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Abstract—The widespread adoption of Internet of Things and
latency-critical applications has fueled the burgeoning develop-
ment of edge colocation data centers (a.k.a., edge colocation)
— small-scale data centers in distributed locations. In an edge
colocation, multiple entities/tenants house their own physical
servers together, sharing the power and cooling infrastructures
for cost efficiency and scalability. In this paper, we discover that
the sharing of cooling systems also exposes edge colocations’
potential vulnerabilities to cooling load injection attacks (called
thermal attacks) by an attacker which, if left at large, may
create thermal emergencies and even trigger system outages.
Importantly, thermal attacks can be launched by leveraging
the emerging architecture of built-in batteries integrated with
servers that can conceal the attacker’s actual server power (or
cooling load). We consider both one-shot attacks (which aim at
creating system outages) and repeated attacks (which aim at
causing frequent thermal emergencies). For repeated attacks, we
present a foresighted attack strategy which, using reinforcement
learning, learns on the fly a good timing for attacks based on
the battery state and benign tenants’ load. We also combine
prototype experiments with simulations to validate our attacks
and show that, for a small 8kW edge colocation, an attacker can
potentially cause significant losses. Finally, we suggest effective
countermeasures to the potential threat of thermal attacks.

I. INTRODUCTION

In the wake of the Internet of Things and ubiquitous
computing demand, edge computing has recently emerged as
a game-changing paradigm that brings computation to the
Internet edge, thereby enabling ultra-low latencies for many
critical applications such as augmented reality and assisted
driving [1]. Consequently, the rise of edge computing spurs
the burgeoning development of multi-tenant edge colocation
data centers (a.k.a., edge colocation). An edge colocation is
a small-scale shared colocation data center built at numerous
distributed locations for hosting latency-ultrasensitive work-
loads such as assisted driving [2]. In such a colocation, the
operator provides power and cooling resources to multiple
entities (i.e., tenants) for housing their own physical servers.
Thus, this fundamentally differs from a multi-tenant cloud
platform where users/tenants share the cloud resources without
owning the physical servers.

Edge colocations have become the preferred choice for edge
service providers. For example, Vapor IO, an edge colocation
operator, is rolling out thousands of edge colocations in
partnership with wireless tower companies [3]. Moreover, a
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Fig. 1. An attacker uses its built-in batteries to stealthily inject additional
heat to overload the cooling system.

recent Uptime Institute survey [4] shows that more than 75%
of the respondents will use edge colocations to house their
physical servers and deploy edge applications.

The criticality of hosted applications, such as assisted driv-
ing [3], clearly mandates a high level of security for edge
colocations. While securing servers and networks from cyber
attacks remains a key issue, recent research has also identified
critical vulnerabilities in data center physical infrastructures.
More concretely, the practice of infrastructure oversubscription
exposes data centers to well-timed power load attacks that
aim at overloading the power capacity and compromising the
data center availability [5]–[8]. Likewise, data center cooling
system removes server heat to avoid overheating and hence
is also crucial for service uptime. If not properly managed,
malicious workloads can create more hot spots that expose
servers to an adverse thermal environment and thus more
thermal emergencies [9]. Importantly, cooling system has
emerged as a leading root cause for downtime incidents in
state-of-the-art data centers (e.g., Microsoft’s) [10], [11].

To meet the power capacity constraints and avoid outages
[12]–[14], the colocation operator has power meters to con-
tinuously monitor tenants’ server power usage. Meanwhile,
power meters are also used as a proxy to measure servers’
cooling loads,1 ensuring that the designed cooling capacity is
not violated. The reason is that nearly 100% server power is
eventually converted into heat or cooling load [6], [15], [16].
Therefore, with proper heat dissipation, meeting the power
capacity constraints also implicitly means meeting the cooling
capacity constraints [16].

1Heat generated by servers is “cooling load” for the cooling system.



Contributions. In this paper, we study an under-explored
threat of thermal attacks — injecting additional cooling loads
to overload the cooling system — in an edge colocation.
While edge colocations have been generally considered as
secure due to tenants’ full control of their own servers, we
discover that the way tenants’ cooling loads are measured
(i.e., using power meters as proxies) is potentially vulnerable
to thermal attacks. More concretely, as illustrated in Fig. 1,
an attacker can tap into the emerging architecture of built-
in battery units and generate additional cooling loads (i.e.,
heat), yet without violating the power capacity enforced by
the colocation operator. If left neglected, successful thermal
attacks may create significant damages: (1) service outage for
benign tenants due to overheating (which we call one-shot
attack); or (2) more frequent thermal emergencies that result
in tenants’ performance degradation (which we call repeated
attacks). While various defenses (e.g., measuring servers’
outlet temperatures and air flows) are readily available, they
have yet to be included in standard practices for many data
centers. As such, despite non-trivial efforts needed by thermal
attacks, our study serves as a precaution for strengthening
cooling system management in edge colocations.

A common practice in today’s colocations is to tightly
monitor tenants’ power usage as well as their server inlet/outlet
temperature. Nonetheless, if other effective defense mecha-
nisms (in Section VII) are not properly implemented, built-in
batteries integrated with servers’ power supply units can assist
an attacker with launching thermal attacks that are difficult
to trace. To provide better energy efficiency and reliability
[17]–[19], vendors have begun to integrate built-in batteries
with servers’ power supply units (e.g., Supermicro BBP [17]).
Such built-in batteries can conceal the attacker’s actual cooling
load from the operator’s power meters — by discharging
built-in batteries to supply additional power, the attacker’s
servers can consume more actual power and hence generate
more heat than the operator measures using power meters.
Moreover, this additional cooling load may not be promptly
pinpointed by only monitoring the servers’ inlet and outlet
temperatures. Consequently, indiscernible additional cooling
loads can be injected by an attacker to exceed the shared
cooling capacity, thus triggering thermal emergencies. While
we focus on edge colocation data center, such thermal attacks
may be mounted against larger colocation data centers as well,
albeit the attacker needs to commit more resources.

Meanwhile, before automatic system shutdown [12], [20],
handling thermal emergencies require tenants’ power/cooling
load reduction through clock rate throttling and/or workload
re-routing to other unaffected data centers, which can ad-
versely affect tenants’ performance in terms of application
response time.

While successful thermal attacks can create an adverse
environment for hosting servers in edge colocations, they need
non-trivial efforts. As a prerequisite for a good timing, the
attacker needs to estimate benign tenants’ power/cooling loads
based on a voltage side channel [5]. For a one-shot attack
with the goal of shutting down an entire edge data center, the

attacker can install a large built-in battery and inject sufficient
cooling loads continuously, resulting in overheating and trig-
gering automatic system shutdown. For repeated attacks that
aim at benign tenants’ performance degradation, the attacker
needs to repeatedly trigger thermal emergencies by charging
and discharging its battery at appropriate times. We propose
a foresighted policy based on batch Q-learning that learns on
the fly a good timing for repeated attacks based on the battery
state and benign tenants’ load: thermal attacks are launched
only when both the benign tenants’ loads are sufficiently high
and the remaining battery energy is more than a threshold.

We run prototype experiments to validate the potential
threat of thermal attacks. To evaluate the effectiveness of
our proposed repeated attack strategies, we run year-long
simulations based on computational fluid dynamics (CFD)
analysis. Our results demonstrate that for an 8kW edge
colocation, an attacker subscribing 10% of the capacity can
cause thermal emergencies for more than 3% of the year,
degrading benign tenants’ performance. Finally, while the
existing practices may render edge colocations vulnerable,
battery-assisted thermal attacks can be fairly easily detected
and nullified using a reasonable amount of efforts. We discuss
such defense strategies in Section VII.

