Strings

CSE 1310 — Introduction to Computers and Programming
Vassilis Athitsos
University of Texas at Arlington

String Comparisons

>>>my_strings = ["Welcome", "to", "the", "city", "of", "New",
"York"]

>>> my_strings

['Welcome', 'to’, 'the’, 'city’, 'of', 'New', 'York']
>>>my_strings.sort()

>>> my_strings

['New', "Welcome', 'York', ‘city’, 'of’, 'the’, 'to']

 Python uses a string order of its own.

— Follows alphabetical order, with the exception that
capital letters are always before lower case letters.

String Comparisons

e |tis easy to verify the order that Python uses,
by trying out different pairs of strings.

>>> "hello" < "goodbye"
False
>>> "Hello" < "goodbye"

True

>>> llab" > Ilabcll

False

String Comparisons

>>>"123" < "abc"
True
>>>"123" < "ABC"
True

* Numbers come before letters.

e Guideline: do not memorize these rules, just
remember that Python does NOT use exact
alphabetical order.

Strings Cannot Change

>>> g = "Munday"
>>> a[1] ='o'

Traceback (most recent call last):
File "<pyshell#297>", line 1, in <module>
al[l] ='o'
TypeError: 'str' object does not support item assignment

If You Must Change a String...

 You cannot, but you can make your variable
equal to another string that is what you want.

e Example:

>>> my_string = "Munday"

— my_string contains a value that we want to
correct.

>>> my_string = "Monday"

— We just assign to variable my_string a new string
value, that is what we want.

For More Subtle String Changes...

e Suppose that we want a program that:
— Gets a string from the user.

— Replaces the third letter of that string with the
letter A.

— Prints out the modified string. We just assign to
variable my_string a new string value, that is what
we want.

For More Subtle String Changes...

e Strategy:
— convert string to list of characters

— do any manipulations we want to the list (since
lists can change)

— convert list of characters back to a string

An Example

e Write a program that:
— Gets a string from the user.
— Modifies that string so that position 3 is an A.
— Prints the modified string.

An Example

my_string = raw_input("please enter a string: ")

if (len(my_string) >= 3):
convert string to list, make the desired change (change third letter to "A")
my _list = list(my_string)
my_list[2] = "A";

create a string out of the characters in the list

new_string =
for character in my_list:
new_string = new_string + character

my_string = new_string

print "the modified string is", my_string

A Variation

my_string = raw_input("please enter a string: ")

my_string = my_string[0:2] + "A" + my_string[3:]
print "the modified string is", my_string

The * Operator on Strings

>>> g = "hello"
>>> g*3

'hellohellohello’

 The string*iInteger expression repeats a
string as many times as the integer specifies.

The in Operator

>>>3 =1, 2, 3]
>>>2ina

True

>>>51ina

False

>>> vowels = 'aeiou’
>>>"3" in vowels
True

>>> "k" in vowels
False

The in operator works for
lists and strings.

Syntax:
e element in container

Returns true if the
element appears in the
container, false otherwise.

upper and lower

>>> vowels = 'aeiou’ The string.upper() method
>>> b = vowels.upper() returns a new string where all
S>> vowels letters are upper case.

'aeiou’ e The string.lower() method
>>> b returns a new string where all
'AEIOU" letters are lower case.

* Note: upper() and lower() do
>>> a = 'New York City' not modify the original string,
>>> b = a.lower() they just create a new string.
>>>b e Should be obvious,

'new york city' because strings cannot be

modified.

The len Function

>>> len(*hello') * Similar as in lists, len returns
5 the number of letters in a
string.

Reversing a String

>>> g = "hello"

>>>p = a[::-1]
>>> b

'olleh’

>>> a[3:0:-1]
'lle'

e Slicing with step -1 can be used to reverse
parts, or all of the string.

index and find

>>>a=[10,11, 12, 10,11] ° The my_list.index(X) method

>>> a.index(10) returns the first position

0 where X occurs.
>>> a.index(11) e Gives an errorif Xis notin
1 my_list.

 The my_string.find(X) method
>>> b = "this is crazy" returns the first position
>>> b.find('is' where X occurs.
2 e X can be a single letter or
>>> b.find('q’) more letters.

-1 e Returns -1 if X is not found.

Converting Other Types to Strings

S>> 3 = 2012 The str function converts
s> b = str(a) objects of other types into
55> b strings.

'2012'

>>>a=['h"'e","l', "', '0'] e Note: str does NOT

>>> b = str(a) concatenate a list of

>>> b characters (or strings). See

‘'R e T o] example on left.

Converting Strings Into Ints/Floats

S>> 3 ='2012' e The int, float functions

>>> b = int(a) converts strings to integers

>>> b and floats.

2012 e Will give error message if

>>> float(a) the string does not

2012.0 represent an integer or
float.

>>> 3 ="57 bus"

>>> int(a)

<error message>

Converting Strings Into Lists

>>> 3 = "hello" The list function can convert a
>>> list(a) string to a list.
['h', e, "I 1", 'o'] e Always works.

* Very handy if we want to
manipulate a string's
contents and create new
strings based on them.

