussion).

Supply function mechanisms. In contrast, COOP adapts
a variant of supply function bidding widely used in power
markets that, besides its cost efficiency [13], has compelling
advantages. First, through a supply function, the operator
proactively solicits information from tenants as to how much
power they would like to reduce if offered a certain price,
while such information needs to be predicted by pricing-
based mechanisms [34, 35]. Second, it uses the parameter-
ized supply function as a proxy, thus avoiding tenants’ dis-
closure of their private cost functions. Finally, it allows easy
communication of the supply function through a single bid-
ding parameter bi from each tenant.

4. EVALUATION METHODOLOGY
We now describe our methodology for evaluating the effi-

ciency of COOP in realistic scenarios. We first describe our

prototype for a multi-tenant data center, and then formalize
tenants’ cost and performance models.

Following prior power capping research [5, 6], we build
a scale-down testbed with two clusters (labelled as #A and
#B, with six and five Dell PowerEdge R720 servers, respec-
tively) in view of the practical difficulty in accessing com-
mercial systems. The servers each have one 6-core Intel
Xeon E-2620 Processor and 32GB memory. They are vir-
tualized to create multiple nodes. All servers are powered
through CloudPOWER meters to measure power at runtime.
Our testbed configuration is presented in Table 2, which has
five tenants on the two clusters: two tenants (#1 and #4) pro-
cess web search workloads, another two (#3 and #5) process
Hadoop jobs and the remaining tenant (#2) processes key-
value store (KVS) workloads.

According to tenants’ maximum power, the total subscribed
power at Cluster#A is 740W and at Cluster#B is 530W, which
we use as a baseline to determine the cluster-level power
oversubscription. For example, if the capacity of Cluster#A
is 672W, then 740W power subscription represents a 10%
oversubscription. As illustrated in Fig. 4, we implement the
APIs for the operator on a separate desktop server, and APIs
for tenants as a separate process on their own servers.

4.1 Workloads
In the following, we describe our implementation of the

web search, key-value store (KVS) and Hadoop workloads.
While COOP is not restricted to these workloads, we choose
our setting for two reasons: (1) it resembles the common set-
ting in commercial data centers serving a diverse set of ten-
ants, including CDN, web services and data analytics; and
(2) our choice of workload is consistent with prior studies
(e.g., [5]) that investigate power capping for owner-operated
clusters (which can be viewed as “tenant” in our context).

Web search: We use web search benchmark from Cloud-
Suite [42]. It benchmarks indexing process using Nutch
search engine. We implement it for tenants #1 and #4. Ten-
ant #1 has one Nutch front end and five index serving nodes,
while tenant #4 has one Nutch front end and eight index
serving nodes.

Key-value store (KVS): KVS resembles multi-tiered ap-
plications such as social networking. Tenant#2 has one load
balancer VM, three Memcached VMs, three database VMs
and nine application VMs.

Hadoop: Our Hadoop implementation for tenants #3 and
#5 each consists of one master node and eleven worker nodes,
using VMs hosted on two physical servers. We perform the
sort benchmark on randomly generated files.

4.2 Performance and Cost Models
To participate in COOP, tenants need to employ power

management (widely existing in today’s systems [5,27]) and
evaluate their costs due to power reduction to decide bids.

Power and performance. Power reduction is normally
accompanied by a performance degradation [6]. For the web
search and KVS tenants, we use 95% response time as the
performance metric (which is a key performance indicator
for web services), while job completion time is used as the
performance metric for the Hadoop tenants (due to the delay-
tolerant nature). In our study, we consider that the tenants
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Figure 6: Cost models.

reduce their power using dynamic voltage frequency scal-
ing (DVFS) supported by most modern CPUs [43]. As a
commonly-used knob for power capping [5, 6], DVFS en-
ables almost instantaneous power reduction. The Intel Xeon
CPUs in our testbed servers have 10 discrete DVFS levels
with processing speeds ranging from 1.2GHz to 2.0Ghz.

