
Lists
Darin Brezeale

The University of Texas at Arlington

Lists – p. 1/14

Lists
While single variables have many uses, there are
times in which we wish to store multiple related
values. For these we may wish to use a list.

The mathematical equivalent of a one dimensional list
is a vector.

Example: We may have the vector
X = (3.5, 4.0, 9.34) whose terms are referenced as
x1, x2, andx3.

Lists – p. 2/14

Creating Lists
We create a list of objects by enclosing the objects in
square brackets (i.e., []). To reference a particular
element of the list, we use the name of the list with
the subscript of the element. Subscripts begin at 0 and
increment from left to right.

Example:
data = [3.5, 4, 9.34]

print data[2]

produces

9.34

Lists – p. 3/14

More 1D List Examples
The program

data = [5, 4, 3, 2]

print data

data[2] = 99

print data

produces

[5, 4, 3, 2]

[5, 4, 99, 2]

Lists – p. 4/14

Iterating Through a List
We can easily iterate through a list using thefor
statement:

data = [5, 4, 3, 2]

for value in data :
print value

produces

5
4
3
2

Lists – p. 5/14

Accessing List Elements
We have already seen that we can access list elements
using their subscripts, with the subscripts starting at 0
and incrementing from left to right.

We can also access the elements using subscripts that
began with -1 and decrement from right to left:

[18, 73, 21, 52] list
0 1 2 3 index from left
-4 -3 -2 -1 index from right

Lists – p. 6/14

Accessing List Elements cont.
We can alsoslice a list to get a range of values:

oldList = [15, 33, 72, 99, 24, 61]

slice is [start_index, end_index + 1]

newList = oldList[1:4]

print oldList

print newList

produces

[15, 33, 72, 99, 24, 61]

[33, 72, 99]

Lists – p. 7/14

Accessing List Elements cont.
Leaving out one or both of the end indices allows us
to get all values in a specific direction:

d = [23, 44, 19, 5, 61, 7]

print d[2:]

x = d[:] # copy list

print x

produces

[19, 5, 61, 7]

[23, 44, 19, 5, 61, 7]

Lists – p. 8/14

Useful functions
We can get the length of a list, i.e., how many
elements are in it, using thelen() function:

oldList = [15, 33, 72, 24]

length = len(oldList)

print "the list has", length, "elements"

produces

the list has 4 elements

Lists – p. 9/14

Useful functions
Therange() function can produce a list:

data = range(88, 93)

print data

print

for i in range(0, len(data)) :

print data[i]

produces

[88, 89, 90, 91, 92]

88

89

90

91

92

Lists – p. 10/14

List Methods
Some useful methods (think of a method as a function
for a specific type of object) for lists are:

• append(x)
• pop()
• insert(i, x)
• sort()
• reverse()

We use the method by connecting it to the list name
with a period.

Seelist_methods.py on the course website.

Lists – p. 11/14

List Elements
Lists can consist of objects of different types: integers,
strings, floating-point numbers, even other lists.

Example:

data = [3, 17.9, "a string", [9, 8, 7]]

for i in data :

print i

produces

3

17.9

a string

[9, 8, 7]

Lists – p. 12/14

Lists of Lists
When accessing an element of a list within a list, we
need to know which element of which list.

data = [[1, 2, 3], [4, 5, 6, 7, 8]]

print data[0][1] # list 0, element 1

print data[1][3] # list 1, element 3

print data[1][1:4] # list 1, elements 1 to 3

produces

2

7

[5, 6, 7]

We can have lists within lists within lists...
Lists – p. 13/14

Lists – Indexing Error
WARNING: A common error when accessing lists via
subscripts is to use an index value that is too large.

data = [3.5, 4, 9.34]

range(0, 4) produces the values 0 to 3

for i in range(0, 4) :

print data[i]

produces

3.5

4

9.34

Traceback (most recent call last):

File "ex-lists2.py", line 8, in <module>

print data[i]

IndexError: list index out of range

Lists – p. 14/14

	Lists
	Creating Lists
	More 1D List Examples
	Iterating Through a List
	Accessing List Elements
	Accessing List Elements cont.
	Accessing List Elements cont.
	Useful functions
	Useful functions
	List Methods
	List Elements
	Lists of Lists
	Lists -- Indexing Error

