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Abstract—With the rapid development of the Internet of
Things (IoT), computational workloads are gradually moving
toward the internet edge for low latency. Due to significant
workload fluctuations, edge data centers built in distributed
locations suffer from resource underutilization and requires
capacity underprovisioning to avoid wasting capital investment.
The workload fluctuations, however, also make edge data
centers more suitable for battery-assisted power management
to counter the performance impact due to underprovisioning.
In particular, the workload fluctuations allow the battery to
be frequently recharged and made available for temporary
capacity boosts. But, using batteries can overload the data
center cooling system which is designed with a matching
capacity of the power system. In this paper, we design a
novel power management solution, DeepPM, that exploits the
UPS battery and cold air inside the edge data center as
energy storage to boost the performance. DeepPM uses deep
reinforcement learning (DRL) to learn the data center thermal
behavior online in a model-free manner and uses it on-the-fly to
determine power allocation for optimum latency performance
without overheating the data center. Our evaluation shows that
DeepPM can improve latency performance by more than 50%
compared to a power capping baseline while the server inlet
temperature remains within safe operating limits (e.g., 32°C).

Keywords-Edge data center, power management, deep rein-
forcement learning

I. INTRODUCTION

With the emerging Internet of Things (IoT), 5G network
and embedded artificial intelligence, computation workloads
are gradually moving from the cloud toward Internet edge
[3]. Edge data centers can provide computing services with
ultra-low latencies, offering great opportunities for latency-
critical applications, such as smart cities, augmented reality
and intelligent video acceleration [14], [27]. According to
Cisco’s report [4], approximately 30% of internet workloads
will be processed in edge data centers by 2022.

To achieve user proximity and provide low latency com-
puting services, edge data centers are geographically spread
to many locations. However, due to the loss of multiplexing
at the aggregate (i.e., random fluctuations canceling out each
other), it also results in more workload fluctuations in the
edge data center as compared to that of a large centralized
one. As an example of typical edge data center workload,
we look at Uber’s rideshare requests in ten different regions
of the Boston area [32]. The rideshare requests in each
region in the Uber data set can be seen as the typical
workload pattern of an edge data center dedicatedly serving

0 4 8 12 16 20 24
Time (h)

0.0
0.2
0.4
0.6
0.8
1.0

Si
ng

le
 R

eg
io

n

0.0
0.2
0.4
0.6
0.8
1.0

A
ve

ra
ge

 o
f

A
ll 

R
eg

io
nSingle region All regions

(a)

1 2 3 4 5 6 7 8 9 10
# of regions

0

1

2

3

V
ar

ia
nc

e 
of

R
eq

ue
st

 (%
)

0.0

0.2

0.4

0.6

A
ve

ra
ge

 o
f

R
eq

ue
st

Variance
Average

(b)

Figure 1. (a) Normalized Uber rideshare requests in a single region vs
average of all regions in the Boston area [32]. (b) Change in variance and
average number of requests with region aggregation.

the regional users. Fig. 1(a) shows the rideshare request for
a single region (Haymarket Square) as well as the average
for all the regions normalized to the single region peak. Here
we see a staggering variation in regional user requests (i.e.,
workload) compared to the aggregated of the entire area.
Fig. 1(b) further shows that the variation in the workload
decreases as we combine more regions together.

These rapid workload fluctuations can have a detrimental
effect on efficient data center management. It leads to
resource underutilization and wasted power and cooling
capacities when the edge data center is sized to meet the
peak demand [16]. Consequently, resource underprovision-
ing (i.e., allocating less capacity than the peak demand) has
been widely adopted in modern data centers to improve effi-
ciency [1], [9]. However, underprovisioning requires power
capping to avoid infrastructure overloads when the demand
exceeds the capacity. But, since power capping may also
adversely affect the latency performance, we need a graceful
dynamic power management to facilitate underprovisioning
without severely affecting the response latency [1], [9].

In this work, we identify that the rapid fluctuations in
edge data center workloads are particularly suitable for em-
ploying capacity-constrained energy storage devices such as
batteries to temporarily increase the infrastructure capacity
during overloads and counter the performance impact due to
power capping. More specifically, in edge data centers, the
workload spikes are short-lived (Fig. 1(a)) which, if done
judiciously, allows the battery to be frequently recharged
between overload events and be made available for sup-
plementing the data center capacity. The same, however, is
not applicable for larger data centers where slowly changing
workload results in extended capacity overloads (e.g., tens
of minutes) that the battery cannot sustain (i.e., running out
of energy due to the lack of recharging opportunity).

