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Abstract. With the increasing adoption of Internet-of-Things devices,
autonomously securing device-to-device communications with minimal
human efforts has become mandated. While recent studies have lever-
aged ambient signals (i.e., amplitude of voltage harmonics) in a build-
ing’s power networks to secure plugged IoT devices, a key limitation is
that the exploited signals are consistent only among nearby outlets, thus
resulting in a low key matching rate when devices are far from each other.
In this paper, we propose PowerKey to generate secret keys for multiple
plugged IoT devices in an electrical domain (e.g., a lab or an office suite).
Concretely, PowerKey taps into ambient power line electromagnetic inter-
ferences (EMI): there exist multiple spatially unique EMI spikes whose
frequencies vary randomly but also remain consistent at participating
power outlets to which IoT devices are connected. We propose K-mean
clustering to locate common EMI spikes offline at participating outlets
and then dynamically extract secret keys at runtime. For evaluation, we
conduct experiments in two different locations — one research lab and
one suite with multiple rooms. We show that with PowerKey, multiple
devices can successfully obtain symmetric secret keys in a robust and
reasonably fast manner (i.e., 100% successful at a bit generation rate of
up to 52.7 bits/sec).

1 Introduction

The fast growing adoption of inter-connected Internet-of-Things (IoT) devices,
such as smart thermostats, WiFi access points and smart power sockets, has
been dramatically changing the way we interact with our daily work and living
environments. Meanwhile, demand for security as well as usability is also soaring.
In particular, a crucial concern is how to quickly establish a shared secret key
among various co-located IoT devices without users’ manual efforts.

Today, authentication and security for many IoT devices are often delegated
to mobile-based apps rather than performed on their own in an autonomous
manner. This usually needs to be done for each IoT device through a separate
mobile app, since IoT devices may not be using a unified interface provided by
third-party vendors. Moreover, the current way to establish secure connections
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is often one-time (during the initial setup) and the secret keys typically remain
unchanged for a long time, which poses hidden security threats.

In recent years, exploiting ambient contexts to generate dynamically shared
or symmetric secret keys has been emerging as a promising solution to device au-
thentication [1–8]. The key idea is that two or more physically co-located devices
can sense similar ambient signals, which can serve as a proof of device authen-
ticity. For example, the prior literature has extensively exploited radio frequency
signals such as WiFi [2,3,5,9], acoustic signals [10–12], body electric/movement
signals (for wearable devices) [1,6,13,14], among many others. However, a major
limitation of these techniques is that they are mainly suitable for devices that are
very close to each other. For example, to leverage ambient WiFi signals (e.g., am-
plitude and phase) for key generation, two devices must be placed within half a
wavelength (i.e., a few centimeters), since otherwise the WiFi signal’s attributes
can be dramatically different between the devices [3, 5]. While key generation
based on wireless channel reciprocity (i.e., two communicating devices will ex-
perience similar channel conditions) can apply for a longer distance [15–17],
channel reciprocity is limited to two participating devices. Moreover, it contains
little entropy in the generated keys if the two devices are relatively stationary
(which is the case for indoor plugged-in IoT devices) [8, 17].

More recently, [7,8] have considered securing IoT devices within an authenti-
cated electrical domain (e.g., a residential house, or a company’s office suite) and
proposed to exploit the amplitudes of voltage harmonics in the power network
for symmetric key generation. Nonetheless, as amplitudes of voltage harmonics
are subject to wiring topologies and hence consistent only among nearby out-
lets, the key matching rate can decrease significantly (to below 90%) when the
devices are a few meters away from each other. Thus, this cannot continuously
secure IoT devices with a high successful rate.

