
Lists

CSE 1310 – Introduction to Computers and Programming

Vassilis Athitsos

University of Texas at Arlington

1

Motivating Exercise

• Let's write a program that:

– Asks the user to enter three numbers.

– Prints how many of those numbers are less than the last
number entered.

• Example:

– user enters: 10 35 15

– program prints: 1 of those numbers are less than 15

– explanation: 10 is less than the last number entered, which
was 15.

2

Motivating Exercise

• Let's write a program that:

– Asks the user to enter three numbers.

– Prints how many of those numbers are less than the last
number entered.

• Another example:

– user enters: 100 35 10

– program prints: 0 of those numbers are less than 10

– explanation: none of the numbers entered is less than the
last number entered (which is 10).

3

Motivating Exercise

• Let's write a program that:

– Asks the user to enter three numbers.

– Prints how many of those numbers are less than the last
number entered.

• Example:

– user enters: 10 35 105

– program prints: 2 of those numbers are less than 105

– explanation: 10 and 35 are less than the last number
entered, which was 105.

4

Motivating Exercise

• Let's modify the previous program so that it:

– Asks the user to enter four numbers.

– Prints how many of those numbers are less than the last
number entered.

• Example:

– user enters: 10 5 20 15

– program prints: 2 of those numbers are less than 15

– explanation: 10 and 5 are less than the last number
entered, which was 15.

5

Limits of This Approach

• Let's modify the previous program so that it:

– Asks the user to enter 20 numbers.

– Prints how many of those numbers are less than the last
number entered.

• Or, how about we modify the previous program so
that the user can enter as many numbers as they
want (they can enter "q" when they are done).

6

Limits of This Approach

• Let's modify the previous program so that it:

– Asks the user to enter 20 numbers.

– Prints how many of those numbers are less than the last
number entered.

– Can be done, but is very tedious.

• Or, how about we modify the previous program so
that the user can enter as many numbers as they
want (they can enter "q" when they are done).

– CANNOT BE DONE WITH WHAT WE KNOW

7

Another Program We Would Like to
Write but Cannot

• Write a program that:

– Asks the user to specify an integer N.

– Asks the user to enter N names and phone
numbers.

– Then, whenever the user types a name, the
computer outputs the corresponding phone
number.

• Again, this cannot be done with what we
know so far.

8

Containers

• A container is a data type that allows you to
store not just one value, but a set of values.

• Container is a computer science term, not a
Python term.

• Different programming languages have
different (and usually multiple) names for
containers.

– A common name is arrays (Java, C++).

9

Containers and Lists in Python

• There are multiple types of containers in
Python as well.

• The type we will cover at this point is called a
list.

• Lists easily allow us to do the tasks we
mentioned earlier.

10

A First Example

• Listing months and their lengths.

• Without containers:

– 12 variables for month names.

month1_name = "January"

month2_name = "February"

month3_name = "March"

month4_name = "April"

month5_name = "May"

month6_name = "June"

…

 11

A First Example

• Listing months and their lengths.

• Without containers:

– 12 variables for month lengths.

month1_length = 31

month2_length = 28

month3_length = 31

month4_length = 30

month5_length = 31

month6_length = 30

…

 12

A First Example

• Listing months and their lengths.

• Printing out this info requires explicitly
mentioning each variable.

print month1_name, "has", month1_length, "days"

print month2_name, "has", month2_length, "days"

print month3_name, "has", month3_length, "days"

print month4_name, "has", month4_length, "days"

print month5_name, "has", month5_length, "days"

print month6_name, "has", month6_length, "days"

…

13

A First Example

• Listing months and their lengths.

• With containers (using lists):

– One variable for month names.

month_names = ["January", "February", "March", "April",
"May", "June", "July", "August", "September",
"October", "November", "December"]

– One variable for month lengths.

month_lengths = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31]

 14

A First Example

• Printing out months and lengths is easy:

month_names = ["January", "February", "March",

"April", "May", "June", "July", "August",

"September", "October", "November", "December"]

month_lengths = [31, 28, 31, 30, 31, 30, 31, 31, 30,

31, 30, 31]

for i in range(0, 12):

 print(month_names[i], "has", month_lengths[i],

"days")

15

Why Is the List Solution Better?

16

Why Is the List Solution Better?

• Going through all names and lengths requires many lines
without containers.

– Two lines with a list.

• Changing output from "xxx has yy days" to "there are yy
days in xxx" requires 12 changes without containers.

– One change using a list:

• Replace

print month_names[i], "has", month_lengths[i], "days"

with

print "there are", month_lengths[i], "days in", month_names[i]

17

Lists Simplify Code

• Entering data remains painful.

– Either way we must enter 12 names and 12 lengths.