In particular, we aim at using the batteries in data center’s



uninterruptible power supply (UPS) unit which provides
backup power during utility power outages [12], [13]. The
main idea here is to store energy (i.e., recharge) in the
UPS battery when the power demand is low and use (i.e.,
discharge) it later at a suitable time, for example when the
demand exceeds the capacity. While prior works have also
studied using UPS battery for data center power manage-
ment, a key unwanted pitfall of cooling system overload
has been mostly overlooked [12], [13]. Data center cooling
system is typically designed with capacity matching that
of the power system. Hence, using the extra power from
the UPS battery also drives the corresponding server heat
generation beyond the cooling system’s capacity. When
overloaded, the cooling system cannot remove all the heat
generated, leading to rapid temperature build-up inside the
data center due to heat accumulation. According to [20],
the server inlet temperature may increase by more than
10°C if the cooling system is overloaded for 10 minutes.
Such cooling system overloads and the ensuing temperature
increase can lead to automatic server shutdown to avoid
permanent damage and fire hazard. For instance, Dell EMC
server will perform a protective shutdown once the server
inlet temperature exceeds the threshold of 32°C [6].

Our contributions. In this paper, we develop a novel
power management solution for edge data centers to use UPS
batteries to boost capacity while also keeping the data center
cool. While we exploit the rapid fluctuations and short-lived
spikes of edge data center workloads to utilize UPS batteries,
we tackle the cooling system overload by exploiting the
cold air inside the data center as a heat buffer that absorbs
transient heat spikes. Concretely, we use the cold supply air
(e.g., at 27°C) within the data center as an energy storage
by exploiting its temperature difference from the server safe
operating limit (e.g., 32°C) to temporarily hold the extra heat
generated due to the battery usage.

However, developing a power management solution that
effectively exploits both the data center cold air and UPS bat-
tery is challenging. First, both the energy stored in the batter-
ies and the temperature of the cold air have memories. That
is, using the battery now to supplement the power capacity
diminishes the available battery for future use. Similarly, an
increase in cold air temperature due to absorbing heat spike
will leave less room for temperature increase to handle future
heat spikes without overheating (e.g., temperature exceeding
32°C). Hence, our power management incorporating the
battery and cold air needs to consider future demand in its
decisions. Second, to allow safe heat spikes due to battery
usage, we also need to accurately predict the impact of heat
spikes on cold air temperature by extracting the data center’s
thermal dynamics. However, thermal modeling for every
edge data centers individually is impractical due to their
large number and diverse physical locations and operating
environments. Not to mention, such thermal models need to
be updated every time there is a change in the data center
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Figure 2. (a) Edge data center power delivery system. (b) Edge data
center cooling system with cold and hot aisle containment. 1©: server inlet
temperature Tin, 2©: server outlet temperature Tout.

environment (e.g., data center/server layout).
To solve the aforementioned challenges, we propose a

deep reinforcement learning (DRL) based algorithm —
DeepPM. We are motivated to use a DRL based solution
since it can autonomously learn and incorporate both the
future requirements (e.g., capacity boosts from the battery)
and dynamics of the data center environment (e.g., tempera-
ture change) in its decisions. Moreover, using DRL’s model-
free approach we can capture greater details of our problem
and overcome simplifying assumptions made in existing
model-based data center management approaches [30]. In
DeepPM, we formulate the power management problem
as a Markov decision process (MDP) where the power
demand for incoming workload, battery energy, and cold
air temperature at the server inlet constitute different MDP
states while the action space is the total power allocation.
We formalize a parameterized reward function that penalizes
for the increase in latency, cold air temperature, and battery
energy usage. We use deep Q-learning with long short-term
memory (LSTM) network to learn the optimum action at
each MDP state. Our MDP formulation together with the
LSTM network allows DeepPM to make a decision based
on only the current state (i.e., power demand, battery energy
level, and cold air temperature), while the deep Q-learning
allows us to learn and utilize on-the-fly the data center
thermal dynamics in a model-free manner.

To evaluate DeepPM, we compare it with three other
baseline algorithms. Our results show that DeepPM can
effectively exploit the data center cold air and the UPS
battery to provide more than 50% improvement in latency
performance while keeping server inlet temperature within
32°C. We also conduct a sensitivity study to see how
different settings affect DeepPM’s performance.

II. PRELIMINARIES

Power infrastructure. A typical edge data center’s capac-
ity ranges from a few kilowatts to a few tens of kilowatts.
The data center connects to the power utility and typically
also has a backup generator that serves as a secondary power
source. An automatic transfer switch (ATS) reroutes the data
center power connection from the utility to the generator
during a power outage. However, it may take few tens of
seconds to a few minutes to bring the generator online [12].



Hence, to support uninterrupted operation during the power
switchover, the data center is equipped with a UPS with
battery backup. The server racks get power from a power
distribution unit (PDU). For small edge data centers, the
PDU can be collocated with the UPS and ATS. Finally, the
power the distributed to each server form their respective
rack PDUs. We show a generic power infrastructure hierar-
chy for an edge data center in Fig. 2.

