
Dictionaries

CSE 1310 – Introduction to Computers and Programming

Vassilis Athitsos

University of Texas at Arlington

1

Keys and Values

• Oftentimes we need lists of pairs, that associate
values to specific keys.

– E.g.: product codes are keys, and prices are values.

– E.g.: names are keys, and phone numbers are values.

phone_list = [['mary', 2341], ['joe', 5423]]

2

Life Without Dictionaries

• Oftentimes we need lists of pairs, that associate
values to specific keys.

– E.g.: product codes are keys, and prices are values.

– E.g.: names are keys, and phone numbers are values.

phone_list = [['mary', 2341], ['joe', 5423]]

• Then, finding the value for a specific key is doable,
but a bit of a pain.

3

Life Without Dictionaries

• Oftentimes we need lists of pairs, that associate
values to specific keys.

– E.g.: product codes are keys, and prices are values.

– E.g.: names are keys, and phone numbers are values.

phone_list = [['mary', 2341], ['joe', 5423]]

• Then, finding the value for a specific key is doable,
but a bit of a pain.

for item in phone_list:

 if (item[0] == 'joe'):

 print(item[1])

4

Life With Dictionaries

• With dictionaries, dealing with key-value pairs
becomes much easier.

phonebook = {'mary' : 2341, 'joe' : 5423}

• Then, finding the value for a specific key is very
simple:

print(phonebook['joe'])

5

The in Operator

• key in dictionary returns true if the specified key is a
key in the dictionary.

• IMPORTANT: for dictionaries, the in operator only
looks at keys, not values.

6

>>> phonebook

{'mary': 59013, 'joe': 23432}

>>> 'joe' in phonebook

True

>>> 23432 in phonebook

False

>>> 'bill' in phonebook

False

The del Function

• You can delete dictionary entries using the del
function. If your dictionary is stored in a variable
called dictionary_name, and you want to delete the
entry associated with the specific key, use this
syntax:

 del(dictionary_name[key])

7

>>> phonebook

{'mary': 59013, 'joe': 23432}

>>> del(phonebook['mary'])

>>> phonebook

{'joe': 23432}

The len Function

• As in lists and strings, the len operator gives you the
number of elements (i.e., the number of key-value
pairs) in the dictionary.

8

>>> phonebook

{'mary': 59013, 'joe': 23432}

>>> len(phonebook)

2

The items Method

• dictionary.items() returns the set of key-value pairs
in dictionary.

9

>>> phonebook

{'mary': 59013, 'joe': 23432}

>>> entries = phonebook.items()

>>> for entry in entries:

 print(entry)

('mary', 59013)

('joe', 23432)

The keys Method

• dictionary.keys() returns the set of keys in dictionary.

10

>>> elements = phonebook.keys()

>>> for element in elements:

 print(element)

mary

joe

The values Method

• dictionary.values() returns the set of values in
dictionary.

11

>>> elements = phonebook.values()

>>> for element in elements:

 print(element)

59013

23432

Example: Frequencies of Words in Text

• Suppose that we have a text file, and we want
to:

– count how many unique words appear in the text.

– count how many times each of those words
appears.

12

Step 1: Count Frequencies

def count_words(filename):

 in_file = open(filename, "r")

 # initialize the dictionary to empty

 result = {}

 for line in in_file:

 words = line.split()

 for word in words:

 if (word in result):

 result[word] += 1

 else:

 result[word] = 1

 return result

13

dictionary
operations
shown in red

Step 2: Printing the Result

def main():

 filename = "file1.txt"

 dictionary = count_words(filename)

 print(dictionary)

{'final': 1, 'men,': 1, 'brought': 1, 'met': 1, 'and': 5,

'here,': 2, 'Four': 1, 'years': 1, 'nor': 1, 'any': 1,

'not': 5, 'it,': 1, 'nation,': 3, 'say': 1, 'God,': 1,

'unfinished': 1, 'have': 5, 'battlefield': 1, 'nation': 2,

'or': 2, 'come': 1, 'nobly': 1, 'vain-that': 1,

'proposition' …

14

This printout is
hard to read

Step 2 Revised

def print_word_frequencies(dictionary):

 print()

 for word in dictionary:

 frequency = dictionary[word]

 print(word + ":", frequency)

 print()

15

OUTPUT:

nor: 1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of: 5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2
…

• We have defined a function that
prints the dictionary in a nicer format.

• Remaining problems?

Step 2 Revised

def print_word_frequencies(dictionary):

 print()

 for word in dictionary:

 frequency = dictionary[word]

 print(word + ":", frequency)

 print()

16

OUTPUT:

nor: 1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of: 5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2
…
the: 9
…

• Remaining problems?

– Result must be case-insensitive.

E.g., "The" and "the" should not be
counted as separate words.

Step 2 Revised

def print_word_frequencies(dictionary):

 print()

 for word in dictionary:

 frequency = dictionary[word]

 print(word + ":", frequency)

 print()

17

OUTPUT:

nor: 1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of: 5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2
…

• Remaining problems?

– We should ignore punctuation.

E.g., "here" and "here." should not be
counted as separate words.

Step 2 Revised

def print_word_frequencies(dictionary):

 print()

 for word in dictionary:

 frequency = dictionary[word]

 print(word + ":", frequency)

 print()

18

OUTPUT:

nor: 1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of: 5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2
…

• Remaining problems?