Contributions. We address the limitation of unreliable key generation un-
der the same setting considered in [8], and present PowerKey, which exploits the
consistency of electromagnetic interference (EMI) spike frequencies among out-
lets within an authenticated electrical domain to secure plugged-in IoT devices.
Concretely, multiple devices, even in different rooms connected within a shared
electrical domain, can see similar EMIs generated by switching mode power sup-
plies (SMPS). These power supplies are used by many electronic devices such
as computers, printers and TVs, and create prominent frequency spikes in the
40 ∼ 150kHz range because of high-frequency switching operation [18–20]. Im-
portantly, the frequencies of the EMI spikes vary randomly and, if detectable at
participating outlets, will be the same at these outlets. Thus, they can be used
as a reliable common source of randomness for symmetric key generation.

A key challenge is that most EMI spikes are limited to a small area due to
very weak strengths and only a few spikes are detectable as common signals at
participating outlets for legitimate devices. Thus, we propose K-means cluster-
ing as offline pre-processing to locate the frequency windows over which these
common EMI spikes exist at participating outlets. At runtime, legitimate devices
can extract secret key information from the selected EMI spikes.

2



To evaluate PowerKey, we conduct experiments in two locations — an office
suite with multiple rooms and a research lab. We show that with PowerKey,
devices can successfully generate symmetric secret keys in a robust and reason-
ably fast manner (i.e., 100% successful at a bit generation rate of up to 52.7
bits/sec). Moreover, even considering a strong attacker that knows all the de-
tails of PowerKey but collects voltage signals from an outside outlet, we show
that the chance of an attacker obtaining the secret key is practically zero.

2 Preliminaries on Power Line EMI

Overview of EMR/EMI. Electromagnetic radiation (EMR) is generated
when electromagnetic fields drive the movement of atomic particles, such as
an electron. Another associated concept is electromagnetic interference (EMI),
which occurs whenever electromagnetic fields are disturbed by an external source
through induction, electrostatic coupling, or conduction [21]. EMI can be broadly
classified as radiated EMI and conducted EMI: radiated EMI (typically> 300MHz)
propagates in radio frequencies over the air, whereas conducted EMI (< 300MHz)
traverses through power lines [22].

Existing research on exploiting EMR/EMI. EMR signals are good indica-
tors of the system power consumption for power attacks [23]. Electronic devices
plugged into power outlets also generate noises (i.e., conducted EMI) propagat-
ing through power lines [22,24]. The prior literature has tapped into power line
EMI for simple gesture recognition by sensing its EMI-induced electrical poten-
tial [25]. Also, conducted EMI strengths can be extracted to infer a television’s
content [26] and stealthy data exfiltration from computers [27]. Other studies
include exploiting power line EMI for detecting appliance on/off activities in a
smart home [22, 28], for estimating data center-level power usage information
to launch load injection attacks [29], among others. In addition, the consistent
deviation in power grid’s nominal 50/60Hz frequency has also been leveraged for
wide-area (e.g., city-scale) clock synchronization [30,31]. By contrast, we exploit
switching-induced EMI spikes in 40 ∼ 150kHz for a new and important purpose
— key generation to secure IoT device communications.3

3 Problem and Threat Model

3.1 Problem Statement

Considering the same setting as in [7, 8], multiple IoT devices are plugged into
a power network (e.g., smart thermostats and wireless access points) and need
to agree on symmetric secret keys for authenticated communications.

3 Given a power network and a time window, the frequencies of switching-induced EMI
spikes are unique (i.e., spatial-temporal uniqueness) and hence can be exploited for
purposes other than key generation. For example, proof of location: when a computer
is stolen and used elsewhere, the frequency statistics/patterns of EMI spikes will
differ, which can prompt additional security measures such as passwords.
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Fig. 1. Overview of a trust domain (i.e., au-
thenticated electrical domain in [8]).

Trust domain. In [7, 8], the con-
cept of authenticated electrical do-
main is introduced, which is also re-
ferred to as a trust domain and can
be a small single-tenant commercial
building or a tenant in a large com-
mercial building with restricted phys-
ical accesses. Fig. 1 illustrates a build-
ing’s power network with a standard
design [32]. Each panel box delivers
electricity to multiple nearby rooms/outlets through parallel branch circuits pro-
tected by individual circuit breakers. In reality, each panel box often serves a
small commercial building, a residential house, or a tenant (i.e., company) in an
office complex, which is an authenticated electrical domain [8].