Cooling infrastructure. Data centers need dedicated
cooling systems to remove the heat generated by servers.
Since almost the entire power consumption of the servers
converts into heat, data center cooling systems are pro-
visioned with capacity matching the power infrastructure
capacity. Due to smaller size, edge data center usually uses
a computer room air conditioner (CRAC) as the cooling
system. Fig. 2(b) illustrates a typical CRAC cooling system
in edge data centers. Here, the CRAC supplies cold air at
temperature Tin to the server inlet and collects hot exhaust-
ing air at temperature Tout from the server outlet. To improve
CRAC’s efficiency, the hot and cold aisle containment can
be installed to avoid heat pollution (i.e., hot air mixing
with the cold air) [25]. The hot air from the hot aisle
is recirculated through the CRAC unit which removes the
heat and cool it down to supply cold air to the cold aisle
at temperature Tin. For improved cooling efficiency, the
server inlet temperature is typically conditioned at 27°C, as
recommended by ASHRAE [29].

III. POWER MANAGEMENT USING DeepPM

A. Problem Definition

In this work, we focus on an edge data center hosting
multiple server racks, a UPS with battery backup, and a
CRAC cooling system. We consider the data center has a
total power capacity of C0. The cooling system capacity
is provisioned for the designed power capacity and can
supply cold air at temperature T0 (e.g., 27°C) when the
data center power consumption does not exceed C0. The
UPS battery has a maximum recharge rate of Rmax which is
imposed to safeguard against damaging the battery cells. We
consider the data center capacity C0 can be supplemented
by discharging the UPS battery using techniques similar to
prior work [12], [13].

We use a discrete-time model with a time step ∆t (e.g.,
10 seconds) where the power management decisions are
updated at the beginning of each time step. The server power
allocation decision is made based on the power demand from
the incoming workloads/requests and the available energy in
the battery. Whenever the power allocation is lower than the
power demand, the data center utilizes power capping to curb
the server power consumption. The decision also takes into
account the server inlet temperature to avoid overheating the
data center. At time step t, we denote the power demand as
ptD, the power allocation as pta, battery energy level as bt,
and server inlet temperature as T t

in.

Objective. The target of the data center operator is to
dynamically allocate power to improve the data center’s
overall performance (e.g., latency/response time) without
overheating the data center. We formalize the power manage-
ment as the following optimization problem OPA (Optimum
Power Allocation).

OPA : minimize
pt
a

∑
t

L(ptD, p
t
a) (1)

subject to T t+1
in (pta, T

t
in) ≤ Tth (2)

pta − C0 ≤ bt (3)
(4)

Here, L(ptD, p
t
a) is the total latency increase due to a

power allocation pta against a demand of ptD and Tth
is the overheating threshold for server inlet temperature.
Constraint (2) restricts data center from overheating and
constraint (3) limits using the battery beyond its current
energy. In addition, whenever the power allocation is less
than the capacity, the battery is recharged at the rate of
min(Rmax, C0 − pta).

Challenges. Solving OPA is challenging because the bat-
tery energy and the cold air temperature both have memories.
Specifically, the change in battery energy and/or cold air
temperature due to the power allocation decision made in
the current time slot affect the available battery and/or heat
absorption capacity of cold air in future time slots. Further,
constraint (2) requires that we estimate the server inlet
temperature T t+1

in in the next time slot based on power
allocation (pta) and server inlet temperature (T t

in) of the
current time slot. However, modeling the edge data center’s
thermal behavior using techniques like computational fluid
dynamics (CFD) is exhaustive since it requires CFD analysis
of a large number of edge data centers operating in diverse
environments. Not to mention the update required every time
the data center’s environment (e.g., server layout) changes.

In what follows, we formulate our problem using a MDP
followed by a deep Q-learning based algorithm to solve OPA
in a model-free manner.

B. MDP Formulation

As the foundation of reinforcement learning-based solu-
tion, we first model our problem using a discrete-time MDP
where the entire time horizon is divided into time slots
t = 0, 1, · · · ,∞. Our system state st at time t includes
the power demand ptD, battery state bt, and the server inlet
temperature T t

in while the action is defined by the power
allocation pta. The MDP formulation of our problem can be
summarized as follows:
• System state: st = (ptD, b

t, T t) ∈ S
• Action: pta ∈ A(st)
• State transition probability: P (st, pta, s

t+1)
• Reward function: rt = R(st, pta, s

t+1)
• Discount factor: γ ∈ (0, 1)



Here, the action space A is determined by the current state
st. The tuple (st, pta, s

t+1) means that the system transitions
from state st to st+1 when action pta is taken. State transition
probability function P (st, pta, s

t+1) describes the probability
that the system state moves from st to st+1 given action pta
is taken at st. The reward function R(st, pta, s

t+1) defines
the immediate reward under state-action tuple (st, pta, s

t+1).
Action Space. In our MDP formulation, we consider

a continuous action space for power allocation with two
distinct cases. First, when the power demand is below
the data center power capacity, we allocate power for the
entire demand, i.e., pta = ptD. Second, when the demand
exceeds capacity, we may supplement the power allocation
with battery up to its maximum available capacity, i.e.,
pta ≤ C0 + min(ptD − C0, b

t). The eligible action space
A for the current system state st can be defined as

A =

{
pta = ptD, when ptD ≤ C0

pta ≤ C0 + min(ptD − C0, b
t), when ptD > C0

(5)
State transitions and Markovian assumptions. For our

problem, the battery level bt and server inlet temperature
T t
in both evolve based on the power allocation action taken.