In conclusion, while batteries have been exploited (such as
for smoothing power demand [21]), our study makes a novel
contribution by leveraging servers’ built-in batteries for an
under-explored malicious purpose — thermal attacks that can
potentially result in service outage or performance degradation
in edge colocations — and serves as a precaution despite its
futility when proper defensive measures are enforced.

II. PRELIMINARIES ON EDGE COLOCATIONS

Colocations represent a critical segment and account for
nearly 40% of the total energy consumption by data centers
[12], serving almost all industry sectors. To complement their
own megascale data centers that are typically built in rural
areas, even top-brand companies like Google and Microsoft
rely on third-party colocations for better performances due to
close proximity to end users [22]. Importantly, in the context of
edge computing, colocations play an even more crucial role, as
it is not economical for individual companies to fully manage
small-scale data centers in numerous locations [23].

The data center capacity includes both power and cooling
capacities. Power capacity is quantified by the amount of UPS-
protected power (a.k.a. critical power) that is delivered to
the servers, excluding other power consumption such as UPS
power losses and cooling system power. As nearly 100% server
power consumption (except for fan power) is converted into
heat or cooling load, the cooling system capacity is often sized
based on the colocation’s power capacity and usually also
measured in kilowatt [15], [16], [24]. The data center design
may also leave some “headroom” in the cooling capacity to
handle, if any, irregular heat generation and/or hot spots due
to certain servers generating more heat than expected. In such
cases, the cooling system utilization may sometimes still be
high because of the increasingly common practice of power
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Fig. 2. An edge colocation data center with an attacker.

oversubscription for capital cost saving in modern data centers
(e.g., Facebook aggressively oversubscribes its power capacity
by 47% on average) [13], [25]–[27].

The colocation operator provides non-IT infrastructure sup-
port (i.e., power and cooling systems), while each tenant
brings and controls its own physical servers.2 The non-IT
infrastructure is expensive and/or time-consuming to construct,
taking nearly 60% of the total cost of ownership over a 10-
year lifespan for a colocation operator [12], [15], [21]. Thus,
like network bandwidth, the operator’s power and cooling
infrastructure capacity is a limited resource carefully sized
based on the tenants’ demand.

A. Power Infrastructure

As illustrated in Fig. 2, typically, an edge colocation data
center uses a tree-type power hierarchy with total capacity
in the range of a few kilowatts to a few tens of kilowatts
shared by multiple tenants. Utility power first enters the data
center through an uninterruptible power supply (UPS). Then,
the UPS-protected power goes into a power distribution unit
(PDU), which distributes the power to its downstream servers.

B. Cooling Infrastructure

While various cooling methods (e.g., computer room air
conditioner, chiller, and “free” outside air cooling) are avail-
able [28], an edge colocation usually uses a computer room
air conditioner to remove servers’ heat due to its small size
and often rugged deployment (e.g., outdoor with a wireless
tower). Fig. 3 illustrates a typical cooling system in an edge
colocation. For the best cooling efficiency, today’s edge colo-
cations also implement hot/cold aisle containment to prevent
the hot air from mixing with the cold air [23], [29].

There are four different notions of temperature in a data
center: supply air temperature Tsup, server inlet temperature
Tinlet (i.e., temperature of cold air entering a server), server
internal temperature Tinternal (e.g., CPU temperature), and
server outlet temperature Toutlet (i.e., temperature of hot air
exiting a server). With heat containment installed, all the
servers’ inlet temperature is nearly identical to the supply air
temperature. Thus, supply air temperature and server inlet tem-
perature are the lowest and baseline, whose increase will lead
to increases in server internal and outlet temperatures. Server
outlet temperature is typically elevated by 10+◦C compared to

2A tenant can share fraction of a rack space with other tenants.
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Fig. 3. Overview of a cooling system in an edge colocation.

the inlet temperature while server internal temperature is the
highest and regulated by servers’ internal fans. Hence, with
heat containment, we have the following [30]–[32]:

Tinlet ≈ Tsup < Toutlet < Tinternal. (1)

In a data center, server inlet temperature is the most impor-
tant thermal metric [31], [33], because servers’ internal tem-
perature control uses the inlet temperature as a reference [34].
For example, in modern data centers, server inlet temperature
is conditioned at 27◦C for cooling efficiency, as recommended
by ASHRAE [33], [35]. Also note that, while server heat is
responsible for increase in internal and outlet temperatures,
neither Tinternal nor Toutlet is a reliable indicator for a server’s
cooling load since they depend on the server’s internal heat
management (e.g., fan speed) and air flow rate.

III. THERMAL ATTACK

The main focus of this section is to present the potential
threat of battery-assisted thermal attacks (when concealed
cooling loads are behind the meter and not promptly detected)
and help strengthen edge colocations. As a precursor, we first
introduce our threat model that outlines the scenario consid-
ered for thermal attacks. We then present the potential impacts
on edge colocations. Finally, we introduce two possible attack
strategies followed by discussions on their feasibility.

A. Threat Model

We consider an edge colocation data center with a total
power/cooling capacity of C, housing a few racks of servers
owned by multiple tenants. There exists a malicious tenant
(i.e., attacker) that runs artificial workloads without real values
and has bad intentions.

What the attacker can do. The attacker houses its own
physical servers in the edge colocation, sharing the power and
cooling infrastructures with benign tenants. As illustrated in
Figs. 1 and 4(a), the attacker’s server power supply units has
built-in battery units, which can conceal the attacker’s actual
server power/cooling load from the operator’s power meters.
Fig. 4(a) shows an overview of the attacker’s server.

The attacker subscribes a data center capacity of ca from
the colocation operator and keeps its power drawn from the
operator’s PDU below ca at all times (even during an attack),
in order to meet the operator’s requirement.

When launching a thermal attack, the attacker runs power-
hungry applications (e.g., intensive computation) to increase
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Fig. 4. (a) Attacker’s server with built-in batteries. (b) Supermicro’s power
supply [17]. The built-in battery module is highlighted in a red circle.

its actual server power consumption to pa > ca where ca
amount comes from the operator’s PDU and the rest from its
built-in battery. In practice, when running at the peak load, a
single server equipped with multiple CPUs and/or GPUs can
easily consume several hundred watts, even more than 1kW
[36]. Thus, the attacker can inject an additional cooling load
of pb = pa−ca beyond its subscribed capacity by discharging
built-in battery units (which can be achieved by a dual-source
power supply that can simultaneously draw power from the
PDU and the battery units [21], [37]–[40].)

The attacker uses a voltage side channel, as proposed in [5],
to estimate benign tenants’ real-time total server load with a
high accuracy (Fig. 5(b)).

What the attacker cannot do. We do not consider naive
attacks, such as self-explosion and tampering with the physical
infrastructures, which are beyond the scope of our work.
Moreover, other attacks, such as network DDoS attacks, are
also orthogonal to our focus.

B. Impact of Thermal Attacks

Although non-trivial efforts are needed in the threat model,
a successful thermal attack can overload a data center’s cooling
system and possibly increase the server inlet temperature to a
dangerous level, triggering frequent performance degradation
and even system outages [34], [41].