Legitimate devices. A legitimate device can be any plugged-in device, such
as smart light bulb and WiFi access point, that is physically located within a
trust domain. Thus, the same as in [8], being physically in a trust domain also
equals to authenticity. Legitimate devices are synchronized with a granularity of
100ms, which is not restrictive since device-to-device (wireless) communications
require even better synchronization [33]. All legitimate devices can sample the
voltage signals from the outlets they are plugged in [8].

3.2 Threat Model

Following the threat model in [3, 8, 11, 12], attackers cannot forcibly enter the
trust domain to acquire the voltage signals or obtain secret keys. The attacker is
able to decode all message exchanged between any parties during key generation
process. Thus, it knows all the details of PowerKey. The attacker can plug a
voltage sensor into a power outlet to directly detect EMI spike frequencies. But,
it can only do so outside the trust domain.

4 An In-depth Look at High-Frequency EMI Spikes

All power outlets over a large area beyond a single trust domain share the same
fundamental frequency as well as harmonics (i.e., multiples of 50/60Hz) [30].
Thus, the low frequency information does not meet confidentiality requirement
for key generation, motivating us to explore high-frequency EMI spikes.

Sources for high-frequency EMI spikes. Many electronic appliances (e.g.,
computers, televisions, compact fluorescent lights) employ switching-mode power
supplies (SMPS), a crucial part of which is the high-frequency switching circuit.
Moreover, a power factor correction (PFC) circuit is mandated by international
regulations to improve power quality for devices with a rating of more than 75W,
which applies to all desktop computers (including certain laptops) and many
other appliances [18]. The core of a PFC circuit also relies on the high-frequency
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Fig. 3. PSD of voltage signals. (a) Outlet 1 in the lab. (b) Outlet 2 in the lab. (c)
Outside the lab (i.e., outside trusted rooms).

switching operation (typically between 40 ∼ 150kHz) [18]. Consequently, the
rapid switching operation in PFC and SMPS produces high-frequency conducted
EMI, which has been extensively reported by prior studies [22,28].
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Fig. 2. Frequency analysis of voltage signals. (a)
Without the additional computer; (b) With the ad-
ditional computer.

To demonstrate EMI spikes,
we show in Fig. 2(a) the
power spectral density (PSD)
of voltage signals collected
from a power outlet in our
lab. Then, we turn on an
additional desktop computer
and show the new PSD
in Fig. 2(b), which clearly
demonstrates the creation of
two new EMI spikes (as well as a few weaker spikes) centered around 67.2kHz.

Characteristics of EMI spikes. While the amplitudes of EMI spikes can vary
significantly depending on the measurement point [8], their frequencies exhibit
the following characteristics: they vary rapidly over time, and some of them
can remain consistent among multiple power outlets within a trust domain.
We perform fast Fourier transform (FFT) on voltage signals to examine the
frequency characteristics (detailed experiment setup in Section 6).

Varying randomly. The switching frequency of each SMPS unit can vary
randomly within a certain range, depending on the instantaneous load and ran-
dom drifting [18]. Fig. 9 in the appendix presents the probability distributions
of eight EMI frequencies. Note that, due to frequency orthogonality, power line
communication does not interfere with switching-induced EMI spikes [34].

Some EMI spikes are consistent for nearby power outlets. While
most EMI spikes have weak strengths, we see in Figs. 3(a) and 3(b) that two
different outlets in our lab still have consistent EMI spikes around 67.2kHz. The
consistent EMI spikes depend on the locations of the outlets: when the set of
outlets changes, the set of common EMI spikes also change.