The battery level bt perfectly follows the Markovian process
since it changes only when the power allocation action pta
exceeds the capacity C0 and requires battery supplement for
catering the demand. However, since the temperature change
is a slow process, the time granularity ∆t in our problem
formulation needs to be sufficiently large for temperature
changes to take place to satisfy the MDP assumption.
Nonetheless, such restriction on ∆t can be lifted at the
expense of a larger state-action space by using an augmented
multi-level MDP where the next state depends on both the
current and recently visited states and actions [15].

The changes in the power demand ptD, on the other hand,
mainly depends on user behavior and may not correlate
with the current state and action, thereby violating the MDP
assumption. To facilitate the MDP formulation, we consider
that the power demand of next time slot pt+1

D is known at
time t through workload estimation [5]. This enables our
solution to determine the next state based on current state
and action. We add an LSTM network in our design to
automate the power demand estimation process.

Reward function. To attain the optimization goals of
OPA, we devise our reward function as follows:

rt = R(st, pta, s
t+1) =− L(ptD, p

t
a)− β1(T t+1

in − Tth)+

− β2(bt − bt+1)
(6)

where (T t+1
in − Tth)+ = max(T t+1

in − Tth, 0) is the temper-
ature violation, bt − bt+1 is the battery usage in time slot t,
and β1 and β2 are wight parameters.

In (6) a decrease in latency is positively rewarded as in
OPA’s optimization objective. Also, since the battery energy
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Figure 3. Reinforcement learning system: the agent observes system state,
makes action, and receives reward from the environment.

and cold air temperature both have memories, we penalize
for battery usage and temperature violation to incorporate
their impacts on future decisions. In addition to acting as unit
conversion coefficients1, values of β1 and β2 can be tuned to
change the emphasis of the optimization goal. For instance,
larger values of β1 will be more restrictive of the temperature
violation while increasing β2 will result in more conservative
use of the battery. Note that, the power allocation constraints
(3) is satisfied by our action space A(st). The objective of
the MDP problem is to find the optimal action policy A∗ for
maximizing the long term reward

∑
t γ · rt with a discount

factor γ ∈ (0, 1). The discount factor γ is introduced here
to have a tractable problem.

C. Reinforcement Learning and DeepPM

Reinforcement learning is a widely used approach to
solve MDP problems. Q-learning is one of the reinforcement
learning algorithms for solving problems with an unknown
environment [31], [34]. Fig. 3 shows the building blocks for
reinforcement learning in the context of data center power
management. Here, the reinforcement learning agent takes
input from the environment to determine its current state
which evolves based on the action taken and arriving work-
load. Next, we briefly discuss Q-learning and then introduce
the DRL based power allocation algorithm DeepPM which
is implemented with a deep neural network [24].

Q-learning. It is an off-policy reinforcement learning
algorithm that can solve model-free MDP problems. In
other words, Q-learning can effectively learn the optimal
strategy without any prior knowledge of the environment.
The learned strategy is represented as a discrete Q value
table, which stores Q values for all possible state-action
pairs. Then the Q policy πQ can be extracted as choosing
an action with the highest Q value in Eqn. (7).

πQ(st) = argmax
pt
a∈A(st)

Q(st, pta) (7)

The critical task for Q-learning focuses on the estimation
of Q values from the environment response. Typically, the Q
values can be trained offline with a fixed-point iteration of
Bellman equation (Eqn. (8)) for MDP with a known envi-
ronment. Then, the conventional Q-learning with a learning
rate α can be presented as

Q(st, pta) = Q(st, pta) + α[rt + γQ(st+1, π
Q(st+1))] (8)

1Units of battery level and temperature violation are converted to the
unit of latency by multiplying with β1 and β2, respectively.
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Figure 4. DeepPM using deep neural network. Here, FC stands for fully-
connected layer, LSTM stands for Long Short-Term Memory cell, and ht
is the history states of LSTM. It takes the state and action as input and
provides the corresponding Q value.

Other methods (e.g., batched Q-learning [36]) have also
been investigated to solve specific model-free MDP prob-
lems and accelerate the convergence of Q-learning. Usually,
Q-learning works well with a small state-action space. It
becomes intractable when the state-action space is large or
continuous because of either ultra-large Q table or rarely
visited state-action pairs. In our power allocation problem,
both the states (ptD, bt, T t

in) and action (pta) occupy a
continuous space, resulting in an infinitely large Q table.
Since the purpose of the Q table is to provide the Q values
for a given action, the Q table can be replaced by a deep
neural network that acts as an estimator for the Q values.

