Dictionaries

CSE 1310 — Introduction to Computers and Programming
Vassilis Athitsos
University of Texas at Arlington

Keys and Values

* Oftentimes we need lists of pairs, that associate
values to specific keys.

— E.g.: product codes are keys, and prices are values.
— E.g.: names are keys, and phone numbers are values.

phone list = [['mary',6 2341], ['Joe',6 5423]]

Life Without Dictionaries

* Oftentimes we need lists of pairs, that associate
values to specific keys.

— E.g.: product codes are keys, and prices are values.
— E.g.: names are keys, and phone numbers are values.

phone list = [['mary',6 2341], ['Joe',6 5423]]

* Then, finding the value for a specific key is doable,
but a bit of a pain.

Life Without Dictionaries

* Oftentimes we need lists of pairs, that associate
values to specific keys.
— E.g.: product codes are keys, and prices are values.
— E.g.: names are keys, and phone numbers are values.

phone list = [['mary',6 2341], ['Joe',6 5423]]
* Then, finding the value for a specific key is doable,
but a bit of a pain.

for item in phone 1list:
if (item[0] == 'Joe'):
print(item[1])

Life With Dictionaries

* With dictionaries, dealing with key-value pairs
becomes much easier.

phonebook = {'mary' : 2341, 'joe' : 5423}

* Then, finding the value for a specific key is very
simple:

print (phonebook['joe'])

The in Operator

e key in dictionary returns true if the specified key is a
ey in the dictionary.

 IMPORTANT: for dictionaries, the in operator only
ooks at keys, not values.

>>> phonebook

{'mary': 59013, 'Joe': 23432}
>>> 'joe' in phonebook

True

>>> 23432 in phonebook

False

>>> 'bill' in phonebook
False

The del Function

* You can delete dictionary entries using the del
function. If your dictionary is stored in a variable
called dictionary_name, and you want to delete the

entry associated with the specific key, use this
syntax:

del(dictionary_name[key])

>>> phonebook

{'mary': 59013, 'Joe': 23432}
>>> del (phonebook|['mary'])
>>> phonebook

{'Joe': 23432}

The len Function

* Asin lists and strings, the len operator gives you the
number of elements (i.e., the number of key-value
pairs) in the dictionary.

>>> phonebook

{'mary': 59013, 'Joe': 23432}
>>> len (phonebook)

2

The items Method

e dictionary.items() returns the set of key-value pairs
in dictionary.

>>> phonebook
{'mary': 59013, 'joe': 23432}
>>> entries = phonebook.items ()
>>> for entry in entries:

print (entry)

('mary', 59013)
('jJoe', 23432)

The keys Method

* dictionary.keys() returns the set of keys in dictionary.

>>> elements = phonebook.keys ()
>>> for element in elements:
print (element)

mary
joe

The values Method

* dictionary.values() returns the set of values in
dictionary.

>>> elements = phonebook.values ()
>>> for element in elements:
print (element)

59013
23432

Example: Frequencies of Words in Text

* Suppose that we have a text file, and we want
to:
— count how many unique words appear in the text.

— count how many times each of those words
appears.

Step 1: Count Frequencies

def count words (filename) :

in file = open(filename, "r")

initialize the dictionary to empty
result = {}

for line in in_file:

words = line.split() dictionary

for word in words: operations

if (word in result): .
() shown in red

result[word] +=1

else:
result[word] =1

return result

Step 2: Printing the Result

def main() :
filename = "filel. txt"
dictionary = count words (filename)

print (dictionary)

{'final': 1, 'men,': 1, 'brought': 1, 'met': 1, 'and': 5,
'here,': 2, 'Four': 1, 'years': 1, 'mor': 1, 'any': 1,
'not': 5, 'it,': 1, 'mation,': 3, 'say': 1, 'God,': 1,
'unfinished': 1, 'have': 5, 'battlefield': 1, 'nmation': 2,
'or': 2, 'come': 1, 'mobly': 1, 'vain-that': 1,
'proposition'

This printout is
hard to read

Step 2 Revised

def print word frequencies(dictionary):
print ()
for word in dictionary:
frequency = dictionary[word]
print(word + ":", frequency)

print ()

* We have defined a function that
prints the dictionary in a nicer format.

 Remaining problems?

OUTPUT:

nor:1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of:5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2

Step 2 Revised

def print word frequencies(dictionary):

print ()

for word in dictionary:
frequency = dictionary|[word]
print (word + ":", frequency)

print ()

 Remaining problems?

— Result must be case-insensitive.

E.g., "The" and "the" should not be
counted as separate words.

OUTPUT:

nor: 1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of: 5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or:2

the: 9

Step 2 Revised

def print word frequencies(dictionary):

print ()

for word in dictionary:
frequency = dictionary|[word]
print (word + ":", frequency)

print ()

 Remaining problems?
— We should ignore punctuation.

E.g., "here" and "here." should not be
counted as separate words.

OUTPUT:

nor:1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of: 5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2

Step 2 Revised

def print word frequencies(dictionary):

print ()

for word in dictionary:
frequency = dictionary[word]
print (word + ":", frequency)

print ()

 Remaining problems?