Undetectable from outside the trust domain. Most EMI spikes are
localized to nearby outlets due to, e.g., fading over long wires. Moreover, be-
cause of physical isolation in different panel boxes, EMI spikes generated within
a trusted domain typically vanish and become undetectable from outside the
trusted domain. To see this, we collect voltage signals simultaneously both from
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Fig. 4. The design overview of PowerKey.

outlets in our lab and from an outlet in a different electrical domain next to
our lab. From Fig. 3(c), we see that the outside outlet has dramatically different
frequency patterns than the outlets in our lab. Actually, even for two outlets
both in our lab, their voltage signals’ frequency patterns shown in Figs. 3(a)
and 3(b) are different, despite the similarity over certain frequency bands.

Even though a strong attacker outside the trust domain might detect some
leaked EMI spikes from within the trust domain, it is very unlikely that the
attacker can detect all the common EMI spikes used by legitimate devices for
key generation because of the spatial uniqueness of conducted EMI signals [8].

5 The Design of PowerKey

PowerKey is built inside the power supply unit of plugged-in IoT devices. It con-
sists of a high-pass filter (to filter out the dominant 50/60Hz component), an
analog-to-digital circuit (ADC), a data communication interface, plus a micro-
controller unit. PowerKey is mainly responsible for sending digitized voltage sig-
nals to the IoT device, which runs our algorithms. The total hardware cost at
scale is below US$5 [8]. Note that sampling voltage signals with 300kHz or higher
(to recover signals of up to 150kHz) is not restrictive, as a simple SMPS is already
controlled to sample and quantize the voltage signals at a high frequency. We re-
fer to [7] for the detailed implementation. The key difference between PowerKey
and VoltKey in [8] is that PowerKey runs FFT, whereas VoltKey leverages the
amplitudes of voltages harmonics. Next, we describe PowerKey in detail.

5.1 Offline Pre-Processing

Among numerous (mostly weak) spikes, PowerKey first identifies a set of EMI
spikes, whose frequencies vary independently from each other (for more entropy)
and are detectable among the participating devices.
• Step 1. Each device collects voltage signals for T seconds synchronously as

training data and then divides the signal into N = T
∆t non-overlapping segments

with equal duration ∆t.
• Step 2. The devices perform FFT analysis on each segment of their own

collected voltage signals and pick up EMI spikes over the 40 ∼ 150kHz band.
For the i-th segment, the devices exchange the frequencies of their own EMI
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Algorithm 1 Identify Freq. Windows for Common EMI Spikes

1: Collect voltage signals from devices’ outlets for T seconds and divide their own
signals into N = T

∆t
segments each with a duration of ∆t seconds.

2: For the i-th segment (i = 1, 2, · · · , N), compare the voltage signals of all devices
and find the set of common EMI spike frequencies {f i1, f i2 · · · f iMi

}.
3: Based on the common EMI spike frequencies, run K-means clustering [35] to find
K = max{M1,M2, · · ·MN} clusters, each corresponding to one EMI spike.

4: Calculate the correlation coefficient matrix of the EMI spike frequencies. Only one
EMI spike is kept if multiple spikes have strongly correlated frequencies.

5: Return M frequency windows [fm,L, fm,R] for m = 1, 2, · · ·M

spikes (i.e., local maxima of frequencies) and find the common ones, denoted by
the set {f i1, f i2 · · · f iMi

}. Repeat this operation for all the N segments. Here, if
the frequencies of an EMI spike at two devices have a difference no more than a
threshold η, the two devices are said to have a common EMI spike.
• Step 3. Based onN sets of common EMI spikes, we runK-means clustering

[35] to find frequency clusters. Then, we perform correlation analysis to remove
strongly-correlated EMI spikes and find EMI spikes with little correlation. For
each of the remaining M common EMI spikes, we identify its frequency window
[fm,L, fm,R], where fm,L and fm,R represent the lower and upper bounds of the
m-th EMI spike frequency window. Later, the devices use the detected frequency
windows to find EMI spike frequencies at runtime.