– Would be nice to sort, either
alphabetically or by frequency.

Making Result Case Insensitive

19

• To make the results case-insensitive, we can simply
convert all text to lower case as soon as we read it
from the file.

Making Result Case Insensitive

def count_words(filename):

 in_file = open(filename, "r")

 # initialize the dictionary to empty

 result = {}

 for line in in_file:

 line = line.lower()

 words = line.split()

 for word in words:

 if (word in result):

 result[word] += 1

 else:

 result[word] = 1

 return result
20

PREVIOUS
OUTPUT:

in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2
…
the: 9
…

156 words found

Making Result Case Insensitive

def count_words(filename):

 in_file = open(filename, "r")

 # initialize the dictionary to empty

 result = {}

 for line in in_file:

 line = line.lower()

 words = line.split()

 for word in words:

 if (word in result):

 result[word] += 1

 else:

 result[word] = 1

 return result
21

NEW OUTPUT:

…
devotion-that: 1
field,: 1
honored: 1
testing: 1
far: 2
the: 11
from: 2
advanced.: 1
full: 1
above: 1
…

153 words found

22

• To ignore punctuation, we will:

– delete from the text that we read all occurrences of
punctuation characters (periods, commas, parentheses,
exclamation marks, quotes).

– We will replace dashes with spaces (since dashes are used
to separate individual words).

• To isolate this processing step, we make a separate
function for it, that we call process_line.

Ignoring Punctuation

Ignoring Punctuation

def process_line(line):

 line = line.lower()

 new_line = ""

 for letter in line:

 if letter in """,.!"'()"""::

 continue

 elif letter == '-':

 letter = ' '

 new_line = new_line + letter

 words = new_line.split()

 return words

23

Ignoring Punctuation

def count_words(filename):

 in_file = open(filename, "r")

 # initialize the dictionary to empty

 result = {}

 for line in in_file:

 words = process_line(line)

 for word in words:

 if (word in result):

 result[word] += 1

 else:

 result[word] = 1

 return result

24

PREVIOUS
OUTPUT:

people,: 3
under: 1
those: 1
to: 8
men,: 1
full: 1
are: 3
it,: 1
…
for: 5
whether: 1
men: 1
sense,: 1
…

153 words found

Ignoring Punctuation

def count_words(filename):

 in_file = open(filename, "r")

 # initialize the dictionary to empty

 result = {}

 for line in in_file:

 words = process_line(line)

 for word in words:

 if (word in result):

 result[word] += 1

 else:

 result[word] = 1

 return result

25

NEW
OUTPUT:

fathers: 1
people: 3
forth: 1
for: 5
men: 2
ago: 1
field: 1
increased: 1
…

138 words found

26

• We want to sort the results by frequency.

• Frequencies are values in the dictionary.

• So, our problem is the more general problem of sorting
dictionary entries by value.

• To do that, we will create an inverse dictionary, called
inverse, where:

– inverse[frequency] is a list of all words in the original
dictionary having that frequency.

• To isolate this processing step, we make a separate
function for it, that we call inverse_dictionary.

• We use inverse_dictionary in print_word_frequencies.

Sorting by Frequency

def inverse_dictionary(in_dictionary):

 out_dictionary = {}

 for key in in_dictionary:

 value = in_dictionary[key]

 if (value in out_dictionary):

 list_of_keys = out_dictionary[value]

 list_of_keys.append(key)

 else:

 out_dictionary[value] = [key]

 return out_dictionary

27

Sorting by Frequency

def print_word_frequencies(dictionary):

 print()

 inverse = inverse_dictionary(dictionary)

 frequencies = inverse.keys()

 frequencies = list(frequencies)

 frequencies.sort()

 frequencies.reverse()

 for frequency in frequencies:

 list_of_words = inverse[frequency]

 list_of_words.sort()

 for word in list_of_words:

 print(word + ":", frequency)

28

Sorting by Frequency

def print_word_frequencies(dictionary):

 print()

 inverse = inverse_dictionary(dictionary)

 frequencies = inverse.keys()

 frequencies = list(frequencies)

 frequencies.sort()

 frequencies.reverse()

 for frequency in frequencies:

 list_of_words = inverse[frequency]

 list_of_words.sort()

 for word in list_of_words:

 print(word + ":", frequency)

29

Sorting by Frequency PREVIOUS
OUTPUT:

live: 1
above: 1
but: 2
government: 1
gave: 2
note: 1
remember: 1
advanced: 1
world: 1
whether: 1
equal: 1
seven: 1
task: 1
they: 3
…

153 words found

def print_word_frequencies(dictionary):

 print()

 inverse = inverse_dictionary(dictionary)

 frequencies = inverse.keys()

 frequencies = list(frequencies)

 frequencies.sort()

 frequencies.reverse()

 for frequency in frequencies:

 list_of_words = inverse[frequency]

 list_of_words.sort()

 for word in list_of_words:

 print(word + ":", frequency)

30

Sorting by Frequency NEW
OUTPUT:

that: 13
the: 11
we: 10
here: 8
to: 8
a: 7
and: 6
can: 5
for: 5
have: 5
it: 5
nation: 5
not: 5
of: 5
…

153 words found