1) Performance degradation: Before system shutdown, a
preventative mechanism is to temporarily cap the data center-
wide cooling load (i.e., server power) below the cooling capac-
ity [20], [42]. Specifically, when the server inlet temperature
exceeds a threshold (e.g., 32◦C) for a certain amount of time
[20], it is considered that a data center exception, called
thermal emergency, has occurred and servers are forcibly put
in a low power state. The wait-time between inlet temperature
violation and thermal emergency declaration depends on oper-
ator’s risk management policy. The temperature threshold for
a thermal emergency is set lower than the server’s automatic
shutdown temperature to proactively handle an emergency. For
example, in a Google-type data center, disk speeds and/or
CPUs are throttled to lower the server power load (i.e., cooling
load) in the event of a thermal emergency [20], [43]. Similar
mechanisms also exist in multi-tenant colocations to handle a
thermal emergency. Concretely, without controlling tenants’
servers, the operator sends signals to tenants’ own server
management systems such that tenants can cap power loads

below a certain level (a.k.a. power capping). The actual amount
and duration of power capping can be either pre-determined
based on SLA terms [35] or decided at runtime through a
dynamic coordination mechanism [12], [44].

Nonetheless, handling a thermal emergency by capping
tenants’ server power (through, e.g., CPU throttling) inevitably
results in performance degradation, which can in turn cause
user dissatisfaction, revenue loss, and/or SLA violation [12],
[13], [18], [45]. Some workloads may be re-routed to other
unaffected data centers for service continuity, but this comes
at a higher latency since otherwise those workloads would
have been processed in the preferred site to achieve the best
performance without being re-routed.

2) System outage: In order to prevent permanent hardware
damage, if the server inlet temperature continues rising despite
cooling load capping, automatic system shutdown may occur,
leading to a system outage (e.g., the shared PDU can power
off when the inlet temperature reaches 45◦C) and service
interruptions [33]. Such system outages can cause loss of
working data sets, and also suffer from long restart waiting
time. Financially, a system outage can cost thousands of
dollars every minute [10]. For latency-critical applications, an
outage event may cause even more catastrophic consequences
such as decreased safety in edge-assisted driving [46].

We also run a prototype experiment to demonstrate the
potential impact of thermal attacks on benign tenants, and the
results are in Appendix A.

C. Attack Strategies

We introduce two possible strategies for battery-assisted
thermal attacks with different goals.

One-shot attack. It aims at creating a system outage by
increasing the server inlet temperature beyond the safety limit
(e.g., 45◦C [33]). It can also be coordinated across multiple
edge colocations for a wide-area service interruption. Even
successfully launched only once, the caused damage may
be significant, especially for safety-critical applications (e.g.,
edge-assisted driving) [46].

Repeated attacks. Instead of aggressively overheating and
shutting down the entire edge colocation, repeated attacks
aim at frequently degrading performance of benign tenants’
latency-sensitive applications over a long period (e.g., one
year) by triggering thermal emergencies and cooling load
capping. Thus, repeated attacks compromise the long-term
cooling system availability in edge colocations.

In general, one-shot attack requires a higher battery capacity
to support more intense attack loads (which may still be
feasible as shown in Section VI). On the other hand, repeated
attacks require relatively less (still a considerable amount of)
resource, but they require more sophisticated timing of the
attacks and can be easy to detect.

D. Feasibility of Thermal Attacks

Motivation for thermal attacks. One-shot attack is as
motivating as traditional DDoS attacks, as it can potentially
create service outages. Likewise, repeated attacks can result



in frequent performance degradation for latency-sensitive ap-
plications, which in turn causes user dissatisfaction, revenue
loss, and/or SLA violation. Thus, although the cost barrier
is non-trivial, battery-assisted thermal attack might still be
inviting for potential attackers, such as the target colocation’s
ill-intentioned competitor or state-sponsored attackers.

Attacker’s malicious cooling load. In recent years, vendors
have integrated built-in batteries into servers’ power supply
units as an emerging backup power solution (e.g., Supermicro
BBP [17] shown in Fig. 4(b)). Thus, an attacker can discharge
built-in batteries to supply additional power to its servers,
generating malicious cooling loads without being monitored
by the colocation operator’s power meters. Moreover, without
air flow meters, temperature sensors that only monitor server
inlet/outlet temperature cannot reliably locate the malicious
cooling load. Consequently, if left neglected, thermal attacks
can be launched behind the meter. This is also illustrated
in Fig. 1: an attacker generates 300W cooling load, but the
colocation operator only measures 200W from the power meter
and the additional 100W load is supported by the attacker’s
internal batteries.

Availability of off-the-shelf hardware. Servers with built-
in batteries are commercially available (e.g., Supermicro [17]).
The current battery energy density is enough to fit into servers
and supply sufficient additional power to mask the attacker’s
malicious cooling loads [47], even for an one-shot attack that
requires more attack loads than repeated attacks. Moreover,
servers with large peak-to-average ratios are also available
for generating a large amount of heat during an attack. For
example, Dell manufactured PowerEdge R740/R740xd servers
can be equipped with up to three Nvidia Tesla GPUs each with
225W peak and 20W idle power [48], [49].

Voltage side channel to time thermal attacks. Due to
time-varying loads, the attacker needs to find a good timing
for successful attacks (especially for repeated attacks) when
benign tenants’ aggregate power load (or cooling load) is high.
The attacker can utilize a side channel — voltage side channel
in our study — to estimate benign tenants’ power draw from
the shared PDU. The voltage side channel is robust against
changes in the environment and provides high accuracy due to
its wired signal [5]. Utilizing the voltage side channel requires
one analog-to-digital converter (ADC) that can fit on a server’s
power supply unit (as demonstrated in an orthogonal study for
USB-powered IoT devices [50]). As shown in Fig. 4(a), the
ADC taps into the server’s input voltage to sample the PDU-
level voltage.

For the readers’ understanding, we show in Fig. 5(a) the fun-
damental principle behind the voltage side channel as recently
proposed in [5]. The key idea is that because of the voltage
drop along the shared power cable, the total load information
(proportional to current) is contained in the voltage signal, e.g.,
V1, entering any servers connected to the PDU. Meanwhile, all
today’s servers have power factor correction (PFC) circuits that
generate high-frequency voltage ripples, whose amplitude is
strongly correlated with the server load. Thus, the attacker can
sense the incoming voltage signal, extract the voltage ripples,
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Fig. 5. (a) Server voltage carries the servers’ load information. (b) Load
estimation error of the voltage side channel.

and estimate the total load at runtime.
We run a 24-hour real-world workload trace in our prototype

and collect the voltage signal using a NI digital data acquisi-
tion (DAQ) as an ADC proxy to extract the servers’ total power
load. We plot in Fig. 5(b) the probability distribution of load
estimation errors, confirming that the voltage side channel can
be leveraged for precisely timing thermal attacks.

Possibility of being detected. Detection of battery-assisted
thermal attacks is not difficult, but contingent upon the edge
colocation operator’s practice of environment monitoring.
Specifically, if the operator solely relies on power meters for
monitoring tenants’ loads and temperature sensors for condi-
tioning the thermal environment, thermal attacks may possibly
remain undetected until they cause damages. A service outage
(due to one-shot attack) or more frequent thermal emergencies
(due to repeated attacks) can trigger a thorough inspection,
thus exposing the attacker. In order to proactively prevent
such damages in advance, as discussed in Section VII, the
operator can install additional monitoring apparatus such as
server outlet air flow meters, which are not widely used in
many data centers. Thus, although thermal attacks do not have
a high degree of stealthiness, there is a need of attention to
potential thermal attacks.