The pseudo code is described in Algorithm 1. The K-means algorithm and
correlation analysis can be run by a leading device, which then sends back the
results to other devices. Re-execution of Algorithm 1 is needed only when the
power network environment significantly changes (e.g., some common EMI spikes
disappear). Note that the actual EMI frequency, not the range identified offline,
is needed to extract keys at runtime.

5.2 Quantize Frequencies of EMI Spikes

At runtime, within a certain frequency window, the common EMI spike can
result in slightly different frequencies at different devices due to measurement
errors. Thus, we quantize EMI spike frequencies into discrete bins. In this pa-
per, if the frequency difference is no more than σ Hz for 80% of the time, then
σ is chosen as the default quantization step size. To further mitigate the fre-
quency discrepancies, we insert a guard frequency band of size σg between two
valid quantized frequency bins. Fig. 4 provides an illustration of the frequency
quantization. For example, a device detects a EMI spike frequency of f within a
frequency window [fL, fR] and the chosen quantization step size is σ. Then, the
frequency is quantized into a bin with index of b f−fLσ+σg

c.

5.3 Extract Secret Keys

For key generation, participating devices convert indexes of valid EMI frequen-
cies into binary bits using, e.g., Grey codes. Then, the devices shall exchange
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the information to remove invalid EMI spikes whose frequencies fall into guard
bins. Finally, they perform reconciliation and privacy amplification.

Converting frequency index into binary bits. If the EMI spike frequency
at any participating device falls into an invalid frequency guard band, then it
becomes less certain to decide its corresponding frequency bin. Thus, the cor-
responding EMI spike window is discarded to avoid secret key discrepancies.
The devices first find their own invalid windows (if any) and exchange this in-
formation with other participating devices. For the remaining valid EMI spike
windows, the indexes of their frequency bins will be converted into binary bits.

Reconciliation. For better presentation, we focus on two legitimate devices,
i.e., Alice and Bob, while it can also be extended to more than two devices [7,11].
Based on the valid EMI spike frequency windows and indexes, Alice and Bob
each end up with a n-bit sequence, denoted by K̃a and K̃b, respectively. While
it is rare to have different K̃a and K̃b, it can still occur in practice.

To improve the key matching rate between Alice and Bob, we apply a crucial
step — reconciliation process [4, 6], which uses error correction coding to fix
the bit differences/errors at the expense of slowing down bit generation rate.

Specifically, the key idea is that both Alice’s n-bit sequence K̃a and Bob’s n-
bit sequence K̃b can actually be viewed as error-corrupted versions of a shared
symmetric key, and errors can be fixable using error correction coding. Consider
an (n, k, r) error correction code scheme C, which maps any k-bit sequence into a
n-bit codewords (n > k) through a one-to-one encoding function and can correct
up to r error bits. Meanwhile, there exists a many-to-one decoding function that
maps any n-bit string into one of the 2k valid codewords. Let ge(·) and gd(·)
be the encoding and decoding functions of C, respectively. First, Alice can first
decode its n-bit string K̃a and then produces the codeword ge(gd(K̃a)) that is

the closest to K̃a. Then, Alice computes the bit-wise error string ∆K̃ = K̃a −
ge(gd(K̃a)) and sends it to Bob, which can be in cleartext without encryption.
Then, if the bit error rate is roughly estimated and the number of error bits is no
more than r, Bob can obtain Alice’s n-bit sequence K̃a with a high probability
based on ∆K̃ + ge(gd(K̃b −∆K̃)).

To sum up, if K̃a and K̃b generated from Alice’s and Bob’s respective quan-
tized EMI spike frequencies differ in no more than r bits, the reconciliation pro-
cess using the coding scheme C can ensure that both Alice and Bob eventually
possess the same n-bit string.