We model the tenants’ performance and power at differ-
ent DVFS levels, and show the results for the three different
types of workloads in Fig. 5. For the convenience of clar-
ity, we set the same speed for all servers of a tenant, and
only show results under a certain traffic load: tenant #1’s
delay performance is measured for 80 simultaneous search
sessions, tenant #2’s performance is measured for 30 re-
quests/second. These are their maximum processing capac-
ities under their subscribed power. For tenant #3 serving
Hadoop, the file size is 3GB. Fig. 5 shows the non-linear re-
lation between delay performance and power consumption,
indicating a natural result that tenants suffer from a greater
performance loss when they run their servers in lower power
modes. We do not show tenants #4 and #5, which have sim-
ilar configurations as tenant #1 and #3, respectively.

Cost model. In principle, tenants have the full discretion
to decide their own cost models, considering one or more
factors such as performance loss, risk attitude, among oth-
ers. COOP applies to a large family of cost models in prac-
tice, although the theoretical efficiency guarantee only holds
under a simplified setting with convex costs [13].

For evaluation purpose, we consider a cost model in terms
of delay performance and model the performance cost for
web search and KVS tenants using a piece-wise cost func-
tion adopted by [44] as follows:

ctenant =

{
a ·d, if d ≤ dth,

a ·d +b · (d−dth)
2, if d > dth,

(2)

where ctenant is cost per job, a and b are tenants’ own model-
ing parameters, d is 95% delay of interest and dth is the delay
threshold below which the performance cost only increases
linearly (since end users can barely perceive the delay in-
crease if it is already small). When the delay exceeds the
threshold, however, performance cost will increase quadrat-
ically to account for degradation in user experiences.

For the Hadoop tenants, we use a linear cost model that
increases with job completion time ctenant = ρ ·Tjob, where

ρ is a modeling parameter and Tjob is the job completion
time of the Hadoop system.

Using the above cost models, we determine tenants’ costs
corresponding to different levels of power reduction (by set-
ting dth = 100ms for web search and dth = 300ms for KVS).
Fig. 6 shows the cost of power reduction of the tenants, un-
der the same traffic setting as in Fig. 5. We subtract the ten-
ants’ original costs (without power reduction) from their cost
models to ensure “zero cost” for zero power reduction. Set-
ting cost model parameters is the task of individual tenants.

For evaluation purpose, we set the cost parameter such
that the tenants’ cost for power reduction is comparable to
the extra revenue the data center operator gets from over-
subscribing the capacity. Cost function is tenant’s private
information, and COOP uses supply function as a proxy to
avoid the disclosure of tenant’s cost information.

While the cost values can be arbitrarily set by tenants,
our choice in this evaluation is logical: if there are mission-
critical tenants which have a very high cost of power reduc-
tion, the operator will offer these tenants a premium service
and not oversubscribe the capacity serving them.

Importantly, our results are not particularly sensitive to
the details of the cost model described above, provided that
costs are not arbitrarily high (otherwise, those tenants are
considered as “premium” and served without oversubscrip-
tion). We highlight this in Section 5 by varying the cost
models.

4.3 Capacity Overloading
We apply COOP to handle a two-level power emergency

involving five tenants in two low-level clusters sharing one
high-level UPS, for the following levels of oversubscriptions.
• Aggressive. Cluster#A capacity is 643W and Cluster#B

capacity is 460W (15% oversubscription), while the high-
level capacity is 1050W (5% oversubscription, i.e., 1050 ∗
1.05 = 643+460).
• Moderate. Cluster#A capacity is 672W and Cluster#B

capacity is 481W (10% oversubscription), while the high-
level capacity is 1098W (5% oversubscription, i.e., 1098 ∗
1.05 = 672+481).
• Conservative. Cluster#A capacity is 704W and Clus-

ter#B capacity is 504W (5% oversubscription), while the
high-level capacity is 1150W (5% oversubscription, i.e., 1150∗
1.05 = 672+481).

Note that, the three oversubscription cases described above
are equivalent to a combined oversubscription at the high
level of approximately 20%, 15% and 10%, respectively. We
consider this combined 20% oversubscription as an “aggres-
sive” strategy for two reasons. First, real-world data center
power measurement demonstrates that the average power de-
mand is roughly 70-80% of the peak [9, 45]: if the operator
oversubscribes the capacity by more than 20% (equivalently,
provisioning a capacity less than 83% of the peak demand),
then the provisioned capacity may be quite close to or even
below the servers’ average power demand. Second, as shown
in Table 1, if oversubscription is too large and exceeds 20%,
the probability of overloading also increases and hence the
reward rate that can be offered to tenants without decreasing
the operator’s profit actually decreases.

