Introduction

CSE 1310 — Introduction to Computers and Programming
Vassilis Athitsos
University of Texas at Arlington

Credits: a significant part of this material has been created by Dr. Darin Brezeale
and Dr. Gian Luca Mariottini



Goals of This Course

The goal of this course is NOT to “learn
Python”.

Python is the programming language we will
use in this class.

However, the goal and focus will be on general
concepts about computers and programming.

Python is a good language (but not the only
good language) for this task:
— Easier to learn than some (e.g., C or Java)

— Fairly popular.



Goals of This Course

e Understand programming:
— What “programming” means
— Basic programming techniques
— Writing code that achieves some simple tasks
— Writing code that is easy to read, understand, test
— Testing and debugging



Goals of This Course

e Understand the need for computer science:
why do you need to take more classes if you
already “know Python”?

— The answer is NOT “to learn more programming
languages.”



Goals of This Course

e Understand the need for computer science:

e Computer science courses will teach you to:

— Write code more likely to be correct, more
efficient, easier to write, read, understand, test,
share, modify.

— Learn how to estimate if a certain programming
task is feasible/doable or not.

— Perform more sophisticated tasks (solve math and
engineering problems, play games, process
images, design a programming language).



What Does a Computer Do

High level: plays video and audio, displays e-mail and
web pages.

Middle level: executes specific software (movie player,
audio player, web browser), accesses specific hardware
(printer, network card, speakers, monitor):

Lower level: executes specific code, namely specific
instructions that humans can write and modify.

Even lower level: executes assembly code, which is a
sequence of simple arithmetic operations and memory
transfers.

Even lower level: sends back and forth electric signals
within and among different components, such as the
CPU, the network card, monitor, printer, camera, etc.



What Does a Computer Do

High level: plays video and audio, displays e-mail and
web pages.

Middle level: executes specific software (movie player,
audio player, web browser), accesses specific hardware
(printer, network card, speakers, monitor):

Lower level: executes specific code, namely specific
instructions that humans can write and modify.

Even lower level: executes assembly code, which is a
sequence of simple arithmetic operations and memory
transfers.

Even lower level: sends back and forth electric signals
within and among different components, such as the
CPU, the network card, monitor, printer, camera, etc.



Computers and Numbers

At some level, a computer can be seen as just
processing numbers.

e At a higher level, these numbers acquire a
more complex meaning:
— Pictures and video

— Music and audio
— Text

 The focus in this course is basic processing of
numbers and text.

— Build background needed for more complex data.



Programming

* Programming is the process of providing
specific instructions to the computer.

* In some ways, similar to providing instructions
to a human.

e Key difference:

— humans are smart, can understand very
ambiguous instructions, and even correct obvious
mistakes.

— Programming must provide unambiguous and
correct instructions (computers can do some
simple error checking, but that is limited).



Example

e “I showed my teacher a picture of Michael
Jordan. Then he gave me back my homework”.

* Humans have no trouble understanding such a
sentence.



Example

e “I showed my teacher a picture of Michael
Jordan. Then he gave me back my homework”.

e However, from a computer’s point of view, this
IS an ambiguous sentence.



Example

e “I showed my teacher a picture of Michael
Jordan. Then he gave me back my homework”.

e However, from a computer’s point of view, this
IS an ambiguous sentence:

— Who is “he”? The teacher or Michael Jordan?



Programming Languages

e Computer programs must leave no room for
ambiguity.
A programming language defines a way to

provide specific, unambiguous instructions to
the computer.

e A programming language does not allow
unambiguous instructions.
— Everything has a well defined meaning.

— No equivalents for the “kind of”, “sort of”, “like” of
human languages.



Specific Meaning

* In a program, every single line has a very
specific meaning.

 Extremely common source of problems for
students: Thinking you can understand or
write code without being able to
UNDERSTAND THE EXACT MEANING OF EVERY
SINGLE LINE.

— This often works in reading in a foreign language,
even for speaking and writing.

— It will not work for reading or writing code. y




Programming Languages

e Many programming languages are around:
— Python, C, C++, Java, JavaScript, Perl, C#, Matlab.

 Why that many? Each language can be
preferable in specific contexts, depending on:
— ease of use
— price
— availability to customers
— quantity of already existing code
— support of specific features
— portability to different platforms.



Programming Languages

 Anecdotal saying: “It should take a year to
learn your first programming language, a day
for the second one.”

— Programmers may disagree about the exact
guantities, but agree on the general idea.

— ANOTHER VERY IMPORTANT DIFFERENCE FROM
HUMAN LANGUAGES.
e So, the goal in this class is not “to learn
Python”, but “to learn how to program”.



Structure of the Course

e About 10 programming assignments
— 40% of grade.
— Online submissions, using Blackboard.
— Late submission policy: 2% per hour.

e 2 midterms, one final.

— 60% of grade.

— All exams will be open-book, open-notes (just no
electronic aids).



Attendance and Emergencies

e Attendance optional except for exams (but

you are responsible for material you have
missed).

 Any emergency causing late submissions or
missing an exam must be documented in
writing.
— The course will strictly follow UTA policies.

— Network or computer crashes are not an
emergency.



Algorithms

* An algorithm is a specific process that
computes the answer to a question.

e An algorithm is often described in English or
“pseudocode”, which is half-way between
English and real code.

* Any algorithm can be implemented in any
programming language.



Example: Converting Fahrenheit to
Celsius

Input: temperature in Fahrenheit.

Algorithm:
— Step 1: Subtract 32 from the input temperature.
— Step 2: Multiply by 5 the result of step 1.
— Step 3: Divide by 9 the result of Step 2.

Output: the result of step 3.

Note: although given in English, each step is
specific and unambiguous.



Example: Summing Up Numbers
Between 0 and N, take 1

Input: integer N >=0
Step 1: initialize variable total to O.
Step 2: initialize variable current to O.

Step 3:if current > N, then exit.

Step 4: replace the value of total by
total+current.

Step 5: increment the value of current by 1.
Step 6: go to Step 3:
Output: the value stored in total at the end.



Example: Summing Up Numbers
Between 0 and N, take 2
* |nput: integer N >=0
e Step 1: set variable total to 0.5 * N * (N+1)
e Qutput: the value stored in total at the end.



Algorithm vs. Program

* An algorithm is a description of how to solve a
problem.

e A program is an implementation of the
algorithm in a specific programming language,
that can run on a specific computer.

e Algorithms can be written and analyzed
independent of a programming language.

— That is the science of Computer Science.



Simple Examples of Algorithm Analysis

The first algorithm for summing numbers from
O to N is slower than the second algorithm.

e The number of steps it takes the first
gorithm to complete is proportional to N.

a
e The number of steps it takes the second
algorithm to complete is independent of N.