Relationship to power attacks. Power attacks exploit
oversubscribed power capacity and can be launched without
the need of battery [5]–[8], [51]. On the other hand, our
proposed thermal attacks are launched with the help of built-in
battery for concealment of malicious cooling loads. Moreover,
for repeated attacks, thermal attacks are stateful due to battery
charging/discharging that results in temporal correlation of
battery states, whereas power attacks are stateless and can
be launched at any time without being constrained by the
available battery energy. Thus, our thermal attacks are com-
plementary to power attacks and present a potential threat by
leveraging servers’ built-in battery for a malicious purpose.

IV. LEARNING AN ATTACK POLICY

An one-shot attack is a special case of repeated attacks if the
attacker sets a sufficiently high threshold on benign tenant’s
load (above which an attack is launched) and greedily use
up its large built-in battery energy. Thus, we now study a
general repeated attack policy, Foresighted, by formulating
it as a discrete-time Markov decision process (MDP) and
using reinforcement learning. The repeated attack policy has



a structural property: attack when both the benign tenants’
server load and the battery energy level are sufficiently high.

A. MDP formulation

We divide the entire time horizon into time slots (e.g., 1
minute each) indexed by k = 0, 1, 2, · · · ,∞, and present our
MDP formulation below.
• System state: s = (b, u) ∈ S
• Action: a(s) ∈ A(s)
• State transition probabilities: P (s, a, s′)
• Reward function: R(s, a, s′)
• Discount factor: γ ∈ (0, 1)

The tuple (s, a, s′) means that, given an action a, the
system state evolves from s to s′. In our problem, the system
state includes two sub-states: battery state (the amount of
remaining energy b in the batter units) and the attacker’s
estimated benign tenants’ load state u (using a voltage side
channel in Section III-D [5]). Note that we consider the
estimated load as part of the system state, because the true
value of servers’ total load is not available to the attacker.
We consider three actions: (1) charging the battery units;
(2) launching a thermal attack by running the servers at peak
power and discharging batteries; and (3) standby, i.e., running
dummy workloads without charging or discharging batteries.
The battery’s charging rate is fixed at the vendor recommended
value, while the effective discharging rate (i.e., power actually
delivered to servers, excluding battery losses) is set to pb
which, if combined with the attacker’s subscribed capacity
ca, can support the attacker’s total server power consumption
pa for thermal attacks. The state transitions are governed by
benign tenants’ load that is exogenous to the attacker and the
battery energy evolution which is controlled by the attacker’s
charging/discharging decision.

We define the attacker’s reward function as follows:

R(s, a, s′) = w · [T (s, a)− T0]
+ − β(a), (2)

where T (s, a) is the resulting server inlet temperature, T0 is
the server inlet temperature conditioned by the operator with-
out attacks, β(a) is a cost term, and the operator [·]+ means
max(·, 0). Note that the attacker can easily sense the resulting
inlet temperature T (s, a), because today’s servers have built-
in temperature sensors to monitor the server inlet temperature
for safety reasons (i.e., if the server inlet temperature is too
high, the server may shut down by itself [34]). Clearly, after
discharging batteries, the attacker needs to recharge them,
which hence draws more energy from the operator’s PDU
than otherwise. To account for this, we add a normalized cost
term: β(a) = 1 during an attack and β(a) = 0 otherwise.
The cost is normalized to 1, because the attacker discharges
a fixed amount of energy for each attack. The weight w ≥ 0
governs the tradeoff between server inlet temperature increase
and total battery usage (or attack time): the larger w, the more
importance of server inlet temperature increase and hence
more attacks.

In a standard MDP, the goal is to find an optimal policy
π∗ : S → A (i.e., deciding an optimal action given each

system state) which maximizes the total discounted reward∑∞
k=0 γ

kR(sk, ak, sk+1). The discount factor γ ∈ (0, 1) is
imposed to ensure the convergence of summation and implies
in practice that future rewards are relatively less important than
immediate rewards [52]. Nonetheless, the resulting server inlet
temperature T (s, a) is an involved function that also depends
on external factors such as the edge colocation layout, and
the dynamics of benign tenants’ power usage is unknown to
the attacker. Thus, we need an online learning approach to
identify the optimal policy π∗ on the fly.

B. Batch Q-learning

Reinforcement learning can effectively assist an agent with
finding optimal actions in an unknown environment. The
cooling load state is essentially uncontrollable and exogenous
to the attacker. On the other hand, the battery state is fully
controllable and, with simplification, can be approximated as
bk+1 = min(bk + ek, B̄), where ek is the charged energy
during one time slot (a negative value means battery discharg-
ing for attacks) and B̄ is the total battery capacity. Thus, we
adopt batch Q-learning [53], by extending the widely-used
standard Q-learning [52], [53]. Concretely, by introducing an
intermediate state (also called post state s̃k), we have two state
transition processes: from sk to s̃k, we only update the battery
state whose transition, according to the attacker’s action, is
fully determined; then, from s̃k to sk+1, we will update the
cooling demand state based on observations. More specifically,
for each time slot k, our proposed batch Q-learning works as
follows:

ak ← arg max
a∈A(sk)

[Q(sk, a) + θV (s̃k(sk, a))] (3)

s̃k(sk, ak)← f(sk, ak) (4)
Q(sk, ak)← (1− δ)Q(sk, ak) + δR(sk, ak, sk+1) (5)
C(sk) = max

a
[Q(sk, a) + γV (s̃k)] (6)

V (s̃k) = (1− δ)V (s̃k) + δC(sk+1) (7)

where δ ∈ (0, 1) is the learning rate, and only the battery state
is updated based on the attacker’s charging/discharging action
when setting the post state s̃k(sk, a) in Eqn. 4.

Unlike standard Q-learning, three different value matrixes
are used for batch learning: state-action value Q(sk, ak),
post-state value V (s̃k), and normal state value C(Sk). First,
after observing the system state sk, the attacker makes an
action a based on Q(sk, a) and post-state value V (s̃k(sk, a))
according to Eqn. 3. Then, post state sk can be obtained
based on attacker’s action. Next, the reward Rk is obtained
based on attacker’s observed server inlet temperature and its
reward function in Eqn. (2). Meanwhile, the next state sk+1 is
obtained by estimating the cooling state through a voltage side
channel as discussed in Section III-D. Thus, the three value
matrixes can be updated recursively according to Eqns. (5),
(6) and (7), respectively, making the learning process converge
more quickly.



TABLE I
LIST OF PARAMETERS WITH THE DEFAULT VALUES.

Parameter Value
Data Center Capacity 8 kW
Number of Tenants 4
Number of Servers 40
Number of Server Racks 2
Attacker’s Capacity (ca) 0.8 kW
Attacker’s Total Battery Capacity (B̄) 0.2 kWh
Attack Thermal Load from Battery 1 kW
Charging Rate of the Battery 0.2 kW
Temperature Threshold for Emergency (Tth) 32◦C
Q-learning Discount Factor (γ) 0.99
Q-learning Learning Rate (δ(t)) 1/t0.85

V. EVALUATION METHODOLOGY

In this section, we first present the default simulation set-
tings and evaluation metrics, and then validate our simulation
model.