Power emergency. We create a power emergency by in-



creasing tenants’ traffic load simultaneously. The top enve-
lope in Fig. 8(a) illustrates the capacity overloading event: at
around the 130th second, there is a spike in aggregate power
demand, which begins to decrease by itself at around the
300th second when we decrease tenants’ traffic (due to the
completion of Hadoop jobs).

5. EVALUATION RESULTS
In this section, we evaluate COOP on the testbed described

above. By assessing the efficiency of COOP in terms of to-
tal performance cost, we show that COOP is very close to
OPT. Moreover, we demonstrate that COOP provides eco-
nomic benefits to both the data center operator (through extra
profit) and tenants (by reducing leasing costs).

5.1 Baseline and Metric
Baseline. We use OPT as the baseline, an ideal case

where the operator minimizes the performance cost formu-
lated in (1) and then dictates tenants’ power reduction ac-
cordingly as if in an owner-operated data center.

Except for COOP, we are not aware of any alternative
market mechanisms applied to handle a multi-level power
capping in a multi-tenant data center. Furthermore, as shown
later, COOP is very close to OPT in terms of the total perfor-
mance cost (our key efficiency metric detailed below). Thus,
we do not compare COOP with other market mechanisms
which have yet to be introduced to multi-tenant data centers.

Metric. The key metric to assess COOP is total perfor-
mance cost of the tenants, which, as formulated in (1) and
quantified in monetary value, is a scalar measure of overall
performance impact on tenants. We also evaluate the ten-
ants’ performance: 95-percentile delay for web search (ten-
ant #1 and #4) and KVS (tenant #2), and throughput (job
processing rate) for Hadoop tenants (#3 and #5).

Normalized performance. Tenants’ power reduction re-
sults in performance degradation during an emergency [5,6].
Thus, we normalize tenants’ performance under COOP with
respect to that under OPT (our idealized baseline) to show
how gracefully COOP can handle an emergency compared
to OPT. Thus, the normalized performances are defined as:
the ratio of OPT’s 95% delay to COOP’s 95% delay, and the
ratio of COOP’s throughput to OPT’s throughput.

Tenants can be price-taking or price-anticipating. Price-
taking means that tenants simply bid in a myopic way with-
out predicting the impact of their bidding decisions on the
market price. Price-anticipating means that tenants can pre-
dict how the operator sets price and more intelligently decide
their bids to maximize their profits “r · si− ci(si)”. See [13]
for a detailed discussion of their different impacts on the
equilibrium. For completeness, we show results for both
cases under their respective equilibrium points, at which ten-
ants maximize their own profits and have no incentives to
deviate.

5.2 Efficiency
We first assess the efficiency of COOP in terms of the

total performance cost. The results are shown in Fig. 7(a),
where the absolute values are small due to the scale of our
testbed. Under all the considered oversubscription levels,
COOP is close to OPT, both when tenants are price-taking

0

1

2

Consr. Mod. Aggr.

Cos
t ($

)

Oversubscription

OPTCOOP (Price Taking)COOP (Price Anticipating)

(a) Performance cost

0
5

10
15
20

Consr. Mod. Aggr.

Rew
ard

 ($/
KW

/h)

Oversubscription

COOP (Price Taking)
COOP (Price Anticipating)

(b) Reward rate

0

50

100

T#1 T#2 T#3 T#4 T#5Pow
er R

edu
ctio

n (W
) OPTCOOP (Price Taking)COOP (Price Anticipating)

(c) Power

0

1

2

T#1 T#2 T#3 T#4 T#5

Nor
m. 

Per
form

anc
e COOP (Price Taking)

COOP (Price Anticipating)

(d) Performance

Figure 7: Comparison of different algorithms.

and when they are price-anticipating, which demonstrates
that COOP is efficient in minimizing performance cost in
practical settings that extend the theoretical study [13].

