
Loops
Darin Brezeale

The University of Texas at Arlington

Loops – p. 1/15



Basic Concepts – Loops
Python has the following loop constructs:

• while
• for

Loops – p. 2/15



Basic Concepts – Loops
Loops allow us to repeat a task. We need some way to
determine when the loop should terminate. This could
be

• when some condition has been met
• after a predetermined number of iterations

Loops – p. 3/15



while loop
The basic form of thewhile loop is

while test:
do_something

As long astest is true, the loop will repeat.

Example: If we begin summing the positive integers
starting at 1, how many will it take to get a sum of at
least 100?

Loops – p. 4/15



Output
If we did it by hand, we would determine the
following:

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

11 66

12 78

13 91

14 105
Loops – p. 5/15



while loop flow chart

sum = 0

i = 1

while sum <= 100:

sum = sum + i

print i, sum

i = i + 1

Loops – p. 6/15



Basic Concepts – Loops
When the loop will terminate after a predetermined
number of iterations, we need:

• a counting variable
• a test of that variable
• to increment/decrement that variable

Loops – p. 7/15



while loop
Example: What is the sum of the integers from 1 to 5?

sum = 0
i = 1

while i < 6:
sum = sum + i
i = i + 1

print "the sum from 1 to 5 is", sum

Loops – p. 8/15



for loop

Thefor loop has the following form:

for element_of_objectin object:
do_something

Loops – p. 9/15



for loop example
We could have done the last example with afor loop.

sum = 0

for i in range(1, 6):
sum = sum + i

print "the sum from 1 to 5 is", sum

range(a, b) is a function that generates the
integersa to b-1 (in this example).

Loops – p. 10/15



Changing loop behavior
Sometimes we want to end a loop early or move on to
the next value. We have two ways of doing this:

1. continue – jump to the very end of the current
loop

2. break – get out of the current loop completely

Loops – p. 11/15



continue Statement
i = 0

while i < 10:

i = i + 1

if i == 5:

continue # skip 5

print i

produces

1

2

3

4

6

7

8

9

10

Loops – p. 12/15



continue Statement cont.
In the previous example, we could have avoided the
continue statement:

i = 0

while i < 10:
i = i + 1
if i != 5:

print i

Loops – p. 13/15



break Statement
Keep going until a negative number is provided:

while True :

value = input("Enter a number (negative to stop): ")

if value < 0 :

break

print value

print "All done"

True is always true, so this creates an infinite loop.
Since we have replaced the test condition with
something that can never evaluate as false, thebreak
is the way of eventually stopping the loop.

Loops – p. 14/15



break Statement cont.
Output from previous program:

Enter a number (negative to stop): 3453

3453

Enter a number (negative to stop): 0

0

Enter a number (negative to stop): 12

12

Enter a number (negative to stop): -5

All done

Loops – p. 15/15


	Basic Concepts -- Loops
	Basic Concepts -- Loops
		exttt {while} loop
	Output
		exttt {while} loop flow chart
	Basic Concepts -- Loops
		exttt {while} loop
		exttt {for} loop
		exttt {for} loop example
	Changing loop behavior
		exttt {continue} Statement
		exttt {continue} Statement cont.
		exttt {break} Statement
		exttt {break} Statement cont.