Privacy amplification. During the reconciliation process, Alice’s bit-wise error
string ∆K̃ = K̃a − ge(gd(K̃a)), which contains partial information of its n-

bit string K̃a, is communicated to Bob and meanwhile also possibly leaked to
attackers. To address the leakage of partial information about the keys, privacy
amplification can be applied: instead of using all the n-bit strings to generate
their keys, Alice and Bob can shrink their n-bit strings by (n−k) bits to properly
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Table 1. Frequency Quantization Schemes.
Quantization Scheme Q1 Q2 Q3 Q4 Q5

Valid Frequency Bin Size (Hz) σ σ σ σ+1 σ+1

Guard Bin Size (Hz) 0 σ-1 σ σ-1 σ

create k-bit strings, thus preventing attackers from acquiring partial information
about the k-bit strings [4, 6].

6 Evaluation Methodology

Experiment setup. We conduct experiments in two different trust domains
— an office suite with multiple individual rooms and a research lab, as shown
in the appendix. The office suite is shared by multiple faculty members while
the lab has more than 20 workstations. We use the office suite as our default
location with multiple faculty offices accessible through a corridor.

Voltage signal collection and processing. For proof of concept, we use
a Rigol 1074Z oscilloscope as a proxy ADC to collect voltage signals from the
power outlets that are then transferred to a laptop for processing, while one can
also follow the design in [7, 8] and insert an additional FFT module.

Error correction coding. We use the following commonly-used error cor-
rection coding (ECC) schemes with varying degrees of error tolerance [36]. (i)
Hamming Code, a linear perfect error correction scheme that encodes every 4
bits of data with 3 parity bits and can withstand 1-bit error in the data. (ii)
Golay Code, another linear code which encodes 12 bits data into 23 bits and can
correct up to 3 error bits. (iii) Reed-Solomon Code (RS), a non-linear cyclic code
that can detect and correct multiple errors: an RS(n, k) encoding can correct up
to bn−k2 c bit errors. In our evaluation, we use three variations of the RS code —
RS(7, 3), RS(15, 5), and RS(15, 3).

Frequency quantization and guard bin size. We set σ as the step size if
the frequency difference between any two outlets is no greater than σ for 80% of
the time. As shown in Table 1, we test five different quantization schemes with
varying step sizes and guard bands, denoted as Q1, Q2 · · · , Q5.

Experiment durations. We first collect 500 seconds of voltage data si-
multaneously from the chosen power outlets to identify the common EMI spike
windows offline (Section 5.1), and determine the quantization scheme. We use
∆t = 100ms as the length of each voltage signal segment. For online evaluation,
we use the same segment length and run the experiments for 60 minutes.

Evaluation metrics. We consider the following standard metrics.
• Bit generation rate. It is the number of secret bits generated per unit

time. Consider a segment size of ∆t seconds and M common EMI spikes with
frequency windows [fm,L, fm,R], quantization step size σm and frequency guard
band size σg,m, for m = 1, 2, · · ·M . The bit generation rate (BGR) in bits per

second with ECC C(n, k, r) is given by BGR = k
n ·

1
∆t

∑M
m=1 log2b

fm,R−fm,L

σm+σg,m
c.
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• Bit Error Rate. It indicates the probability of differences between secret
keys extracted by two or more devices. A low bit error rate (BER) is desirable.
• Key Matching Rate. This indicates, on average, the percentage of keys

generated by PowerKey can be used as a valid shared secret key. We use the
standard AES 128-bit key as the length requirement [37].

In addition, we also consider Entropy and Mutual Information. Entropy mea-
sures the amount of information contained in the random variable we generate
from the EMI spike frequencies. Mutual information quantifies the amount of
dependency between two random variables and we use this to measure the in-
formation possibly obtained by an attacker.

7 Evaluation Results

In this section, we present our evaluation results in the office suite, while the
results in the lab are deferred to the appendix. Our results demonstrate that with
the design of PowerKey, multiple devices can successfully generate symmetric
secret keys in a robust and fast manner (i.e., with a 100% key matching rate at
a bit generation rate of 52.7 bits/sec).
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Fig. 5. (a) Correlation coefficients of EMI
spike frequencies in the office. (b) Entropy
with different quantizations.