A. Settings

It is practically challenging, if possible at all, to evaluate
different thermal attack strategies over a timescale of years.
Thus, we resort to a simulation-based approach based on the
well-established computational fluid dynamics (CFD) analysis
[6], [31], [32], [54] to simulate thermal dynamics. This is also
the state-of-the-art methodology in data center-scale research
[6], [13], [14], [31]. Prior to simulations, we will also validate
our simulation model with real experiments on our scaled-
down prototype of 14 servers. We list the default simulation
parameters in Table I.

Edge colocation infrastructure. We consider a container-
ized modular data center design, which is particularly suitable
for edge colocations due to its self-contained design. We
follow the specification of the Vertiv SmartMod container data
center with two server racks, each holding 20 servers [55]. We
consider there are four tenants (including the attacker) with
a total subscribed power (i.e., the power capacity) of 8kW,
where each server’s maximum power consumption is 200W.
The attacker has 4 servers with a total subscribed capacity of
0.8 kW while the other three benign tenants each subscribe
to 2.4kW. The attacker’s servers are shown in red shades in
Fig. 6(a). Note that, while we place the attacker’s servers at
the bottom of the rack, their location within the rack does not
play any significant role in the attack since the cooling load
is determined by server power. The data center employs heat
containment for the hot exhaust air returning to the AC. The
AC supplies cold air at 27◦C, with a cooling capacity of 8kW.
Fig. 6(a) shows the layout used in our experiment.

Thermal environment. The CFD analysis provides the
most detailed thermal dynamics of a data center (e.g., even
Google uses CFD analysis to predict thermal distributions
[54]). However, it is computationally exhaustive to run tran-
sient CFD analysis for long experiments (e.g., a year) [31].
Therefore, following the literature [6], [31], we model the data
center’s heat flow using a heat distribution matrix, for which
we only need to obtain the matrix parameters using shorter
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Fig. 6. (a) Data center layout. 1© Server racks. 2© Heat containment. 3© Air
conditioner. 4© Supply air duct. (b) 24-hour snapshot of the power trace.

CFD analysis. Specifically, to extract the heat distribution
matrix, we test the data center with a heat spike from each
server and measure the resulting temperature impact for 10
minutes. We repeat the process for all servers to completely
build the matrix. We use the 10-minute window to allow
the heat convection through the air and capture the gradual
temperature build-up from sustained server heat generation.
We limit the CFD analysis of each heat spike to 10 minutes
since we find no measurable impact beyond this time horizon.
The accuracy of CFD analysis and the heat distribution model
has been extensively verified with real systems [31], [56], and
will also be validated against our prototype in Section V-B.
Because of the well-insulated environment, we do not incorpo-
rate the impact of outside temperature. Even with low outside
temperature, if overloaded, data center’s cooling system cannot
remove all server heat.

Attacker. The attacker has built-in batteries integrated with
the servers’ power supply units. While the capacity of each
server subscribed from the operator is 200W, each of the
attacker’s servers can run at a peak power of 450W by
discharging built-in batteries to supply the additional 250W.
Thus, the attacker can inject up to 1kW cooling load for
repeated attacks. When recharging, the built-in batteries have
a total charging rate of 0.2 kW. We use battery specification
of [47] with a suitable size for placing inside a server and
set the attacker’s default total battery capacity to 0.2kWh with
0.05kWh (i.e., 200W for 15 minutes) per server. If the attacker
aims at an one-shot attack, each of its four servers has a peak
power of 950W, resulting in a total attack load of 3KW. This
can be achieved by using multiple power hungry GPUs (e.g.,
Nvidia RTX 3080, each with a full power of 320W [57]) in
each server. The current battery energy density [47] is enough
to support the additional load for an one-shot attack, as each
attack only lasts a few minutes.

Thermal emergency and system outage. A thermal emer-
gency is considered to arise when the server inlet temperature
exceeds 32◦C for at least 2 minutes. We consider 32◦C as
the threshold temperature, because it is the maximum allowed
temperature based on the ASHRAE guideline for data centers
with enterprise-grade servers and storage [33]. To handle a
thermal emergency, each server (including attacker’s servers)
is required to cap its power below 120W (60% of capacity) to
prevent more serious impacts. As a precaution, load capping
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Fig. 7. Experimental validation of our simulation model.

lasts for 5 minutes for each thermal emergency. If the inlet
temperature continues rising to reach 45◦C, automatic shut-
down occurs (e.g., the shared PDU can power off), creating a
system outage and service interruptions [33].

Power trace. For the three benign tenants, we use workload
traces from Facebook and Baidu [13], [14], and generate a
year-long synthetic power trace from request-level log using
server power models validated in real systems [58]–[60]. The
total power usage is scaled to have a 75% average utilization
in our 8kW data center. We show a 24-hour snapshot of the
power trace in Fig 6(b). To demonstrate its robustness across
different load patterns, we also run an alternate power trace
and show in Fig. 13 in Section VI-F.

Application performance. For delay-sensitive workloads,
high-percentile latency is the most critical metric [61]. Here,
we consider 95-percentile response time as the performance
metric and model the tenants’ performance based on experi-
ments on our small cluster (Fig. 15 in Appendix A).
Q-learning parameters. Following the literature [62], we

set the default discount factor γ = 0.99 and a dynamic learning
rate that is updated everyday using δ(t) = 1/t0.85, where t
is the number of days elapsed. We use one minute as each
time slot, and show the other parameters when presenting the
results in Section VI. To initialize the table of Q values, we use
random power traces offline based on an initial attack policy.
Our results show that during the online learning stage, the
action policy can converge quickly (often within 1-4 weeks).

Evaluation metrics. For the adverse thermal environment,
we consider the average server inlet temperature increase,
the probability distribution of the temperature, and the total
emergency hours due to repeated thermal attacks. For benign
tenants, we examine their performance degradation. We also
study the average response time during the emergency periods
normalized to that of without any emergencies.

B. Experimental Validation of Our Simulation Model

While simulation-based evaluation is widely used in data
center research [6], [9], [21], we validate our simulation model
using real experiments on our prototype consisting of 14
servers and a 600VA CyberPower UPS battery. We look into
the two important aspects of our simulation model — thermal
dynamics and battery charging/discharging model.

Temperature dynamics. We place our server rack in a
sealed environment with a comparable dimension to an edge
data center. The rack is cooled by the building’s central cooling
system and has air vents on the top. We create an additional

1.5kW thermal overload beyond the limit that can be handled
by the top air vents. We obtain the heat distribution model
based on CFD analysis. In Fig. 7(a), we show the monitored
server inlet temperature change along with our temperature
change simulated using our model. We see that both the heat
distribution model and temperature sensor readings exhibit
very similar dynamics. This is expected since we adopt well-
established CFD-based simulation [6], [31].

Battery energy dynamics. In our Q-learning and the
simulation, we need to validate that the linear battery model
bk+1 = min(bk+ek, B̄), where bk is the battery level at time k,
is accurate to model the battery energy changes with respect
to the charging/discharging decisions. For this, we connect
two Dell desktops with a total load of ∼175W to our UPS
battery. We connect a power meter between the UPS and the
AC power outlet to measure the total power consumption of
the battery and the desktops. We connect another power meter
between the UPS and the desktops to record the total power
of the two desktops. Subtracting the later from the former
gives the total power consumption of the UPS. To demonstrate
the battery dynamics, we first run the UPS on the battery
discharging mode by unplugging it from the AC outlet. After
10 minutes, we reconnect the UPS to the AC outlet, which puts
it in the battery charging mode. We show the battery energy
levels in Fig. 7(b). In our experiment, the charging rate is
lower than the discharging rate, because of the additional UPS
loss to power the running desktops. This experiment conforms
to our choice of a linear battery energy model. While even
more complicated and detailed battery models (e.g., impact of
ambient temperature) may be adopted [63], it does not offer
much additional insight for our purpose and our observations
still hold.