Fig. 7(b) shows the price/reward ($/kW/Hour) paid to ten-
ants. There is no price in OPT, because it assumes the op-
erator’s full control over tenants’ servers as in an owner-
operated data center. As expected, when tenants are more
“clever”, i.e., price-anticipating, they explicitly predict the
way to set market price and then bid accordingly, thereby
driving up the price.

Next, with a moderate oversubscription, we show in Fig. 7(c)
the breakdown of tenants’ power reduction. Under both COOP
and OPT, tenants’ power reductions are almost identical,
further confirming that COOP is close to OPT. Fig. 7(d)
shows COOP’s performance normalized with respect to OPT’s
performance: COOP is almost identical to OPT in terms of
the performance impact on tenants.

Settling time. There is a time lag, i.e., settling time, be-
tween the detection of power emergency and tenants’ actual
power reduction. First, the supply function bidding mech-
anism in COOP needs to be executed as described in Sec-
tion 3.2. Each tenant needs to calculate its bidding param-
eter bi based on its current traffic, which takes less than
50ms per computation and is performed in parallel; the op-
erator clears the market price according to r = minr′{r′ ∈
[rmin,rmax] |∑i∈N j si(bi,r′) ≥ D j, for j = 0,1, · · · ,M}, tak-
ing very little time. The messaging delay between the op-
erator and tenants is in the order of tens of milliseconds, as
only the supply function and bid/price parameters need to be
communicated and the number of involved tenants is typi-
cally small (a few tens). Thus, the total time for executing
COOP is less than 0.5 second.

The next step is for tenants to reduce power as decided by
COOP. Here, we use DVFS as it is a widely-adopted tech-
nique and can switch between different speeds very quickly
to cut enough power (even for 20% oversubscription).

The overall settling time for COOP in our study is less
than one second, which is quickly enough to handle a power
emergency and consistent with recent power capping studies
for owner-operated data centers [5].

5.3 Execution
Fig. 7 shows that the total performance cost and tenants’

power reduction are very similar, under both COOP and
OPT. Thus, we only show the results of COOP (with price-
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Figure 8: Power traces under different oversubscription configurations.
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Figure 9: Delay performance traces of the tenants under different oversubscription levels.

anticipating tenants) below.

5.3.1 Power demand
Aggressive oversubscription. Fig. 8(a) shows the power

trace for aggressive oversubscription. The top envelop rep-
resents the tenants’ aggregate power demand without any
power reduction, while the bottom envelop is the reduced
power demand when applying COOP. The shaded areas rep-
resent the individual contributions in power reduction. We
combine the contribution from tenants #4 and #5 connected
to Cluster#B as a whole for better clarity. We set the timer
for initiating power capping as Tw = 15s. After power cap-
ping is applied at around time 145s, the aggregate power
demand goes below (but close to) the provisioned capacity.
Then, at around time 490s, there is a change in the aggregate
power demand (lower envelope), because tenant #5 finishes
its job and COOP is re-applied to decide power reductions
for participating tenants.

Moderate and conservative oversubscription. Fig. 8(b)
and Fig. 8(c) show the power traces under moderate and con-
servative oversubscription, respectively. We make similar
observations as in Fig. 8(a), except for that tenants can re-
sume normal operation sooner (since Hadoop tenants finish
jobs sooner with a less aggressive oversubscription).

5.3.2 Performance
We show Cluster#A tenants’ performance measured over

a 60-second window in Fig. 9 to save space (which include
all the three considered workload types) while tenants in
Cluster#B also have similar results. Fig. 9(a) and 9(b) show
the 95% delay performance of tenant #1 and tenant #2, re-
spectively. Fig. 9(c) shows the Hadoop tenant’s performance
(measured in the throughput, which is the inverse of job
completion time given a fixed file size). As expected, we
see the worst performance when the capacity is most ag-
gressively oversubscribed (15% at the low level and 5% at
the high level in our study).

While performance degradation is often unavoidable to
handle power emergencies [5, 6], by using COOP, tenants’
performance loss is minimum, as compared to OPT in terms
of total performance cost and shown in Fig. 7(a).