Analysis of EMI spike frequencies.
By pre-processing the voltage signals in
the office suite, we identify a total of 17
common EMI spikes out of hundreds of
spikes. As shown in Fig. 5(a), only 8
of the 17 spikes are uncorrelated, while
the remaining spikes are redundant and
need to be removed. We also show the
histograms of the 8 independent EMI
spike frequencies and the frequency dif-
ferences at the two outlets in Fig. 9 and Fig. 10 in the appendix, respectively.
It can be seen that each of the 8 EMI spike frequencies varies within a narrow
window. We also run randomness test on frequencies of the 8 EMI spikes in
Matlab using runstest(·). The results are all positive, verifying the randomness
of EMI spike frequencies with a 95% significance level [38].
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Fig. 6. Performance of PowerKey in the office suite.
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Performance of PowerKey. We now examine the performance of PowerKey.

Entropy of EMI spike frequencies. Fig. 5(b) shows the impact of our
quantization configurations on the overall entropy of the 8 EMI spike frequencies.
Naturally, when the EMI spike frequency is mapped to fewer bins, the amount
of entropy also decreases but still is better than some of the existing literature
whose ambient signals can only have 1 ∼ 2bits [4, 6].

Bit error rate. We now look at the bit error rate under different quanti-
zation and ECC schemes and show the results in Fig. 6(a). We see that either
quantizations or ECC alone cannot achieve a low bit error rate. By combining
quantization with an appropriate ECC scheme (e.g., RS(15, 5) or RS(15, 3)),
PowerKey essentially achieves a zero bit error rate in practice.

Bit generation rate. We show the bit generation rate in Fig. 6(b). As in the
prior literature [4,6], the bit generation rate only considers how many secret key
bits Alice and Bob can generate, without accounting for possible errors. Clearly,
both quantization and ECC reduce the bit generation rate, but they are needed
to achieve a high key matching rate as we show next.

Key matching rate. Next, we show the key matching rate (KMR) between
Alice and Bob in Fig. 6(c) for the standard AES 128-bit key [37]. We see that
ECC plays a vital role to correct mismatched bits between Alice and Bob. Specif-
ically, the RS codes perform the best, achieving nearly 100% key matching rate
when combined with quantization. By contrast, when using amplitudes of volt-
age harmonics for key generation for devices 18m (approx. 60ft) away, the key
matching rate reduces to below 90% [8].

Security analysis of PowerKey. We consider an attacker that can collect volt-
age signals from outside the trust domain, be synchronized with Alice/Bob, and
knows all the details of PowerKey (including the common EMI spike frequency
windows located offline). In our experiment, we choose an outlet next to the en-
trance to our office suite. We assume that the attacker uses its most prominent
EMI spikes, or estimates the EMI spike frequencies based on their probability
distribution, within each valid EMI frequency window. Thus, the attacker is as-
sumed to follow the same procedure as a legitimate device, except for that it
extracts EMI spike frequencies from outside the trust domain.

We first calculate the mutual information between two parties in Fig. 7(a).
We see that the mutual information between the attacker and Alice/Bob is much
lower compared to that between Alice and Bob, thus showing that the attacker’s
signal contains little information about Alice’s/Bob’s. Next, we show the bit
error rate in Fig. 7(b) for quantization scheme Q4 (Table 1) and see that, under
various strategies, the attacker’s bit error rate is significantly higher than that of
Alice/Bob, resulting in almost random bits. Further, it achieves a practically zero
key matching rate, and hence we omit the result. The reason that the attacker
is not able to acquire the secret key is that the common EMI spikes located
offline are spatially unique to the power outlets to which legitimate devices are
connected.
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Fig. 7. (a) Mutual information: “AB” (Alice-Bob), “A-Att” (Alice-Attacker), and “B-
Att” (Bob-Attacker). (b) Bit error rate. “AB” means Alice/Bob; “Volt” means the
attacker uses the highest EMI spike for each window from its collected signals; “Stat”
means estimating the EMI spike frequencies based on their probability distributions.