– We can live with this because:

18

Lists Simplify Code

• Entering data remains painful.

– Either way we must enter 12 names and 12 lengths.

– We can live with this because:

• Data only needs to be entered once.

• Often data is read from files (later we will learn how).

19

Lists Simplify Code

• Entering data remains painful.

– Either way we must enter 12 names and 12 lengths.

– We can live with this because:

• Data only needs to be entered once.

• Often data is read from files (later we will learn how).

• Manipulating data becomes much easier.

– We can go through data using loops, as opposed to
explicitly stating what to do with each value.

• How much easier does it get?

– Savings proportional to number of values. 20

Lists Simplify Code

• How much easier does it get using lists?

– Savings proportional to number of values.

• For 12 values, replacing 12 lines with 1.

• For 20,000 values, replacing 20,000 lines with 1.

• What type of real application would need 20,000
values?

21

Lists Simplify Code

• How much easier does it get using lists?

– Savings proportional to number of values.

• For 12 values, replacing 12 lines with 1.

• For 20,000 values, replacing 20,000 lines with 1.

• What type of real application would need 20,000
values?

– Saving and manipulating data on 20,000 people
(students, citizens, customers)

22

Lists Simplify Code

• How much easier does it get using lists?

– Savings proportional to number of values.

• For 12 values, replacing 12 lines with 1.

• For 20,000 values, replacing 20,000 lines with 1.

In practice:
YOU CANNOT CODE WITHOUT USING LOOPS
AND CONTAINERS.

23

Accessing Single Elements

my_list = [10, 2, 5, 40, 30, 20, 100, 200]

• This is a list with 8 elements.

– my_list[0]  10, this is element 0 of the list.

 IMPORTANT: ELEMENT POSITIONS START WITH
0, NOT WITH 1.

– my_list[5]  20, this is element 5 of the list.

– my_list[-1]  200, this is the last element

– my_list[-3]  20, this is the third-from-last
element .

– my_list[8], my_list[-9] return errors.

24

Changing Single Elements

>>> my_list = [10, 2, 5, 40, 30, 20, 100, 200]

>>> my_list[0] = 15
– Sets value of element 0 to 15.

>>> my_list

[15, 2, 5, 40, 30, 20, 100, 200]

>>> my_list[3] = 23
– Sets value of element 0 to 15.

>>> my_list

[15, 2, 5, 23, 30, 20, 100, 200]

>>> my_list[-2] = 70
– Sets value of second-to-last element to 70.

>>> my_list

[15, 2, 5, 40, 30, 20, 70, 200] 25

Accessing Multiple Elements

my_list = [10, 2, 5, 40, 30, 20, 100, 200]

>>> my_list[2:5]

[5, 40, 30]

Returns list of elements from position 2 up to and not including position 5.

>>> my_list[3:]

[40, 30, 20, 100, 200]
Returns list of elements from position 3 until the end of the list.

>>> my_list[:4]

[10, 2, 5, 40]
Returns list of elements from start and up to and not including position 4.

26

for loops with lists

• A for loop, in the general form, is defined as
follows:

for variable in set_of_values:

 line 1

 line 2

 …

 line n

• set_of_values can be a list.

27

Example 1: for loop with a list

my_list = [1, 'hello', 2, 'goodbye', [10, 20]]

for item in my_list:

 print(item)

Output:

1

hello

2

goodbye

[10, 20]

28

Example 2: for loop with a list

my_list = [1, 'hello', 2, 'goodbye', [10, 20]]

counter = 0

for item in my_list:

 print('item', counter, ':', item)

 counter = counter + 1

Output:

item 0 : 1

item 1 : hello

item 2 : 2

item 3 : goodbye

item 4 : [10, 20]
29

The len function

• len(my_list)

– returns the length (number of elements) of the list.

>>> my_list = [10, 2, 5, 40, 30, 20, 100, 200]

>>> len(my_list)

8

30

Functions and Methods

• Functions and methods are almost identical
concepts.

• Only difference: syntax of how we write a function
call or a method call.

• Function call: len(my_list)

– Form: function_name(argument1, argument2, …)

– The expression starts with the function name.

• Method call: my_list.pop()

– Form: object.method_name(argument1, argument2, …)

– The expression starts with the object.

31

List Methods - append

• my_list.append(x): adds x to the end of my_list.

>>> my_list = ["mon", "tue", "wed"]

>>> my_list.append("thu")

>>> my_list

['mon', 'tue', 'wed', 'thu']

32

List Methods - pop

• my_list.pop(): removes and returns the last element
of my_list.

– This is an expression, not a statement.