0%

20%

40%

Consr. Mod. Aggr.Sav
ing

/Ex
tra 

Pro
fit

Oversubscription

T#1 T#2T#3 T#4T#5 Operator

(a) Price taking

0%

20%

40%

Consr. Mod. Aggr.Sav
ing

/Ex
tra 

Pro
fit

Oversubscription

T#1 T#2T#3 T#4T#5 Operator

(b) Price anticipating

Figure 10: Economic benefit.

5.4 Economic Benefit
Fig. 10 shows economic benefits under different oversub-

scription levels: tenants save leasing cost through financial
compensation for temporary power reduction, while the op-
erator earns extra profit through oversubscription. Tenants’
total reward is determined based on the reward rate and the
probability of capacity overloading over a year (based on
Fig. 2). Tenants’ cost saving is calculated as the ratio of their
total rewards to their total leasing costs based on the aver-
age market price of 150$/kW/month. We exclude tenants’
performance cost which is a quantitative measure of ten-
ants’ performance consideration, and this is also the standard
practice when assessing the cost saving benefit [4, 5]. The
data center operator’s extra profit is determined by subtract-
ing the total payment to tenants from its additional revenue
due to oversubscription. Fig. 10(a) and Fig. 10(b) show the
economic benefits when tenants are price-taking and price-
anticipating, respectively. In both cases, we see that tenants’
cost saving goes up, as the level of oversubscription is in-
creased. However, the operator has the highest extra profit
under moderate oversubscription, because with aggressive
oversubscription (20% combined oversubscription), the op-
erator needs to pay a high price due to tenants’ increasing
reluctance in cutting more power (Fig. 6).

5.5 Tenant Costs
Tenant cost functions play a vital role in bidding decisions

and hence the outcome of COOP. To illustrate the sensitiv-
ity of COOP to tenant cost functions we consider settings
with costs scaled by a factor ranging from 0.1 to 1.5, and
show the result under moderate oversubscription in Fig. 11.
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We see that regardless of price-taking and price-anticipating
behaviors, tenants’ saving, averaged over the three tenants,
increases with their scaling of performance cost, while the
operator’s extra profit goes down and even becomes nega-
tive when the scaling factor is more than 1.3. Fig. 11(b)
shows the corresponding reward rates, which are going up
as tenants’ cost increases. This confirms that to earn extra
profit through oversubscription, the operator should target
those tenants that do not run highly mission-critical work-
loads and have a low cost for power reduction. We have also
evaluated other cost models, and similar results hold.

5.6 Bidder Uncertainty
A main task for tenants in COOP is determination of the

bidding strategy. One might expect that tenants have some
uncertainty in this regard, and that this uncertainty, com-
bined with risk aversion, may lead tenants to overestimate
their costs when submitting bids. To illustrate the impact
of this, we consider a setting where the web search tenants
(#1 and #4) overestimate their costs by up to 30%. We see
from Fig. 12(a) that power reduction decreases for the two
web-search tenants, while the other tenants’ power reduction
increases to meet power capping constraints. However, the
impact is not significant. As shown in Fig. 12(b), cost over-
estimation slightly drives up the reward rate and has a very
little impact on savings (for both operator and tenants). This
is because the impact of tenants with overestimated costs is
mitigated by the other tenants. Similar results hold for price-
anticipating tenants. If tenants bid arbitrarily high for any
reason, they will be excluded from COOP (equivalent to pre-
mium tenants served without oversubscription) and lose cost
saving benefits provided by COOP. In fact, it is at tenants’
interests to bid reasonably (as discussed in Section 3.2) to
reach an equilibrium, at which all participating tenants max-
imize their own net profits.

We also run a larger-scale simulation to evaluate COOP
with more tenants. Our simulation shows that COOP still
applies and mutually benefits the data center operator and
participating tenants. These results are omitted for brevity.