8 Related Works

For key generation, the prior research has exploited radio frequency signals such
as WiFi [2, 3, 5, 9], acoustic signals [10–12, 15], body electric/movement signals
(for wearable devices) [1,6,13,14], among many others. Nonetheless, the existing
approaches can suffer from a limited distance [2,3,5,9], low key matching rate [6],
and/or low bit generation rate [4, 5, 9]. While key generation based on wireless
channel reciprocity can apply for a longer distance [15–17], channel reciprocity
often needs time-division multiplexing and is limited to two participating devices
each time. Moreover, it contains little entropy in the generated keys if the two
devices are relatively stationary [17]. Other studies [11, 12] look at secret key
generation within a single room by utilizing ambient acoustic/luminous charac-
teristics, but they require long-term statistics of the ambient signals and hence
take several minutes or even longer to produce a valid key.

The recent study [8] considers key generation for plugged-in IoT devices under
the same setting as ours, but it leverages amplitudes of voltage harmonics that
are consistent only among nearby outlets. Thus, when the inter-device distance
increases (e.g., 10m), the key matching rate can significantly decrease.

Finally, our work is also relevant to studies that exploit conducted EMI for
side channel inference/attacks [26,27,39]. Nonetheless, PowerKey is novel in that
it exploits EMI spike frequencies for an orthogonal and important goal — secret
key generation.

9 Conclusion

In this paper, we proposed a novel key generation approach, called PowerKey,
based on EMI spikes in an authenticated electrical domain. PowerKey includes
an offline pre-processing stage to identify common EMI spikes as well as run-
time extraction of EMI spike frequency for key generation. For evaluation, we
conducted real experiments in two different locations — one research lab and
one suite with multiple offices. Our results demonstrated that PowerKey can suc-
cessfully generate secret keys in a robust and reasonably fast manner (i.e., with
100% key matching rate at a bit generation rate of up to 52.7 bits/sec).
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Appendix

Experiment Setup. We conduct experiments in two different trust domains
— an office suite with multiple individual rooms (Fig. 8(a)) and a research lab
(Fig. 8(b)).
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Fig. 8. (a) Layout of the office. (b) Layout of the lab.

Analysis of EMI spike frequencies in the office suite. We show the his-
tograms of the 8 independent EMI spike frequencies and the frequency differences
at two outlets in Fig. 9 and Fig. 10, respectively. We see that the two outlets
share certain time-varying EMI spike frequencies with only minor differences.
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Fig. 9. Histogram of 8 different EMI spike frequencies in the office suite.
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Results for Key Generation in the Lab We now run experiments in a lab
with 20+ desktops shown in Fig. 8(b).

Analysis of EMI spike frequencies. After offline pre-processing, PowerKey
identifies a total of 11 EMI spikes for the lab. Then, as shown in correlation anal-
ysis in Fig. 11(a), 8 of the 11 spikes are uncorrelated, while the remaining ones
are redundant and need to be removed.
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Fig. 11. (a) Correlation coefficients of EMI spike frequencies in the lab. (b) Key match-
ing rate for four devices in the lab.

Key generation performance. We show the key generation performance
for the lab. The main results are deferred to Fig. 12. We can see that in terms
of all the evaluation metrics, the performance of PowerKey is consistent with
that in the office setting. Likewise, the attacker can barely obtain secret keys
successfully, with a high bit error rate and practically zero key matching rate.
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Fig. 12. Performance of PowerKey in the lab.

Multiple devices. Next, we consider four devices associated with four out-
lets in Fig. 8(b). Our results in Fig. 11(b) show that with an appropriate quanti-
zation and ECC scheme, PowerKey can still generate secret keys with a negligible
bit error rate and almost 100% key matching rate, demonstrating its reliable key
generation.
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