— Would be nice to sort, either
alphabetically or by frequency.

OUTPUT:

nor:1
fought: 1
last: 1
hallow: 1
endure.: 1
can: 5
highly: 1
rather: 1
of:5
men,: 1
in: 4
here,: 2
brought: 1
here.: 1
The: 2
on: 2
our: 2
or: 2

Making Result Case Insensitive

* To make the results case-insensitive, we can simply
convert all text to lower case as soon as we read it
from the file.

Making Result Case Insensitive

def count words(filename) : PREVIOUS
in file = open(filename, "r") OUTPUT:
initialize the dictionary to empty in: 4
result = {} here,: 2
_ U _ brought: 1
for line in in file: here.: 1
line = line.lower () The: 2
words = line.split() on: 2
for word in words: our: 2
if (word in result): or: 2
result[word] += 1 the: 9
else:
result[word] =1
156 words found

return result

Making Result Case Insensitive

def count words(filename) : NEW OUTPUT:
in file = open(filename, "r")
initialize the dictionary to empty devotion-that: 1
field,: 1
result = {} honored: 1
for line in in file: testing: 1
line = line.lower () far: 2
words = line.split() the: 11
for word in words: from: 2
if (word in result): ziﬁqmedal
result[word] += 1 above: 1
else:
result[word] =1
153 words found

return result

lgnoring Punctuation

* To ignore punctuation, we will:

— delete from the text that we read all occurrences of
punctuation characters (periods, commas, parentheses,
exclamation marks, quotes).

— We will replace dashes with spaces (since dashes are used
to separate individual words).

* To isolate this processing step, we make a separate
function for it, that we call process_line.

lgnoring Punctuation

def process line(line):
line = line.lower ()

new line = ""

for letter in line:
if letter in """, . MU' ()"
continue
elif letter == '-':
letter = ' '

new_line = new;line + letter

words = new line.split()

return words

23

lgnoring Punctuation

def count words(filename) :

in file = open(filename, "r")

initialize the dictionary to empty
result = {}
for line in in file:
words = process_line(line)
for word in words:
if (word in result):
result[word] += 1
else:
result[word] =1

return result

PREVIOUS
OUTPUT:

people,: 3
under: 1
those: 1
to: 8
men,: 1
full: 1
are: 3
it,: 1

for: 5
whether: 1
men: 1
sense,: 1

153 words found

24

lgnoring Punctuation

def count words(filename) :
in file = open(filename, "r")

initialize the dictionary to empty
result = {}
for line in in file:
words = process_line(line)
for word in words:
if (word in result):
result[word] += 1
else:
result[word] =1

return result

NEW
OUTPUT:

fathers: 1
people: 3
forth: 1
for: 5
men: 2
ago: 1
field: 1
increased: 1

138 words found

Sorting by Frequency

We want to sort the results by frequency.
Frequencies are values in the dictionary.

So, our problem is the more general problem of sorting
dictionary entries by value.

To do that, we will create an inverse dictionary, called
inverse, where:

— inverse[frequency] is a list of all words in the original
dictionary having that frequency.

To isolate this processing step, we make a separate
function for it, that we call inverse_dictionary.

We use inverse_dictionary in print_word_frequencies.

Sorting by Frequency

def inverse dictionary(in dictionary) :
out dictionary = {}
for key in in dictionary:
value = in dictionary[key]
if (value in out dictionary):
list of keys = out dictionary[value]
list of keys.append (key)
else:
out dictionary[value] = [key]

return out dictionary

Sorting by Frequency

def print word frequencies(dictionary):

print ()
inverse = inverse dictionary(dictionary)
frequencies = inverse.keys ()

frequencies = list(frequencies)
frequencies.sort()

frequencies.reverse ()

for frequency in frequencies:
list of words = inverse[frequency]
list of words.sort()
for word in list of words:

print (word + ":", frequency)

Sorting by Frequency

def print word frequencies(dictionary):
print ()
inverse = inverse dictionary(dictionary)
frequencies = inverse.keys()
frequencies = list(frequencies)
frequencies.sort()

frequencies.reverse ()

for frequency in frequencies:
list of words = inverse[frequency]
list of words.sort()
for word in list of words:
print (word + ":", frequency)

PREVIOUS
OUTPUT:

live: 1
above: 1
but: 2
government: 1
gave: 2
note: 1
remember: 1
advanced: 1
world: 1
whether: 1
equal: 1
seven: 1
task: 1
they: 3

153 words found

Sorting by Frequency

def print word frequencies(dictionary):
print ()
inverse = inverse dictionary(dictionary)
frequencies = inverse.keys()
frequencies = list(frequencies)
frequencies.sort()

frequencies.reverse ()

for frequency in frequencies:
list of words = inverse[frequency]
list of words.sort()
for word in list of words:

print (word + ":", frequency)

OUTPUT:

that: 13
the: 11
we: 10
here: 8
to: 8
a: 7
and: 6
can: 5
for: 5
have: 5
it: 5
nation: 5
not: 5
of: 5

153 words found

