
Files

CSE 1310 – Introduction to Computers and Programming

Vassilis Athitsos

University of Texas at Arlington

1

The Need for Files

• Suppose that we have to write a program that:

– takes a book (or a set of books) as an input.

– identifies the most frequent words in that book or set of
books.

• Can you think of example applications for such a
program?

2

The Need for Files

• Suppose that we have to write a program that:

– takes a book (or a set of books) as an input.

– identifies the most frequent words in that book or set of
books.

• Can you think of example applications for such a
program?

– identifying the most important words to introduce, in a
foreign language class.

– identifying the language in which a book was written.

– identifying and comparing style of different authors,
newspapers, centuries, etc.

3

A Book as Program Input

• How can our program go through a whole
book?

• Based on what we have learned so far, we
would have to type the book into the
program.

• Luckily, Python (like typical programming
languages) has a much better alternative,
which is file input/output.

4

Another Motivating Application

• Consider a phonebook application, that allows:

– Making a new entry (new name and phone number).

– Modifying an existing entry.

– Deleting an entry.

– Looking up the phone given the name.

– Looking up the name given the phone.

• What can we do and what can we not do,
using what we have learned so far?

5

Another Motivating Application

• Consider a phonebook application, that allows:

– Making a new entry (new name and phone number).

– Modifying an existing entry.

– Deleting an entry.

– Looking up the phone given the name.

– Looking up the name given the phone.

• We can do all five things listed above. However, at
the end of the program, all information vanishes.

• Again, file input/output provides a solution:

– data can be saved into files, and read again from those
files when needed.

6

Example: Reading a File

my_file = open("file1.txt", "r")

for line in my_file:

 print(line)

my_file.close()

7

• Function open creates a connection between:

– variable my_file.

– the content of file file1.txt.

• To use function open, you need to specify three things:

– A variable name to be associated with this file (e.g.,
my_file).

– The name (or full path) of the file.

Example: Reading a File

my_file = open("file1.txt", "r")

for line in my_file:

 print(line)

my_file.close()

8

• To use function open, you need to specify three things:

– A variable name to be associated with this file (e.g.,
my_file).

– The name (or full path) of the file (e.g., "file1.txt").
• If the file is on the same directory as the code you are executing, the

name is sufficient. Otherwise, you will need to specify a path like
"c:/users/vassilis/file1.txt").

– A mode of access: e.g., "r" for reading, "w" for writing.

Example: Reading a File

my_file = open("file1.txt", "r")

for line in my_file:

 print(line)

my_file.close()

9

• Important: ALWAYS CLOSE A FILE THAT YOU HAVE
OPENED, WHEN YOU DO NOT NEED IT ANYMORE.

A Closer Look

my_file = open("file1.txt", "r")

for line in my_file:

 print(line)

my_file.close()

10

• Function open creates a connection between variable
my_file and the content of file file1.txt.

• What is this connection?

A Closer Look

my_file = open("file1.txt", "r")

for line in my_file:

 print(line)

my_file.close()

11

• Function open creates a connection between variable
my_file and the content of file file1.txt.

• What is this connection?

– my_file becomes a stream, from which we can access lines
one at a time, till we reach the end of the file.

– We can access these lines in different ways.

– One way (as shown above): for line in my_file

Each Line Is Read Only Once

12

my_file = open("hello2.txt", "r")

for line in my_file:

 print(line)

for line in my_file:

 print(line)

my_file.close()

• Each line in the file is read
only once.

• The first for-loop reads all the
lines of the file.

• Thus, the second for-loop will
not read anything (we will not
see the file printed twice).

To Access Lines Multiple Times

13

my_file = open("hello2.txt", "r")

lines = my_file.readlines()

for line in lines:

 print(line)

for line in lines:

 print(line)

my_file.close()

• Approach 1: Use the readlines
method to store all lines into a
list of strings.

To Access Lines Multiple Times

14

my_file = open("hello2.txt", "r")

for line in my_file:

 print(line)

my_file.close()

my_file = open("hello2.txt", "r")

for line in my_file:

 print(line)

my_file.close()

• Approach 2: Open and close
the file twice.

A Second Example: Length of a File

my_file = open("file1.txt", "r")

for line in my_file:

 print(line)

my_file.close()

15

• Modify the above program, to obtain a program that
computes the length of file "file1.txt", i.e., the number
of characters in "file1.txt".

A Second Example: Length of a File

my_file = open("file1.txt", "r")

total = 0

for line in my_file:

 total = total + len(line)

my_file.close()

print("the total length is:", total)

16

• The above program computes the length of file
"file1.txt", i.e., the number of characters in "file1.txt".

Converting to a Function

my_file = open("file1.txt", "r")

total = 0

for line in my_file:

 total = total + len(line)

my_file.close()

print("the total length is:", total)

17

• Modify the above program, so that it defines (and
uses) a function file_length(filename), that:

– takes as argument filename the name of a file.

– returns the number of characters in that file.

Converting to a Function

def file_length(filename):

 my_file = open(filename, "r")

 result = 0

 for line in my_file:

 result = result + len(line)

 my_file.close()

 return result

def main():

 total = file_length("file1.txt")

 print("the total length is:", total)

main()
18

Counting Words

• Modify the previous program to also count
the number of words in the file.

