
Loops (While and For)

CSE 1310 – Introduction to Computers and Programming

1

Motivation

• Suppose we want to write a program that
does this:

– Ask the user to input an integer N.

– Prints out all integers between 0 and N.

• The elements of Python that we have covered
so far are not sufficient for writing this
program.

• What is missing: the ability to repeat some
instructions as many times as we want.

while loops

• A while loop is defined as follows:

while boolean_expression:

 line 1

 line 2

 …

 line n

• Line 1, line 2, …, line n are called the body of the
while loop.

3

while loop execution

while boolean_expression:

 line 1

 line 2

 …

 line n

first line after loop

• This is how a while loop gets executed:
– Step 1: evaluate boolean_expression.

– Step 2: If the expression is false, go to the first line after
the loop.

– Step 3: If expression is true, execute the body of the while
loop, and go back to step 1.

4

An example of a while loop

number_text = input("enter an integer: ")

number = int(number_text)

i = 0

while (i <= number):

 print(i)

 i = i+1

print("done with the while loop")

5

while loops: indentation matters

number_text = input("enter an integer: ")

number = int(number_text)

i = 0

while (i <= number):

 print(i)

 i = i+1

 print("done with the while loop")

6

What does this program do?

Designing a while loop

• When you design a while loop, you need to
make sure that the loop will terminate exactly
when needed, not before, and not after.

• You will need to define a test (boolean
expression), that determines when to stay in
the loop and when to exit.

• You need to update variables within the body
of the loop, as needed.

7

for loops (simplest version)

• A for loop can be defined as follows (note: this
definition will be extended when we talk about lists).

for variable in range(from, to):

 line 1

 line 2

 …

 line n

• Line 1, line 2, …, line n are called the body of the
for loop.

8

for loop execution (simplest version)

for variable in range(from, to):

 line 1

 line 2

 …

 line n

first line after loop

• This is how a for loop gets executed:

– Step 1: variable = from

– Step 2: If variable >= to, go to first line after the loop.

– Step 3: execute the body of the loop.

– Step 4: update variable to variable + step, and go to step 2

9

An example of a for loop

number_text = input("enter an integer: ")

number = int(number_text)

for i in range(0, number+1):

 print(i)

print("done with the for loop")

10

WARNING about using range

• If you want to process the integers between X
and Y, you need to use range(X, Y+1).

• If you use range(X, Y), the for loop will go up
to Y-1, not up to Y.

• This is an extremely common source of bugs.

11

for loops, version 2

• A for loop can also be defined as follows (note:
this definition will be extended when we talk about
lists).

for variable in range(from, to, step):

 line 1

 line 2

 …

 line n

• Line 1, line 2, …, line n are called the body of the
for loop. 12

for loop execution

for variable in range(from, to, step):

 line 1

 line 2

 …

 line n

first line after loop

• This is how a for loop gets executed:

– Step 1: variable = from

– Step 2: If step is positive and variable >= to, or step is
negative and variable <= to, go to first line after the loop.

– Step 3: variable = variable + step

– Step 4: go to step 2

13

A for loop with a step

number_text = input("enter an integer: ")

number = int(number_text)

for i in range(0, number+1, 13):

 print(i)

print()

print("printed all numbers between 0 and", number)

print("that are divisible by 13")

14

A for loop with a negative step

number_text = input("enter an integer: ")

number = int(number_text)

for i in range(number, -1, -1):

 print(i)

print()

print("printed all numbers between", number)

print("and 0 in reverse order")

15

A for loop with a negative step

number_text = input("enter an integer: ")

number = int(number_text)

for i in range(number, -1, -1):

 print(i)

print()

print("printed all numbers between", number)

print("and 0 in reverse order")

16

Note that the second argument of the range is -1, not 0.

The break statement

• The break statement forces termination of the current
while loop or for loop.

• Example: print the first number >= N that is divisible by 13.

N = int(input("enter an integer: "))

i = N

while True:

 if (i % 13 == 0):

 print("first number >=", N, "divisible by 13 is ", i)

 break

 i = i+1

17

The continue statement

• The continue statement skips the rest of the body of the
loop and goes directly to the next iteration (or to
termination).

• Example: print numbers between 1 and N that are divisible by
13.

N = int(input("enter an integer: "))

for i in range(0, N+1):

 if (i % 13 != 0):

 continue

 print(i)

18

for loops, general version

• A for loop, in general, is defined as follows.

for variable in set_of_values:

 line 1

 line 2

 …

 line n

• Line 1, line 2, …, line n are called the body of the
for loop.

• set_of_values can be, among other things, a
string or a list. We will cover lists later in the course.

19

Example 1: for loop with a string

text = input("enter some text: ")

counter = 0

for i in text:

 print(i)

 if (i == 'a'):

 print("found an 'a'")

 counter = counter+1

print("\nThe letter 'a' appears", counter, "times")

20

Example 1: for loop with a string

text = input("enter some text: ")

counter = 0

for i in text:

 print(i)

 if (i == 'a'):

 print("found an 'a'")

 counter = counter+1

print("\nThe letter 'a' appears", counter, "times")

21

New elements: string equality, single quote within double quotes, "\n"

Example 2: for loop with a string

count the number of vowels in text entered by the user.

text = input("enter some text: ")

vowel_counter = 0

for i in text:

 if (i in 'aeiouyAEIOUY'):

 vowel_counter = vowel_counter + 1

print("\nThe text contains", vowel_counter, "vowels.")

22

