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The Need for Files 

• Suppose that we have to write a program that: 

– takes a book (or a set of books) as an input. 

– identifies the most frequent words in that book or set of 
books. 

• Can you think of example applications for such a 
program? 
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The Need for Files 

• Suppose that we have to write a program that: 

– takes a book (or a set of books) as an input. 

– identifies the most frequent words in that book or set of 
books. 

• Can you think of example applications for such a 
program? 

– identifying the most important words to introduce, in a 
foreign language class. 

– identifying the language in which a book was written. 

– identifying and comparing style of different authors, 
newspapers, centuries, etc. 
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A Book as Program Input 

• How can our program go through a whole 
book? 

• Based on what we have learned so far, we 
would have to type the book into the 
program. 

• Luckily, Python (like typical programming 
languages) has a much better alternative, 
which is file input/output. 
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Another Motivating Application 

• Consider a phonebook application, that allows: 

– Making a new entry (new name and phone number). 

– Modifying an existing entry. 

– Deleting an entry. 

– Looking up the phone given the name. 

– Looking up the name given the phone. 

• What can we do and what can we not do, 
using what we have learned so far? 
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Another Motivating Application 

• Consider a phonebook application, that allows: 

– Making a new entry (new name and phone number). 

– Modifying an existing entry. 

– Deleting an entry. 

– Looking up the phone given the name. 

– Looking up the name given the phone. 

• We can do all five things listed above. However, at 
the end of the program, all information vanishes. 

• Again, file input/output provides a solution:  

– data can be saved into files, and read again from those 
files when needed. 
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Example: Reading a File 

my_file = open("file1.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 
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• Function open creates a connection between: 

– variable my_file. 

– the content of file file1.txt. 

• To use function open, you need to specify three things: 

– A variable name to be associated with this file (e.g., 
my_file). 

– The name (or full path) of the file.  
 



Example: Reading a File 

my_file = open("file1.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 
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• To use function open, you need to specify three things: 

– A variable name to be associated with this file (e.g., 
my_file). 

– The name (or full path) of the file (e.g., "file1.txt"). 
• If the file is on the same directory as the code you are executing, the 

name is sufficient. Otherwise, you will need to specify a path like 
"c:/users/vassilis/file1.txt"). 

– A mode of access: e.g., "r" for reading, "w" for writing. 
 



Example: Reading a File 

my_file = open("file1.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 
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• Important: ALWAYS CLOSE A FILE THAT YOU HAVE 
OPENED, WHEN YOU DO NOT NEED IT ANYMORE. 
 



A Closer Look 

my_file = open("file1.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 
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• Function open creates a connection between variable 
my_file and the content of file file1.txt. 

• What is this connection? 
 



A Closer Look 

my_file = open("file1.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 
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• Function open creates a connection between variable 
my_file and the content of file file1.txt. 

• What is this connection? 

– my_file becomes a stream, from which we can access lines 
one at a time, till we reach the end of the file. 

– We can access these lines in different ways. 

– One way (as shown above):   for line in my_file 



Each Line Is Read Only Once 
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my_file = open("hello2.txt", "r") 

 

for line in my_file: 

    print(line) 

 

for line in my_file: 

    print(line) 

 

my_file.close() 

• Each line in the file is read 
only once. 

• The first for-loop reads all the 
lines of the file. 

• Thus, the second for-loop will 
not read anything (we will not 
see the file printed twice). 



To Access Lines Multiple Times 
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my_file = open("hello2.txt", "r") 

 

lines = my_file.readlines() 

 

for line in lines: 

    print(line) 

 

for line in lines: 

    print(line) 

 

my_file.close() 

• Approach 1: Use the readlines 
method to store all lines into a 
list of strings. 



To Access Lines Multiple Times 
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my_file = open("hello2.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 

 

my_file = open("hello2.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 

• Approach 2: Open and close 
the file twice. 



A Second Example: Length of a File 

my_file = open("file1.txt", "r") 

for line in my_file: 

    print(line) 

my_file.close() 
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• Modify the above program, to obtain a program that 
computes the length of file "file1.txt", i.e., the number 
of characters in "file1.txt". 
 



A Second Example: Length of a File 

my_file = open("file1.txt", "r") 

total = 0 

 

for line in my_file: 

    total = total + len(line) 

 

my_file.close() 

print("the total length is:", total) 
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• The above program computes the length of file 
"file1.txt", i.e., the number of characters in "file1.txt". 
 



Converting to a Function 

my_file = open("file1.txt", "r") 

total = 0 

 

for line in my_file: 

    total = total + len(line) 

 

my_file.close() 

print("the total length is:", total) 
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• Modify the above program, so that it defines (and 
uses) a function file_length(filename), that: 

– takes as argument filename the name of a file. 

– returns the number of characters in that file. 
 



Converting to a Function 

def file_length(filename): 

    my_file = open(filename, "r") 

    result = 0 

 

    for line in my_file: 

        result = result + len(line) 

 

    my_file.close() 

    return result 

 

def main(): 

    total = file_length("file1.txt") 

    print("the total length is:", total) 

 

main() 
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Counting Words 

• Modify the previous program to also count 
the number of words in the file. 

• Useful string method: split 

– my_string.split() returns a list of words in a string. 

– More specifically, it returns a list of substrings that 
are separated by white space. 