DeepPM. The basic idea of DeepPM is shown in Fig. 4
where a feed-forward neural network is used to approximate
the Q table. The neural network takes the three state param-
eters (power demand ptD, battery state bt, and server inlet
temperature T t

in) and the action (power allocation pta) as
the input. Now, as discussed in Section III-B, the power
demand ptD depends on the incoming user request and
may well evolve independently from the state and action.
To circumvent the non-MDP nature of the power demand
changes, we add an LSTM layer in the feed-forward neural
network with a vector ht that encodes the history states [5].
We initialize h0 to an all-zero vector. The LSTM layer acts
as a predictor for future power demand using history ht−1

and allows DeepPM to navigate the state transitions for its
actions. In the implementation of DeepPM, we have one
fully-connected layer with 500 hidden neurons, one LSTM
layer with 50 hidden neurons, one fully-connected layer with
50 hidden neurons and one fully-connected layer with Q
value as the output.

The deep neural network is also called Deep-Q-Network
(DQN), which can estimate the Q value as Q(s, pa|θ), where
θ is the weight parameters. Owing to the significant recent
developments in deep learning, we can learn the weight
parameters θ with high precision using a well-developed
gradient descent optimizer (e.g., Adam optimizer [17]). The
input of DQN includes the state and action where the output
of DQN provides the corresponding Q value. According to
(8), the loss functions of DQN are defined in (9) and (10),
on training data set D.

L(θ) =
1

|D|
∑

(st,pt
a,s

t+1)∈D

(
yt −Q(st, pta|θ)

)2
(9)

Algorithm 1: DQN Training Algorithm
Input: Greedy exploration parameter ε, and

mini-batch size B, M , and N .
Randomly initialize DQN network Q(s, pa|θ) with

weights θ.
Initialize an empty replay buffer R.
for Epoch = 1 to M do

Randomly initialize the battery state b1 and
server inlet temperature T 1.

for t=1 to N do
1. Select one power allocation pta based on

current system state st according to
ε-greedy policy

a) randomly select pta ∈ A(st) with
probability ε.

b) otherwise, select pta such that
pta = argmaxpa∈A(st)Q(st, pa|θ)

2. Update battery state bt+1 and server inlet
temperature T t+1 from sensors.

3. Calcuate reward rt based on Eqn. 6.
4. Store the simulation experience
(st, pta, r

t, st+1) into replay buffer R.
5. Randomly sample B experience from

replay buffer R as the training dataset D.
6. Update the DQN network θ via

minimizing total loss L(θ) in Eqn. 9.
end

end
return DQN network with learned weights θ.

yt = rt + γ max
pt
a∈A(st)

Q(st+1, pta|θ) (10)

To calculate the network target yt for each gradient
descent training iteration, we need to find the optimal
action pta (i.e., power allocation) for new state st+1. We
can calculate the optimal action pta for the discrete action
space using, for example, exhaustive comparison. However,
continuous action space is challenging to deal with because
of its complexity in finding the action to maximize Q values.
One straightforward approach is to discretize the continuous
action space and apply standard DQN. An alternative ap-
proach, called Deep Deterministic Policy Gradients(DDPG),
is to use a critic-actor policy [18] with two neural networks
– a DQN and a deterministic policy gradient (DPG) network.
DQN approximates the Q function Q(s, pa), with state-
action as the input and Q value as the output. Whereas
DPG approximates the policy function pa = µ(s), with
states as the input and actions as the output. DDPG is
typically applied with high dimensional continuous action
space. Since we have only one continuous action variable
pa, we use the discretization approach and split the power



allocation into 200 discrete values with reasonably high
precision for our problem.

On the other hand, to ensure fast convergence during the
DQN training we use experience replay buffer, mini-batch
gradient descent, and ε-state-action exploration. The experi-
ence replay buffer stores all history state-action pairs and can
be used in DQN training. Instead of using the entire replay
buffer, a smaller subset of transitions is used by the mini-
batch gradient descent to minimize the loss in Eqn (9). This
is done to avoid using strongly correlated transitions which
make the training process unstable [5]. In addition, since
the LSTM model is being updated continuously, we cannot
directly use saved history hi−1 for each picked transition i.
Instead we use all the historical states leading up to transition
i as input to our LSTM model to get the correct hi−1 [5],
[28]. For action selection, ε-greedy exploration policy is
utilized to balance the dilemma between exploration and
exploitation. Specifically, with a probability of ε, a random
power allocation pta ∈ A(st) is chosen. Otherwise, the action
is chosen following (7).