>>> my_list = ["mon", "tue", "wed"]

>>> a = my_list.pop()

>>> my_list

['mon', 'tue']

>>> a

'wed'

 33

List Functions - del

• del(my_list[position]): deletes the specified position,
and moves forward by one position all elements
coming after that position.

>>> my_list = [40, 10, 20, 80, 70]

>>> del(my_list[1])

>>> my_list

[40, 20, 80, 70]

>>> my_list[1]

20

34

List Functions - The + Operator

• my_list1 = my_list2 + my_list3: sets my_list1 to be
the concatenation of my_list2 and my_list3.

>>> my_list2 = [10, 20, 30]

>>> my_list3 = [1, 2, 3]

>>> my_list1 = my_list2 + my_list3

>>> print(my_list1)

[10, 20, 30, 1, 2, 3]

35

List Methods - insert

• my_list.insert(position, x): inserts x right before the
specified position.

– After the insertion, my_list[position] is equal to x.

>>> my_list = [40, 10, 20, 80, 70]

>>> my_list.insert(3, 50)

>>> my_list

[40, 10, 20, 50, 80, 70]

>>> my_list[3]

50

36

List Methods - sort

• my_list.sort(): sorts my_list in ascending order.

>>> my_list = [40, 10, 20, 80, 70]

>>> my_list.sort()

>>> my_list

[10, 20, 40, 70, 80]

37

List Methods - sort

• my_list.sort(): sorts my_list in ascending order.

• NOTE: this also works with lists of strings.

>>> my_list = ["Sunday", "Monday", "Tuesday"]

>>> my_list.sort()

>>> my_list

['Monday', 'Sunday', 'Tuesday']

38

Not quote alphabetical order:

capital letters come before lower case letters.

List Methods - sort

• my_list.sort(): sorts my_list in ascending order.

• NOTE: this also works with lists of strings.

>>> my_list = ['a', 'b', 'c', 'A', 'B', 'C', 'ant', 'bee', 'car']

>>> my_list.sort()

>>> my_list

['A', 'B', 'C', 'a', 'ant', 'b', 'bee', 'c', 'car']

39

Not quote alphabetical order:

capital letters come before lower case letters.

List Methods - reverse

• my_list.reverse(): reverses the order of my_list.

>>> my_list = [40, 10, 20, 80, 70]

>>> my_list.reverse()

>>> my_list

[70, 80, 20, 10, 40]

40

The in operator

• We have used in before, to check if a letter appears
in a string.

>>> 'a' in 'bravo'

True

• We can also use in to check if a value of any type is
included in a list.

>>> 15 in [234, 15, 32]

True

>>> 'day' in ['have', 'a', 'good', 'day']

True

>>> 'day' in ['have', 'a', 'good', 'evening']

False 41

Example 1: Using the in operator

find elements that are repeated twice in a list

my_list = [15, 10, 30, 20, 40, 30, 15, 40, 15]

for i in range(0, len(my_list)):

 item = my_list[i]

 if item in my_list[i+1:]:

 print(item, "appears more than once in the list.")

42

Example 1: Using the in operator

find elements that are repeated twice in a list

my_list = [15, 10, 30, 20, 40, 30, 15, 40, 15]

for i in range(0, len(my_list)):

 item = my_list[i]

 if item in my_list[i+1:]:

 print(item, "appears more than once in the list.")

43

Issues:
- Repeats information about element 15.
- How can it also print that a value only appears once?

Example 2: Using the in operator

Find elements that are repeated twice or more in a list.

Also identify elements that are repeated only once in the list.

my_list = [15, 10, 30, 20, 40, 30, 15, 40, 15]

duplicates = []

for i in range(0, len(my_list)):

 item = my_list[i]

 if (item in duplicates):

 continue

 if item in my_list[i+1:]:

 duplicates.append(item)

 print(item, "appears more than once in the list.")

 else:

 print(item, "does not appear more than once in the list.")

44

Converting a String to a List

• To convert a string to a list, use the list
function.

>>> list('hello')

['h', 'e', 'l', 'l', 'o']

45

Converting a List to a String

• To convert a list to a string, do not use the str
function.

>>> a = list('hello')

>>> a

['h', 'e', 'l', 'l', 'o']

>>> b = str(a)

>>> b

"['h', 'e', 'l', 'l', 'o']"

46

Converting a List to a String

• To convert a list to a string, use a for loop.

a = ['h', 'e', 'l', 'l', 'o']

b = ""

for letter in a:

 b = b+letter

>>> b

'hello'

 47

Example: Strings to Lists and Back

sort all the letters in a string.

text = input('Enter some text: ')

text_list = list(text)

text_list.sort()

new_text = ""

for letter in text_list:

 new_text = new_text + letter

print("The sorted text is:", new_text)

48

OUTPUT:

Enter some text: hello world
The sorted text is: dehllloorw

Shallow Copies

>>> list1 = [40, 10, 20, 80, 70]

>>> list2 = list1

>>> list1 is list2

True

>>> list1[2] = 50

>>> list2

[40, 10, 50, 80, 70]

>>> list2.pop()

70

>>> list1

[40, 10, 50, 80]
49

This line makes list2 a shallow copy
of list1. After this line, list2 and
list1 refer to the same list in the
computer's memory.