To sum up, our simulation methodology (i.e., using CFD-
based analysis for modeling temperature dynamics and using a
linear charging/discharing model for battery energy dynamics)
matches well with the real-world observations and hence can
be used to evaluate thermal attacks with a good confidence.

VI. EVALUATION RESULTS

We first show an example of one-shot attack. Then, for
repeated attacks, we compare Foresighted with another attack
policy, Myopic, that launches thermal attacks in a greedy
manner whenever there is enough energy in the battery and
the benign tenants’ aggregate load is sufficiently high. Besides
Myopic and Foresighted, we also consider Random as a bench-
mark, where the attacker randomly launches thermal attacks
whenever it has enough battery energy without considering
benign tenants’ power loads.

A. Thermal Attack Demonstration

1) One-shot attack: We consider a 30-minute snapshot and
demonstrate an one-shot attack in Fig. 8 where the attacker
injects 3kW of intense attack load at around the 18th minute,
causing the server inlet temperature to rise quickly. At around
the 21st minute, a thermal emergency is triggered and power
capping is applied, limiting the total metered load below 5KW.
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Fig. 8. Demonstration of a one-shot attack.

Nonetheless, the attack load remains to keep the server inlet
temperature high enough beyond the safety threshold of 45◦C
[33], successfully resulting in a system outage. This is also
consistent with other orthogonal studies that demonstrate a
very quick rise of inlet temperature in case of a cooling system
malfunction [41]. If the one-shot attack is coordinated across
multiple colocations, a service interruption may occur and
create significant damages.

2) Repeated attacks: We illustrate how repeated attacks
create emergencies under different attack policies in Fig. 9 by
considering a four-hour snapshot when the total power/cooling
load is relatively higher. In our illustration, Random launches
attacks for 8% of the times, Myopic sets the attack threshold
at 7.4kW, while Foresighted uses a weight w = 14. These
settings are chosen to yield similar attack times (i.e., 8%
of the time) across different attack policies. The total power
drawn from the operator’s PDU is shown as “Metered Power”,
while the actual server power consumption also includes the
contribution from the attacker’s batteries (“Attack Load”) and
hence is larger than the metered power during the attacks.
On the other hand, the actual server power is smaller than
the metered power during battery charging. The discrepancy
between the metered power and actual server power highlights
the attacker’s “behind-the-meter” cooling loads that are not
monitored by the operator.

We see in Fig. 9 that thermal attacks using Random,
which remains oblivious of the high cooling load, fail to
create any thermal emergencies. Note that, Random’s attacks
look sparser in Fig. 9 since they are more spread over time
while Myopic and Foresighted’s attacks are concentrated in
the high power/cooling load periods. Myopic exploits the
voltage side channel [5] to detect benign tenants’ high power
loads and launches thermal attacks between hours 0 and 1.
Since the power/cooling load remains at a high level, attacks
continue until the operator announces a thermal emergency.
At that point, attacks are stopped and the power consumption
is capped to oblige to the operator’s emergency handling
protocol. The power returns to a normal level after being
capped for 5 minutes to handle the thermal emergency.

While it also launches thermal attacks between hours 0 and
1, Foresighted does not launch a series of unsuccessful short-
duration attacks like Myopic. Instead, it waits to regain the bat-
tery energy and launches a sustained thermal attack to trigger a
second thermal emergency near hour 2. This shows the benefits
of reinforcement learning which considers the impact of its
actions on the future for maximizing the long-term benefits.
Note that, even if Myopic only launches long-duration attacks
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Fig. 10. Attack policy learnt by Foresighted.

with fully charged batteries, unlike Foresighted, these attacks
will more likely occur at the wrong times due to the lack of
learning and accounting for battery level dynamics.

B. Attack Policy Learnt by Foresighted

We show in Fig. 10 the structural property of our repeated
attack policy learnt by Foresighted: attack when both the
benign tenants’ server load and the battery energy level are
sufficiently high. For illustration, we consider two different
values of w (the larger w, the more weight on creating
temperature increases and hence more attacks). For w = 9 in
Fig. 10(a), attacks are launched only when the estimated power
load (including the attacker’s subscribed power capacity) is
above 7.5kW and more than 60% of battery energy is left.
For w = 14, we see that attacks are launched even for 40%
remaining battery energy when the power is above 7.5kW.
Meanwhile, Foresighted launches attacks at a lower power of
7kW when it has more than 80% battery energy.

C. Cost Estimate

Benign tenants’ cost. With an one-shot attack, benign
tenants can suffer from service outages, which may be costly
or even indirectly cause fatal damages (e.g., decreased safety
for assisted driving [46]); with repeated attacks, tenants can
potentially experience more frequent performance degradation.
The monetary impact of thermal attacks is generally difficult
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Fig. 11. (a) Overload time required to exceed the temperature limit of 32◦C. (b) Average temperature increase vs. attack time. (c) Total attack-induced
emergency vs. attack time. (d) Tenants’ performance during emergencies.

to estimate. To offer an approximate point of reference, we
provide a ballpark estimate for repeated attacks following
prior studies [10], [12], [64] that calculate the cost impact
resulting from the increased 95-percentile latency. Under our
setting, Foresighted causes a total performance cost of roughly
$60+K/year to benign tenants in our 8kW edge colocation
(roughly 80% of benign tenants’ total rental costs plus amor-
tized server costs), noting that the actual cost highly depends
on the affected tenants’ applications and can include additional
indirect cost such as business reputation.

Attacker’s cost. The attacker’s cost involves the power
capacity subscription cost, electricity cost, and server purchase
cost: 150$/kW/month power subscription cost, 0.1$/kWh en-
ergy cost, and $4500 for each server [12]. It is on a par with
the cost for other related attacks [5]–[9], and can be affordable
for institutional or state-sponsored attackers.

D. Impact of Thermal Attacks

For repeated attacks, we first show in Fig. 11(a) how long
it takes for the server inlet temperature to exceed the 32◦C
threshold. Naturally, the temperature exceeds the threshold
sooner with increased cooling overload. Similarly, when the
data center is already running hotter (i.e., higher supply tem-
perature Ts), its temperature reaches the limit faster. We see
that it takes less than four minutes to increase the data center
temperature from 27◦C to 32◦C with one kW of additional
cooling load, demonstrating the potential danger of thermal
attacks.

We then vary the total attack energy injected into the
edge colocation (i.e., total attack time), while keeping the
attack load from the battery fixed at 1kW. We vary the
attack probability for Random from 0% to 15%, the load
threshold (including the attacker’s own power subscription)
for launching an attack under Myopic from 6.5kW to 8.0kW,
and the weight parameter for Foresighted from w = 0 to
w = 30. Figs. 11(b) and 11(c) show the average server inlet
temperature increase (∆T ) beyond 27◦C and the amount of
attack-induced emergencies (measured in % of the total time)
given different average daily attack times, respectively. In
Fig. 11(c), we exclude Random because it fails to create any
thermal emergency.