In our implementation, we initialize an empty replay
buffer R at the beginning of training. Then the agent
explores a preset number of state-action pairs with a greedy
parameter ε at each time slot t, observes the environment
responses, and then stores the experiences (st, pta, r

t, st+1)
into the replay bufferR. In contrast to traditional Q-learning,
the agent of DRL updates weight parameter θ with a mini-
batch sampling from the replay buffer R. The detail of the
DQN learning algorithm is presented in algorithm 1.

IV. EVALUATION METHODOLOGY

In this section, we present our default edge data cen-
ter settings, thermal dynamics, battery energy model, and
performance model. We then describe the implementation
and parameters for DeepPM. We finally introduce three
benchmark algorithms for the evaluation of DeepPM.

A. Settings

Due to limited access to a real edge data center, we resort
to a simulation-based evaluation for DeepPM where the
power management decisions are updated every 10 seconds.

Data center infrastructure. We consider an edge data
center with two server racks each with 20 servers and
a designed capacity (C0) of 8kW. The data center has a
UPS backup with battery capacity (CB) of 0.2kWh which
can provide 1.5 minutes of backup power at its maximum
discharge rate of 8kW. The maximum recharging rate of the
battery (Rmax) is set to 0.5kW. The data center is cooled
using a CRAC (computer room air conditioning) system
with a matching designed capacity of 8kW. The CRAC can
supply cold air at T0 = 27°C when the data center power
consumption remains within its capacity of 8kW. We set
the threshold temperature (Tth) to 32°C. We also consider
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Figure 5. (a) 2-hour snapshot of workload/power demand trace. (b) CFD
simulation model 1© Air conditioner (AC). 2© Supply air duct. 3© Heat
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the data center employs hot aisle containment to improve
cooling efficiency and avoid heat recirculation.

Workload trace. We use real-world traces to perform
training and evaluation of DeepPM. We use the number of
requests from two popular rideshare applications, Uber and
Lyft, in the Boston, Massachusetts area as our workload [32].
Because of their large geographic service areas, customer
requests from such rideshare applications are good examples
of edge data center workloads. We convert the number of
requests to power demand using the server power consump-
tion model of [33] and scale the power trace to have a peak
demand of 12kW. Fig. 5(a) shows a 2-hour snapshot of the
workload trace used in our simulation.

B. Environment Models

For training and evaluation of DeepPM agent, we simulate
the edge data center which is accessed by the DRL for
learning the state transitions for its state-action pairs.

Thermal model. We use CFD which is one of the most
widely used approaches to analyze the thermal behaviors
of data centers (e.g., Google [11]). However, transient CFD
simulation is slow and computationally exhaustive. Hence,
as outlined in [30], we adopt a short-term CFD approach
using Autodesk CFD where the thermal environment is
modeled using impulse response by creating power spikes.
The 3D model used in Autodesk CFD is shown in Fig. 5(b).
As an illustration, in Fig. 6(a), we show the temperature
change for our data center with a 1.5kW cooling overload
for 10 minutes using our thermal model.

Battery Energy Model We consider a liner battery
charging/discharging model where the battery energy state
bt is adjusted by subtracting discharge power and adding
recharge power as follows:

bt+1 =

{
bt + min(C0 − pta, Rmax), for pta < C0

bt − (pta − C0), otherwise
(11)

Note that, a nonlinear battery model incorporating charg-
ing/discharging loss and leakage can also be considered in
the state transition without loss of generality.
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Figure 6. (a) Thermal model illustration with 10-minute cooling overload.
(b) Latency model for partially satisfied power allocation.

C. Latency Model

We determine the latency increase due to the power cap-
ping based on web search application experiments in [16].
Specifically, we run the web-search benchmark from Cloud-
Suite [10] for different workload levels and CPU speeds
(using DVFS) and collect the 99-th percentile response
times.Then, considering the power consumption at full CPU
speed as the power demand for a given workload, we model
the performance impact (change in response time/latency)
for change in the power allocation as a percentage of the
power demand. We show the performance for different
power allocations in Fig. 6(b) where the response time is nor-
malized to that of without any power capping. Note that, here
we use web-search as an example of performance-power
trade-off while many other applications also have similar
performance-power relationship [16]. Hence, our proposed
approach can be used for a wide range of applications.

D. DRL Parameters

For DRL, we implement the DQN training algorithm us-
ing “Tensorflow” [7]. The DQN (Q(s, a|θ)) is implemented
with a four-layer fully-connected feed-forward neural net-
work, which includes 500 nodes in the first hidden layer, and
50 nodes in the second and third hidden layer. The “ReLU”
is utilized as the activation function for the three hidden
layers to achieve nonlinearity.

For the training process of DQN, we use Adam optimizer
with a learning rate of α = 0.001, and the mini-batch size is
set at B = 1024. The discount factor is set at γ = 0.9. The
weight factors in reward Eqn. (6) are set as β1 = 100 and
β2 = 0.1 for the penalty of overheating and battery usage,
respectively. We perform 6000 training epochs for DQN.

