
How to Run a Java Program

CSE 1310 – Introduction to Computers and Programming

Vassilis Athitsos

University of Texas at Arlington

1

Initial Steps

• You must install Java SDK.

• You must install Netbeans.

• These are steps that you do just once. Once
Java and Netbeans are installed, you can run
any Java program you like on your computer.

2

Installing Java SDK, Version 8,
Update 66

• As of January 19, 2016, the current version of Java
SDK is Version 8, Update 66 (Java SE Development Kit
8u66).

• To install the current version of Java SDK:

– Go to:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

– Click on "JDK Download"

– Follow the instructions on screen to complete the
installation process.

• If you have trouble installing, ask a TA for help during
lab hours.

3

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing Netbeans IDE 8.1

• As of January 19, 2016, the current version of
Netbeans is 8.1

• To install the current version of Netbeans:

– Go to https://netbeans.org/downloads/index.html

– Download the "Java SE" version

– Follow the instructions on screen to complete the
installation process.

• You will be asked about JUnit: choose to install it.

• If you have trouble installing, ask a TA for help
during lab hours.

4

https://netbeans.org/downloads/index.html
https://netbeans.org/downloads/index.html

Creating a Netbeans Project (1)
• Start Netbeans.

• Go to File->New Project

5

Creating a Netbeans Project (2)
• Under Categories, select "Java".

• Under Projects, select "Java Application".

• Click "Next".

6

Creating a Netbeans Project (3)
• Give a name to your project, e.g., hello1.

• Give to your main class the same name as for your project,
and click "Finish".

• Names
matter,
see next
slides.

• Students
lose lots of
points each
semester for
ignoring the
instructions
in the next
3 slides.

7

• Netbeans suggests a default name for the main class.

• For example, if the project name is hello1, Netbeans suggest
name hello1.Hello1 for the main class.

8

Choosing a Name for the Main Class

• Netbeans suggests a default name for the main class.

• For example, if the project name is hello1, Netbeans suggest
name hello1.Hello1 for the main class.

• You must
override
that, with
hello1 in
this example.

9

Choosing a Name for the Main Class

• Netbeans suggests a default name for the main class.

• For example, if the project name is hello1, Netbeans suggest
name hello1.Hello1 for the main class.

• You must
override
that, with
hello1 in
this example.

• The main
class name
should be
the same as
the project
name.

10

Choosing a Name for the Main Class

Writing Code (1)
• If you create a new project as described, Netbeans will create

a Java file, that looks like this:

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

/**

 *

 * @author athitsos

 */

public class hello1 {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 }

}

 11

Writing Code (2)
• The place where you put your code is indicated with the text
// TODO code application logic here

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

/**

 *

 * @author athitsos

 */

public class hello1 {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 }

}

 12

Writing Code (3)
• For the first assignments, all you have to do is replace that

"TODO" line with your own lines of code.

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

/**

 *

 * @author athitsos

 */

public class hello1 {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 }

}

 13

Writing Code (4)
• Text that starts with /* and ends with */ is NOT PART OF THE

PROGRAM.

• This text is called "comments", and is meant to be read by
humans, not the computer.

• We will usually not care about (and not show) the comments
that Netbeans generates. You can delete them if you want.

14

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

/**

 *

 * @author athitsos

 */

public class hello1 {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 }

}

Writing Code (5)

• Without the comments, the initial code that Netbeans
generates looks more simple:

15

public class hello1 {

 public static void main(String[] args) {

 // TODO code application logic here

 }

}

A First Example

• Remember: for a good part of the class, your code will go where
the TODO placeholder is.

16

public class hello1 {

 public static void main(String[] args) {

 // TODO code application logic here

 }

}

A First Example

• Here we have replaced the TODO placeholder with a line of
code.

• To run this code, go to Run->Run Project (or press F6) to
compile the code.

17

public class hello1 {

 public static void main(String[] args) {

 System.out.println("Hello world");

 }

}

18

• When you run your code, an "Output Window" appears at the
bottom, that looks as shown.

Failure to Run

• A lot of times you will get errors, and you will not be able to run
the program.

• Do not panic, this is a very common thing to happen.

• For example, on this code we introduce an error on purpose, to
see what happens (we delete the semicolon after "Hello
world").

• Now, when we try to run this code, we get what is shown on the
next slide:

19

public class hello1 {

 public static void main(String[] args) {

 System.out.println("Hello world")

 }

}

Error Message

• You will be seeing this window a lot.

• When you see it, click "Cancel".

• Then, click on "Run->Clean and Build Project".

• Now, the output window will show you an error message, which
you should try to fix.

• You will learn how to fix these errors during the course.

• After you fix the error, you can try running the code again. If you
get more errors, keep fixing them till the code runs.

20

Netbean Real-Time Error Detection

• Note the ! sign on line 3 of the code.

• This is Netbean's way of telling you that that line is not
correct.

21

22

• If you put the mouse arrow over the ! sign on line 3, you see
an error message.

• In this particular case, it says: ';' expected.

• This means that you forgot to put the semicolon at the end.

Netbean Real-Time Error Detection

23

• You should look for these ! signs, and fix the errors, before
you try to run your code.

Netbean Real-Time Error Detection

Running Existing Code

• Oftentimes you may want to run code from somewhere (the
slides, the textbook, the course website, etc.).

• To do that, you need to make sure that your project and main
class are named appropriately.

• Step 1: Look at the code that you want to run, and find the name
that shows up right after "public class".

• Step 2: When you create your project on NetBeans, use that
name for your project and your main class.

• Step 3: Copy the code that you want to run to the .java file that
NetBeans created.

24

Running Existing Code – Step 1

• Step 1: Look at the code that you want to run, and find the name
that shows up right after "public class".

• For example, in this piece of code, what is the name that shows
up right after "public class"?

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello world");

 }

}

25

Running Existing Code – Step 1

• Step 1: Look at the code that you want to run, and find the name
that shows up right after "public class".

• For example, in this piece of code, the name that shows up right
after "public class" is HelloWorld.

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello world");

 }

}

26

Running Existing Code – Step 2

• Step 2: When you create your project on NetBeans, use that
name (e.g., HelloWorld) for your project and your main class.

27

Running Existing Code – Step 3

• Step 3: Copy the code that you want to run to the .java file that
NetBeans created.

28

Running Existing Code

• Now you can run the code by pressing F6 (or by selecting
Run->Run Project from the top menu), and see the output.

29