Temperature increase. We see in Fig. 11(b) that with more
attacks, the temperature increase caused by Random also rises.
For Myopic and Foresighted, the temperature increase rises
very fast initially, when attacks are conservatively launched.

However, as more attacks are launched, the temperature in-
crease for Myopic peaks at around attack time of 1.1 hours
per day and then starts to decrease. This is because Myopic
launches premature attacks which deplete the battery energy
and hence miss future attack opportunities. We see a similar
impact on the annual thermal emergency time in Fig. 11(c)
where Myopic’s performance starts to deteriorate around attack
time of 1.5 hours per day.
Foresighted takes the future into account and hence retains

both the average temperature increase and annual emergency
time increase with more thermal attacks. However, beyond
an attack time of 1.5 hours per day, Foresighted cannot
create further higher temperature increases nor more thermal
emergencies. This is mainly because the total available attack
opportunities are limited (i.e., benign tenants do not always
have high power loads) and recharging batteries takes time.
Nonetheless, given any amount of thermal attacks, Foresighted
can create higher server inlet temperature increases and more
thermal emergencies than Myopic.

Attack-induced thermal emergencies. In Fig. 11(c), we
see that the attack-induced thermal emergencies for both
Myopic and Foresighted are close to zero at low attack time.
This is because the operator declares a thermal emergency
when the data center temperature exceeds 32◦C and stays
there for at least two minutes. Hence, at low attack time
which also corresponds to low average temperature increases
in Fig. 11(b), there are almost no thermal emergencies due to
attacks.

Performance impacts. We normalize the tenants’ 95-
percentile response time to that of without any emergencies.
We take the average of the normalized response time during
the emergency periods and show the result in Fig. 11(d).
We see that Myopic has a slightly higher average perfor-
mance impact than Foresighted. This is because Myopic
mainly captures the most prominent attack opportunities while
Foresighted intelligently picks up even the subtle opportunities
with relatively lower impact, resulting in a lower average
performance impact. Nonetheless, since Foresighted seizes
both the prominent and subtle attack opportunities, it results in
more frequent thermal emergencies, thus resulting in a greater
cost impact.

E. Sensitivity Study
We now study how the battery capacity, side channel

accuracy, attack load, and data center average utilization
affect the resulting thermal attacks. We also study the impact
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Fig. 12. Sensitivity of Foresighted. (a) Battery capacity. (b) Load estimation due to random noise in side channel. (c) Attack load. (d) Average utilization
of data center capacity. (e) Required battery capacity for extra cooling capacity.

of additional cooling capacity on attacker’s battery capacity
requirement. We exclude Random from our study here since
it fails to create any thermal emergency.

Battery capacity. Considering repeated attacks, we vary
the battery capacity from 0.1 kWh to 0.4 kWh, and show
the annual duration of thermal emergencies due to the attacks
in Fig. 12(a). Naturally, a larger battery provides greater
flexibility in launching thermal attacks. Hence, we see the
annual thermal emergency time increases with battery capacity.
We also see the difference between Myopic and Foresighted
decreases with a larger battery as the battery is more likely to
be available whenever Myopic needs it, like in Foresighted.

Load estimation accuracy. To test robustness against volt-
age side channel errors, we add varying degrees of random
errors to the estimated loads of benign tenants and show our
results in Fig. 12(b). As expected, the thermal emergency time
decreases for both Myopic and Foresighted when there is more
noise in the side channel. Nonetheless, Foresighted can still
create a significant amount of thermal emergency, even using
a noisy voltage side channel.

Attack load. The attack load determines how much addi-
tional cooling load is injected during each attack. We show the
results in Fig. 12(c) where we keep the attacker’s subscribed
capacity at 0.8kW and scale the thermal attack load from
0.5kW to 2kW. We see that the annual emergency time
greatly increase with a higher attack load and that Foresighted
consistently outperforms Myopic by a great margin.

Capacity utilization. We study the impact of average data
center utilization on the thermal attack by scaling the power
trace of all the servers while maintaining the peak power at
8kW. Fig. 12(d) shows that the total thermal emergency time
increases with increased capacity utilization. This is intuitive
since an increased utilization means the data center more
frequently operates close to its capacity, thus leading to more
thermal attack opportunities.

Extra cooling capacity. We study the impact of the oper-
ator’s extra cooling capacity on Foresighted’s battery require-
ment to maintain similar impact (i.e., 2.3% emergency). In
Fig. 12(e), we see that the extra cooling capacity mandates
higher battery capacity. Specifically, the increase in battery
capacity for 10% extra cooling capacity is about ∼0.3kWh,
which can still be feasible given today’s battery energy density.
Note, however, that upgrading an existing data center cooling
system to add extra cooling capacity is non-trivial due to
constraints such as space limitation, data center uptime, etc.
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Fig. 13. Results with an alternate power trace. (a) A 24-hour snapshot of the
alternate power trace. (b) Tenants’ performance during emergencies.

Thus, as discussed in Section VII, other defenses are more
effective and cost-efficient, especially for an existing data
center that has limited cooling capacity.

F. Results with an Alternate Power Trace

We conduct our year long evaluation with an alternate power
trace to demonstrate that Foresighted is effective regardless of
the benign tenants’ load patterns. We use the Google cluster
trace from [40] as the alternate total power trace. We show
a 24-hour snapshot of the alternate power trace in Fig. 13(a).
Like in the default setting, we scale the power trace to have
a 75% average utilization in our 8kW edge colocation. We
keep the same default settings as in Section V for Myopic
and Foresighted. Fig. 13(b) shows that, with the alternate
power trace, benign tenants suffer from similar performance
degradation as in our earlier results. While we omit detailed
discussion for space limitation, these findings are consistent
with our earlier results.

VII. DEFENSE MECHANISM

Tenants generally expect reliable power and cooling sup-
plies (subject to contractual terms) from the colocation oper-
ator which manages non-IT systems. Thus, we offer possible
defenses from the operator’s perspective. We first discuss
defenses that aim at preventing potential thermal attacks,
followed by defenses that detect thermal attacks.

A. Prevention

The following defense strategies are proactive measures to
inhibit potential thermal attacks.

Infrastructure resilience. A straightforward defense
against thermal attacks is to reinforce an edge colocation’s
physical infrastructure for handling thermal overloads. For
this, the operator can deploy a cooling system with additional
redundancies. This approach, however, can increase the capital



cost [24], [65] and be particularly challenging for existing
systems. Alternatively, the operator can lower its server inlet
temperature set point (to 20◦C instead of the recommended
27◦C) to have more margins for triggering thermal emergen-
cies. The drawback is the increased cooling energy cost [15],
[31]. Thus, while oversubscribing data center cooling capacity
[15], [16], [24] and increasing temperature set point [31] have
been suggested for cost efficiency, they should be carefully
exercised, balancing the benefit versus risk to potential thermal
attacks.

Rigorous move-in inspection. The colocation operator
can employ a more rigorous background check and move-in
inspection process for all tenants’ servers to detect and remove
integrated batteries. Note that without built-in batteries, the
attacker cannot have additional power sources to support
thermal attacks behind the meter or overload the shared
cooling capacity, unless the data center cooling capacity is
oversubscribed as suggested by recent studies [15], [16], [24].
Besides, the operator can also enforce on-site power load
tests to ensure that the server power is consistent with the
tenant’s data center capacity subscription. The operator should
be particularly careful about the servers’ peak power.