E. Benchmark Policies

We evaluate DeepPM against three benchmark policies –
PowerCap, Greedy, and GreedyT, described as follows.
PowerCap. It does not utilize the UPS battery. When

demand exceeds the capacity, it caps the power at capacity
(i.e., pta = C0 < ptD). Otherwise, it allocates power for the
full demand (i.e., pta = ptD). In our evaluation, PowerCap is
the baseline policy since it does not employ any performance
improvement strategy such as utilizing the UPS battery.

Greedy. It uses the battery greedily without considering
its impact on temperature. When demand exceeds the ca-
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Figure 7. Convergence curve for DQN training: (a)Average training loss.
(b) 2-norm of Q values.

pacity, it uses the battery to cover the deficit amount up to
the available energy in the battery, i.e., pta − C0 ≤ bt.

GreedyT. It has the same power allocation strategy as
Greedy, except, it only uses the battery if he server inlet
temperature is less than 31.5°C.

When the power demand is lower than the capacity, both
Greedy and GreedyT satisfy the demand. They also recharge
the battery with the unused capacity, C0 − ptD.

V. EVALUATION RESULTS

In this section, we present results from DQN training
and compare DeepPM with the three benchmark algorithms.
Then we conduct sensitivity studies on DeepPM.

A. DQN Training

We use the Uber and Lyft workload traces and utilize the
thermal model to train DeepPM for 20,000 epochs (∼ 55
hours or little over 2-days with 10 seconds time slots). We
use three different learning rates: α = 0.01, α = 0.001,
and α = 0.0001 with a mini-batch approach. We sample the
average loss for every ten epochs and show the convergence
curves of in Fig. 7(a). We also show the evolution of 2-norm
of the Q values in Fig. 7(b). We can see that while training
does not converge for α = 0.01, it converges after ∼2000
epochs (∼ 6 hours) for α = 0.001 and ∼13,000 epochs (∼
36 hours) for α = 0.001. We chose α = 0.001 as our default
learning rate since it results in a earlier convergence.

B. Illustration of Power Allocation

We show a 4-hour snapshot of the power allocation under
the three different policies (Greedy,GreedyT, and DeepPM)
in Fig. 8. We include the power demand due to the incoming
workloads, the power allocation, battery energy level, and
server inlet temperature variation. The snapshot starts with
a fully charged battery with 100% energy and a server
inlet temperature of 27°C. Whenever the power allocation
is above the capacity of 8kW, the data center uses its
battery power and the server inlet temperature goes up due
to the extra heat generated beyond the cooling capacity. A
gap between demand (blue line) and allocation (red lines)
indicates that the power allocation does not meet the power
demand, resulting in processing latency.

First, we look at Greedy policy which allocates power
from battery whenever the demand is higher than the capac-
ity. It disregards the temperature increase and ends up with
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Figure 9. Performance evaluation with different algorithms.

server inlet temperature going over 32°C many times (e.g.,
multiple times near 0.5 hours). For DeepPM, on the other
hand, we see that it does not allocate power for the full
demand when the server inlet temperature approaches the
threshold of 32°C, for example near 0.5 hours. Restricting
itself within the temperature limit is the cause of a slight
increase in latency performance for DeepPM.

We also see in Fig. 8 that the battery energy is frequently
replenished due to the rapid fluctuations in power demand.
Also, DeepPM uses the batteries more conservatively and
can maintain a high battery level most of the time while
Greedy nearly depletes it around 0.5 hours.

C. Performance Evaluation

Here we evaluate DeepPM for a period of 24-hours with
a trained DQN discussed in Section V-A.

Average Latency. We calculate the latency following our
latency model in Section IV-C and normalize to that of
PowerCap. We take the average latency performance for the
overload time slots to emphasize the true impact of DeepPM.
We show the average latencies for the four policies in
Fig. 9(a). We see that DeepPM, as compared to the baseline
PowerCap, achieves more than 50% lower latency. Greedy
and GreedyT also enjoy over 30% performance improve-
ments because they use the battery. Nonetheless, both have a

significantly less improvement since they greedily consumes
the limited battery capacity, as opposed to DeepPM which
takes the future needs into account.

Server inlet temperature. Next, we look at the maximum
server inlet temperature resulting from the different policies
in Fig. 9(b). We see that both DeepPM and GreedyT manage
to maintain a server inlet temperature below the threshold
limit of 32°C as opposed to Greedy which results in a
maximum inlet temperature of more than 35°C. This is
because Greedy does not take the temperature into account
during power allocation. PowerCap, on the other hand, has
the lowest inlet temperature as it never uses the battery.