6. RELATED WORK
There is a large and rich literature on power capping in

owner-operated data centers. Various techniques have been
proposed for minimizing performance loss, such as reduc-
ing CPU power [6, 46], admission control [47], virtualizing
power allocation [5, 11], and load migration [5, 47]. These
can be leveraged as power capping techniques by individual
tenants, but they are not applicable for handling emergen-
cies resulting from operator’s oversubscription due to lack
of control over tenants’ servers. Recent studies [4, 10, 48]
have explored discharging ESD (e.g., battery) to temporar-
ily boost power supply for handling a emergency. These
techniques can be viewed as “supply-side” solutions and are
complementary to our “demand-side” power reduction. Fur-
ther, discharging ESD might still overload the cooling ca-
pacity, which, typically sized based on the IT power, may
increase overheating risk that is a major reason for down-
times [8, 23]. Recent work [49] proposes to place phase
changing materials inside servers to avoid cooling capac-
ity overloading, but tenants’ servers may not have such ad-
vanced materials. COOP still works if cooling capacity is
over-provisioned and/or phase changing materials are avail-
able, and in such cases, these techniques can be combined
with COOP to enable more power oversubscription.

Our research is relevant to multi-resource allocation [31,
32] and data center demand response (broadly interpreted as
reshaping the power demand towards a desired goal) [33–39,
50]. In addition to problem differences, our formulation and
proposed mechanism are also different from those prior stud-
ies. Specifically, the prior studies on data center demand re-
sponse [34–39,50] have all been focused on cutting power on
a best-effort basis at the data center level, whereas we pro-
pose supply function bidding to address multi-level power
capping. A detailed comparison is provided in Section 3.5.

7. CONCLUSION
This paper proposes COOP, a market-based approach for

incentivizing and coordinating tenants’ power reductions in
the event of a power emergency in a multi-tenant data center.
COOP uses a supply function bidding mechanism motivated
by literature in electricity markets. We demonstrate the ef-
fectiveness of COOP by building a prototype and illustrating
that COOP is efficient in minimizing the total performance
cost, even compared to the ideal case OPT. We also demon-
strate that COOP is “win-win”, increasing the data center
operator’s profit and reducing tenants’ cost by providing fi-
nancial compensation for power reductions.

8. APPENDIX
To facilitate readers’ understanding, we briefly explain the

equilibrium point in COOP.
An equilibrium, denoted by b∗ = (b∗1,b

∗
2, · · · ,b∗N), repre-

sents a stabilized outcome at which all participating tenants
maximize their own payoffs (i.e., reward minus performance
cost). The resulting equilibrium depends on whether tenants
are price-taking or price-anticipating. Given the parame-

terized supply function si(bi,r) =
[
δi− bi

r

]+
and the price

r set according to Line 16 in Algorithm 1, a price-taking
tenant i decides its bid bi to maximize its profit ut

i(bi;r) =
r · si(bi,r)− ci (si(bi,r)) by passively accepting the offered
market price r, while a price-anticipating tenant i explicitly



predicts the price r(b) as a function of all the submitted bids
and decides bi to maximize ua

i (bi;b−i) = r(b) · si(bi,r(b))−
ci (si(bi,r(b))), where b−i = (b1, · · · ,bi−1,bi+1, · · · ,bN) is
the bidding profile except bi, for i = 1,2, · · · ,N. The price-
taking scenario normally applies when tenants all have sim-
ilar sizes and no one can impact the market price too much,
whereas the price-anticipating model is suitable when there
exist a few dominant tenants. With ut

i(bi;r) and ua
i (bi;b−i)

defined above, we next provide the definition of equilibrium.
Definition. A bidding profile b∗ = (b∗1,b

∗
2, · · · ,b∗N) is a

price-taking equilibrium if it satisfies ut
i(b
∗
i ;r) ≥ ut

i(bi;r),
∀bi ≥ 0 and i = 1,2, · · · ,N, and a price-anticipating equi-
librium if it satisfies ua

i (b
∗
i ;b∗−i) ≥ ua

i (bi;b∗−i), ∀bi ≥ 0 and
i = 1,2, · · · ,N. �

The choice of supply function affects the total performance
cost efficiency at an equilibrium. Under a set of simplifying
assumptions, prior studies [13,14] have proved that choosing
the supply function as si(bi,r) = δi− bi

r results in an efficient
equilibrium with a bounded deviation from the optimum. We

use a modified supply function si(bi,r)=
[
δi− bi

r

]+
to avoid

negative power reduction and demonstrate its efficiency for
multi-level power capping via experiments.
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