Degrading physical side channels. The colocation operator
may increase the attacker’s uncertainties about timing attacks
by degrading/eliminating the physical side channel. For exam-
ple, it can add jamming noise signals into the colocation power
networks and/or use power line noise filters. Additionally, the
operator may also prohibit unusual sensors (e.g., microphones)
on tenants’ servers in order to prevent an attacker from
exploiting other possible but unknown side channels.

B. Detection

Detection strategies can be implemented to catch an attacker
that may circumvent prevention approaches.

Detecting behind-the-meter cooling loads. The same
power reading can result in different cooling loads and server
inlet/outlet temperature, depending on whether malicious ther-
mal attacks are launched or not. Thus, by using anomaly detec-
tion algorithms (e.g., cross-checking readings by temperature
sensors and power meters), the operator can detect an irregular
thermal environment possibly due to thermal attacks.

Identifying attacks from impacts. One-shot attacks can
be easily identified through a thorough inspection if a system
outage occurs. By contrast, repeated-attacks that inject milder
loads to trigger more frequent thermal emergencies can re-
quire more efforts. Since precise temperature management is
difficult with open airflow cooling, there can be occasional
thermal emergencies in colocations even without thermal at-
tacks; colocation operators often offer a long-term temperature
SLA (e.g., the inlet temperature is conditioned below 27◦C
for 99% or more of the time) [66], [67]. This may potentially
allow an attacker to hide behind the statistics for a longer time.
Thus, advanced algorithms can be implemented to monitor
SLA metrics to early detect the presence of thermal attacks.

Improved data center monitoring. While the aforemen-
tioned approaches can detect thermal attacks, pin-pointing the

attacker’s servers — the source of the injected cooling load
— is still needed to hold the attacker accountable. Thus, to
monitor the servers’ actual cooling loads, the operator can
measure each server’s outlet temperature as well as the hot
air flows. Alternatively, thermal cameras may be employed
to identify the servers that are running extra hot. Likewise,
microphone arrays can be used along with the thermal camera
to pinpoint servers with fans spinning at a high speed (needed
by servers that have higher cooling loads) [7]. While these
monitoring apparatuses are not used in all data centers, they
are readily available and can be easily installed by data centers
to identify malicious cooling loads.

To sum up, there exist readily-available defenses, such as
move-in inspection to disallow built-in batteries, advanced
anomaly detection, and installation of monitoring apparatuses
to locate the attacker. Given the potential threat of thermal
attacks that are currently neglected, the edge colocation oper-
ator can implement one or more of the suggested defenses to
safeguard its thermal environment for tenants.

VIII. RELATED WORKS

Power and thermal management. The common practice
of aggressive capacity oversubscription can create occasional
capacity overloads when the demand peaks [12]–[14], [18],
[19], [21]. To safely ride through power emergencies, numer-
ous graceful power capping techniques have been proposed,
such as throttling CPU frequencies [13], migrating/deferring
workloads [14], [45], and discharging batteries to boost power
supply [18], [19], [21]. Likewise, managing server loads to
handle thermal emergencies are equally crucial [16], [20],
[43]. These studies, however, are not applicable for colocations
whose operators have no control over tenants’ servers. More-
over, they do not consider an adversarial setting. More recent
works [12], [68] propose market approaches to coordinate
tenants’ power demand in colocations, but they assume that
tenants are all benign without any malicious intentions.

Data center security and thermal fault attacks. Securing
data centers against cyber attacks, such as network DDoS [69]
and data/privacy breach [70], has been extensively investi-
gated. Prior studies have also considered malicious thermal
load attacks on a single device [71]. More recently, data center
power and cooling system security has been emerging as a
crucial concern [5]–[9], [51], [72]. However, these works focus
on overloading the power infrastructure (i.e., power attack) of
large data centers with multi-level redundancy or creating hot-
spots (i.e., thermal attack) in Amazon-type cloud with frequent
VM shuffling. In contrast, we focus on novel battery-assisted
thermal attacks in a shared edge colocation. Moreover, our
repeated battery-assisted thermal attacks are stateful whereas
prior attacks are stateless as the current attack does not depend
on any past/future attacks.

Battery management and others. The prior studies have
exploited batteries for various purposes, such as better energy
capacity [63], concealing a household’s electricity usage infor-
mation from the utility for better privacy [73], smoothing data
center power demand [18], [19], [21], among many others.



To our knowledge, however, our study is the first to leverage
batteries for a malicious purpose — one-shot or repeated
thermal attacks in edge colocations — which highlights the
need of attention to the potential threat.

IX. CONCLUSION

In this paper, we discovered that the sharing of cooling
systems may expose edge colocations’ potential vulnerabil-
ities to both one-shot and repeated thermal attacks assisted
with built-in batteries. For repeated attacks, we presented a
foresighted attack policy which, using reinforcement learning,
learns on the fly a good timing for thermal attacks. We also
ran simulations to validate our attacks and showed that, for
an 8kW edge colocation, an attacker can cause performance
degradation for affected tenants. Finally, we suggested effec-
tive countermeasures against potential thermal attacks that are
currently neglected in many data centers.
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APPENDIX A
PROTOTYPE DEMONSTRATION OF THERMAL ATTACKS

To see the impact of thermal attacks, we run experiments on
a rack of 14 Dell PowerEdge servers in a scaled environment
with hot-cold aisles to mimic an edge colocation. The cooling
system can support up to a cooling load of 3kW. We inject

an additional 1.5kW load to overload the cooling system and
measure the server inlet temperature. As shown in Fig. 14(a),
the inlet temperature rises to nearly 40◦ C within minutes.
Our experiment, albeit on a small scale, demonstrates the
rapid increase of server inlet temperature due to a overloaded
cooling system. This is also corroborated by other studies
that demonstrate rapid temperature rises in data centers due
to cooling malfunction [41]. We follow the ASHRAE safety
limit and do not further overload our system [33].

25

30

35

40

Te
m

pe
ra

tu
re

 (∘
C

)

0 10 20 30
Time (min)

0.0

0.5

1.0

1.5

O
ve

rl
oa

d 
(k

W
)

Cooling Load
Tinlet

(a) Temperature

0 10 20 30
Time (min)

0
100
200
300
400

p9
5 

D
el

ay
 (m

s)

Without Attack
With Attack
Emergency

(b) Performance

Fig. 14. Experiment in our server rack. (a) Server inlet temperature increases
due to a cooling capacity overload by 1.5kW. (b) Latency performance is
compromised due to server power capping for handling an emergency.
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Fig. 15. Performance degradation due to power capping.

We implement the ClouSuite Web Service benchmark [74]
in a set of 4 servers with a workload of 600 requests/s
and show the impact of power capping on the 95-percentile
response time, which is the key performance metric [61]. An
x-percentile response time means that x% of the requests
have a latency less than this response time. For illustration,
we throttle the CPU speed to cap the total server power to
60% of the peak power. We see from Fig. 14(b) that during
the emergency, the response time jumps nearly four times to
400ms.

We also extend our experiments to Web Search implemen-
tation from CloudSuite [74]. We show the 95-th percentile
response time normalized to the service level agreement
(100ms) for two different numbers of users for Web Service
in Fig. 15(a) and two different request rates for Web Search
in Fig. 15(b), respectively. The server power consumption is
normalized to the peak. We see that when the server power
consumption decreases, the response times for both applica-
tions increase for any given workload level. This reveals the
degree of performance degradation faced by tenants when they
reduce their power consumption while the workload remains
unchanged.