Battery usage. Next, we look at how the three battery
using policies utilize the battery. We show the CDF of
battery energy levels in Fig. 9(c). We see that nearly 20% of
the time both Greedy and GreedyT run without any available
battery to supplement the power allocation. DeepPM, on
the other hand, barely drops below a 40% energy level and
therefore retains the battery energy to use when the power
demand exceeds the data center capacity

D. Sensitivity Analysis

Here we examine the impacts of peak power demand and
weight parameters in the reward function on DeepPM.
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Figure 12. Effects of weight parameters β2.

1) Impact of power demand: We vary the peak power
demand from 8kW to 14kW by scaling the data center
dynamic power. We keep the data center power and cooling
capacity at 8kW and the battery capacity at 0.2kWh. The
results are shown in Fig. 10 where we omit PowerCap
which does not use the battery.We see in Fig. 10(a) that at
power demand of 8kW, the latency of all three benchmark
algorithms are the same as PowerCap since there is no need
for a capacity boost. However, as the demand increases,
using the battery becomes useful in improving the latency
performance. In Fig. 10(b) we see that the maximum server
inlet temperature increases as the peak demand increases
while both DeepPM and GreedyT maintain a temperature
below 32°C. Finally, Fig. 10(c) shows that at 8kW peak
demand (i.e., no underprovisioning) no battery is used while
the battery usage increases with peak demand. Interestingly,
the battery usage goes down for 14kW peak demand. This
is because of the limited recharge opportunity due to higher
power demand.

2) Impact of weight parameters β1 and β2: The weight
parameters in DeepPM’s reward function (6) play important
roles since they determine how much DeepPM emphasizes
on using the battery and violating the temperature constraint
as opposed to allowing an increase in latency due to power
capping during overloads.

First, we vary β1 from 1 to 1000 while β2 is kept
constant at its default value 0.1. Since β1 determines the
relative weight of the data center temperature violation,
a lower value allows DeepPM to violate the temperature

constraint more and vice versa. Consequently, we see in
Fig. 11(b) that the the maximum inlet temperature increases
with decreasing β1. Likewise with the temperature violation
constraint relaxed at lower values of β1, DeepPM uses more
battery and can result in lower latency (Fig. 11(a)).

Next, we vary β2 from 0.01 to 10 while β1 is kept constant
at its default value of 100. Since, β2 is the weight for battery
usage, increasing β2 results in a decrease in the battery
usage and vice versa. We see in Fig. 12(a) that the latency
performance β2 has marginal impact of latency performance.
On the other hand, as shown in Fig. 12(b), the decrease in
battery usage with the increase in β2 leads to reduction in
server maximum inlet temperature.

The take away from our evaluation is that, edge data
center operation can be supplemented with UPS batteries for
significantly improving performance by exploiting the rapid
fluctuations in workloads and cold air as a thermal buffer.

VI. RELATED WORK

Data center management. Managing the data center
infrastructure with limited resources has received significant
attention from the research community in the past decade.
Various techniques have been proposed to aid data center
management such as improving the energy proportionality
[19], [23], jointly managing servers and non-IT support
infrastructure (e.g., power/cooling) [19], [23], and exploiting
geographical diversity to minimize data center operation cost
[26]. Likewise, infrastructure oversubscription is exploited
in other works to improve the data center utilization [35].
[21], [38] use energy storage devices to temporarily increase
the data center power capacity. Such performance-boosting
techniques allow the power consumption to temporarily
exceed the data center capacity to offer a performance
lift. Constrained by the thermal design power (TDP),
[8] proposes temporary power/performance boosts at the
microprocessor level by utilizing phase change material and
heat absorption of thermal packages. As opposed to prior
works, we focus on emerging edge data centers and, instead
of exploiting microprocessor-level thermal inertia, utilize the
data center level thermal mass in coordination with the UPS
battery and propose a DRL-based solution.

Reinforcement learning for resource management.
The autonomous learning and online decision capability
make reinforcement learning a prime choice for solving data



center resource management problems. Due to the recent ad-
vances in deep neural network-based learning, recent works
focus on DRL based approaches. For instance, [37] pro-
poses a DRL based algorithm to schedule compute-intensive
workloads for energy minimization, while [2] designs a task
scheduler and resource provisioning system for large cloud
service providers. In [22], DRL is used for the job and virtual
machine allocation in the cloud data center and [5] uses DRL
to capture user behavior for profit maximization of a cloud
service provider. Our key novelty is that we focus on edge
data centers with rapidly fluctuating workloads, for which
energy storage – both thermal and battery – is exploited for
performance maximization subject to capacity constraints.

VII. CONCLUSION

In this work, we developed a novel power management
algorithm, DeepPM, for edge data centers that exploits
the data center cold air and workload fluctuations to use
UPS batteries for capacity boosting without overheating
the data center. We used DRL to estimate the data center
thermal behavior in a model-free manner and utilized it for
deciding power allocation to improve latency performance
while keeping server inlet temperature within safe operating
limits. We showed that DeepPM can achieve a performance
improvement of more than 50% compared to the power
capping baseline.
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