– Example:  
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>>> string1 = "today is Monday" 

>>> b = string1.split() 

>>> b 

['today', 'is', 'Monday'] 

 



Counting Words: Solution 

def file_words(filename): 

    my_file = open(filename, "r") 

    result = 0 

    for line in my_file: 

        words = line.split() 

        result = result + len(words) 

    my_file.close() 

    return result 

 

def main(): 

    name = "file1.txt" 

    number_of_words = file_words(name) 

    print("the number of words is:", number_of_words) 

 

main() 
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Writing a File: An Example 

out_file = open("hello2.txt", "w") 

print("writing a line to a file", file=out_file) 

print("writing a second line", file=out_file) 

out_file.close() 

 

• Opening a file for writing is similar to opening a file 
for reading, except that we use "w" instead of "a" as 
the second argument. 

• To write a line to a file, we use a print command, 
putting file=xxx as the last argument. 

– xxx is just the name of the variable associated with the 
output file. 

21 



Writing a File: An Example 

out_file = open("hello2.txt", "w") 

print("writing a line to a file", file=out_file) 

print("writing a second line", file=out_file) 

out_file.close() 

 

• The four lines above create a text file called 
hello2.txt, with the following content: 
 

writing a line to a file 

writing a second line 

 

• What happens if file hello2.txt already existed? 
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Writing a File: An Example 

out_file = open("hello2.txt", "w") 

print("writing a line to a file", file=out_file) 

print("writing a second line", file=out_file) 

out_file.close() 

 

• The four lines above create a text file called 
hello2.txt, with the following content: 
 

writing a line to a file 

writing a second line 

 

• What happens if file hello2.txt already existed? 

Its previous contents are lost forever. 
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Exercise: Copying a File 

• Write a function copy_file(name1, name2) 
that: 

– Takes two strings as arguments, name1 and 
name2. 

– Copies the contents of existing file name1 into a 
new file name2. 
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Exercise: Copying a File 

def copy_file(in_name, out_name): 

    in_file = open(in_name, "r") 

    out_file = open(out_name, "w") 

 

    for line in in_file: 

         print(line, file=out_file, end="") 

 

    in_file.close() 

    out_file.close() 

 

def main(): 

    copy_file("hello2.txt", "hello3.txt") 

    print("done converting to upper case") 

 

main() 

25 



Note: Avoiding The "\n" Character 

• In the previous program, we used this line: 
 

print(line, file=out_file, end="") 

 

• The end="" argument tells Python to NOT put 
a newline character (the "\n" character) at the 
end of the line that it prints. 
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Exercise: Convert to Upper Case 

• Write a function 
convert_to_upper_case(name1, name2) that: 

– Takes two strings as arguments, name1 and 
name2. 

– Converts the contents of existing file name1 to 
uppercase, and saves the converted contents into 
a new file name2. 
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Exercise: Convert to Upper Case 

def convert_to_upper_case(in_name, out_name): 

    in_file = open(in_name, "r") 

    out_file = open(out_name, "w") 

 

    for line in in_file: 

        converted_to_upper = line.upper() 

        print(converted_to_upper, file=out_file, end="") 

 

    in_file.close() 

    out_file.close() 

 

def main(): 

    convert_to_upper_case("file1.txt", "file2.txt") 

    print("done converting to upper case") 

 

main() 28 



Reading Individual Lines 

• To read an individual line from a file, use the 
readline() method. 

 

in_file = open("phonebook.txt", "r") 

 

first_name = in_file.readline() 

first_name = first_name.strip() 

first_number = in_file.readline() 

first_number = first_number.strip() 

 

print(first_name + ": " + first_number) 

 

in_file.close() 
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Different File Access Modes 

• Function open takes an access mode as second 
argument. The possible access modes are: 
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Mode Description If File Exists If File Does Not Exist 

'r' read-only Opens that file Error 

'w' write-only Clears the file contents Creates and opens a 
new file 

'a' write-only File contents left intact and new 
data appended at file's end 

Creates and opens a 
new file 
 

'r+' read and write Reads and overwrites from the 
file's beginning 

Error 

'w+' read and write Clears the file contents Creates and opens a 
new file 

'a+' read and write File contents left intact and read 
and write at file's end 

Creates and opens a 
new file 



Different File Access Modes 

• In this course, we will only use the 'r' and 'w' modes, 
the other modes are provided only for reference. 
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Mode Description If File Exists If File Does Not Exist 

'r' read-only Opens that file Error 

'w' write-only Clears the file contents Creates and opens a 
new file 

'a' write-only File contents left intact and new 
data appended at file's end 

Creates and opens a 
new file 
 

'r+' read and write Reads and overwrites from the 
file's beginning 

Error 

'w+' read and write Clears the file contents Creates and opens a 
new file 

'a+' read and write File contents left intact and read 
and write at file's end 

Creates and opens a 
new file 



Checking if a File Exists 

• In our phonebook application, we save data to a file. 

• When the application starts, it reads data from the 
file. 

• What happens the first time we use the application? 

 
in_file = open("phonebook.txt", "r") 
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Checking if a File Exists 

• In our phonebook application, we save data to a file. 

• When the application starts, it reads data from the 
file. 

• What happens the first time we use the application? 

 
in_file = open("phonebook.txt", "r") 

 

• If phonebook.txt does not exist, the above line will 
generate an error and crash the program. 

• How can we avoid that? 
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Checking if a File Exists 

• Before opening a file for reading, we need to 
check if a file exists, using os.path.isfile. 
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import os 

 

file_lines = [] 

 

if (os.path.isfile('phonebook.txt')): 

    in_file = open('phonebook.txt') 

    file_lines = in_file.readlines() 

    in_file.close() 

 

print("the number of lines read was", 

len(file_lines)) 