• Useful string method: split

– my_string.split() returns a list of words in a string.

– More specifically, it returns a list of substrings that
are separated by white space.

– Example:

19

>>> string1 = "today is Monday"

>>> b = string1.split()

>>> b

['today', 'is', 'Monday']

Counting Words: Solution

def file_words(filename):

 my_file = open(filename, "r")

 result = 0

 for line in my_file:

 words = line.split()

 result = result + len(words)

 my_file.close()

 return result

def main():

 name = "file1.txt"

 number_of_words = file_words(name)

 print("the number of words is:", number_of_words)

main()
20

Writing a File: An Example

out_file = open("hello2.txt", "w")

print("writing a line to a file", file=out_file)

print("writing a second line", file=out_file)

out_file.close()

• Opening a file for writing is similar to opening a file
for reading, except that we use "w" instead of "a" as
the second argument.

• To write a line to a file, we use a print command,
putting file=xxx as the last argument.

– xxx is just the name of the variable associated with the
output file.

21

Writing a File: An Example

out_file = open("hello2.txt", "w")

print("writing a line to a file", file=out_file)

print("writing a second line", file=out_file)

out_file.close()

• The four lines above create a text file called
hello2.txt, with the following content:

writing a line to a file

writing a second line

• What happens if file hello2.txt already existed?

22

Writing a File: An Example

out_file = open("hello2.txt", "w")

print("writing a line to a file", file=out_file)

print("writing a second line", file=out_file)

out_file.close()

• The four lines above create a text file called
hello2.txt, with the following content:

writing a line to a file

writing a second line

• What happens if file hello2.txt already existed?

Its previous contents are lost forever.

23

Exercise: Copying a File

• Write a function copy_file(name1, name2)
that:

– Takes two strings as arguments, name1 and
name2.

– Copies the contents of existing file name1 into a
new file name2.

24

Exercise: Copying a File

def copy_file(in_name, out_name):

 in_file = open(in_name, "r")

 out_file = open(out_name, "w")

 for line in in_file:

 print(line, file=out_file, end="")

 in_file.close()

 out_file.close()

def main():

 copy_file("hello2.txt", "hello3.txt")

 print("done converting to upper case")

main()

25

Note: Avoiding The "\n" Character

• In the previous program, we used this line:

print(line, file=out_file, end="")

• The end="" argument tells Python to NOT put
a newline character (the "\n" character) at the
end of the line that it prints.

26

Exercise: Convert to Upper Case

• Write a function
convert_to_upper_case(name1, name2) that:

– Takes two strings as arguments, name1 and
name2.

– Converts the contents of existing file name1 to
uppercase, and saves the converted contents into
a new file name2.

27

Exercise: Convert to Upper Case

def convert_to_upper_case(in_name, out_name):

 in_file = open(in_name, "r")

 out_file = open(out_name, "w")

 for line in in_file:

 converted_to_upper = line.upper()

 print(converted_to_upper, file=out_file, end="")

 in_file.close()

 out_file.close()

def main():

 convert_to_upper_case("file1.txt", "file2.txt")

 print("done converting to upper case")

main() 28

Reading Individual Lines

• To read an individual line from a file, use the
readline() method.

in_file = open("phonebook.txt", "r")

first_name = in_file.readline()

first_name = first_name.strip()

first_number = in_file.readline()

first_number = first_number.strip()

print(first_name + ": " + first_number)

in_file.close()
29

Different File Access Modes

• Function open takes an access mode as second
argument. The possible access modes are:

30

Mode Description If File Exists If File Does Not Exist

'r' read-only Opens that file Error

'w' write-only Clears the file contents Creates and opens a
new file

'a' write-only File contents left intact and new
data appended at file's end

Creates and opens a
new file

'r+' read and write Reads and overwrites from the
file's beginning

Error

'w+' read and write Clears the file contents Creates and opens a
new file

'a+' read and write File contents left intact and read
and write at file's end

Creates and opens a
new file

Different File Access Modes

• In this course, we will only use the 'r' and 'w' modes,
the other modes are provided only for reference.

31

Mode Description If File Exists If File Does Not Exist

'r' read-only Opens that file Error

'w' write-only Clears the file contents Creates and opens a
new file

'a' write-only File contents left intact and new
data appended at file's end

Creates and opens a
new file

'r+' read and write Reads and overwrites from the
file's beginning

Error

'w+' read and write Clears the file contents Creates and opens a
new file

'a+' read and write File contents left intact and read
and write at file's end

Creates and opens a
new file

Checking if a File Exists

• In our phonebook application, we save data to a file.

• When the application starts, it reads data from the
file.

• What happens the first time we use the application?

in_file = open("phonebook.txt", "r")

32

Checking if a File Exists

• In our phonebook application, we save data to a file.

• When the application starts, it reads data from the
file.

• What happens the first time we use the application?

in_file = open("phonebook.txt", "r")

• If phonebook.txt does not exist, the above line will
generate an error and crash the program.

• How can we avoid that?

33

Checking if a File Exists

• Before opening a file for reading, we need to
check if a file exists, using os.path.isfile.

34

import os

file_lines = []

if (os.path.isfile('phonebook.txt')):

 in_file = open('phonebook.txt')

 file_lines = in_file.readlines()

 in_file.close()

print("the number of lines read was",

len(file_lines))