Thus, whenever that list changes,
both list1 and list2 are affected.

list1 is list2 allows the programmer
to check if two variables refer to
the same actual list.

Breaking Links Caused by Shallow
Copies

>>> list1 = [40, 10, 20, 80, 70]

>>> list2 = list1

>>> list1[2] = 50

>>> list2

[40, 10, 50, 80, 70]

>>> list1 = [1, 2, 3]

>>> list2

[40, 10, 50, 80, 70]

50

This line makes list2 a shallow copy
of list1. After this line, list2 and
list1 refer to the same list in the
computer's memory.

Thus, whenever that list changes,
both list1 and list2 are affected.

After this line, list1 and list2 refer
to two different lists, and they are
not connected anymore.

Level-1 Deep Copies

>>> list1 = [40, 10, 20, 80, 70]

>>> list2 = list1[:]

>>> list1 is list2

False

>>> list1.sort()

>>> list1

[10, 20, 40, 70, 80]

>>> list2

[40, 10, 20, 80, 70]

51

This line makes list2 a level-1 deep
copy of list1. After this line, list2
and list1 refer to different lists in
the computer's memory.

Thus, whenever we replace an
element, insert an element, or
delete an element from one list,
that does NOT affect the other list.

Level-1 Deep Copies

>>> list1 = [[40, 10], 20, [80, 70]]

>>> list2 = list1[:]

>>> list2[2] = 1000

>>> list1

[[40, 10], 20, [80, 70]]

>>> list2

[[40, 10], 20, 1000]

>>> list2[0][1] = 77

>>> list1

[[40, 77], 20, [80, 70]]

52

list1 contains a list, an integer, and
another list.

list2 is a level-1 deep copy of list1.

Changing list2[2] does not affect
list1 (we are replacing an entire
element).

However, changing list2[2][1]
changes list1 as well (we are
replacing contents of an element).

Deep Copies

>>> import copy

>>> list1 = [[40, 10], 20, [80, 70]]

>>> list2 = copy.deepcopy(list1)

>>> list2

[[40, 10], 20, 1000]

>>> list2[0][1] = 77

>>> list1

[[40, 10], 20, [80, 70]]

>>> list2

[[40, 77], 20, [80, 70]]

53

import copy must be executed
before we call the
copy.deepcopy method.

list1 contains a list, an integer,
and another list.

list2 is a deep copy of list1. No
change of list2 can possibly
affect list1 anymore.

Note that list1 is now the
same as before.

The id Keyword
>>> a = [1, 2, 3]

>>> b = a

>>> c = a[:]

>>> id(a)

41460872L

>>> id(b)

41460872L

>>> id(c)

41417544L

>>> a is b

True

>>> a is c

False

• id(my_variable) returns a
memory address, tells us where the
computer stores information about
my_variable.

• When variable2 is a shallow copy
of variable1 (like a and b on the
left), then both variables refer to
the same underlying object, and
their IDs are the same.

• When variable2 is not a shallow
copy of variable1 (like a and c on
the left), then the two variables
refer to different underlying
objects, with different IDs.

54

The is Keyword
>>> a = [1, 2, 3]

>>> b = a

>>> c = a[:]

>>> id(a)

41460872L

>>> id(b)

41460872L

>>> id(c)

41417544L

>>> a is b

True

>>> a is c

False

• variable1 is variable2
returns a boolean, that tells us
whether both variables refer to the
same underlying object. If this
boolean is true, then it means that:

– id(variable1) == id(variable2)

– variable1 is a shallow copy of
variable2 (and vice versa)

• Checking whether two
variables are shallow copies of
each other can be done using
either id or is.

– The is keyword is more readable.
55

Shallow vs. Deep Copies

• Shallow copy: list1 = list2

• Level-1 deep copy: list1 = list2[:]

– In a level-1 deep copy, list2[i] is a shallow copy of
list1[i].

• Deep copy: list2 = copy.deepcopy(list1)

– Line "import copy" must be executed beforehand.

– With copy.deepcopy, list2 and list1 do not share
any memory, changing one of them does not
affect the other one.

• BE AWARE OF THESE ISSUES, THEY MAY
CAUSE HARD-TO-FIND BUGS 56

Lists vs. Tuples

>>> a = [1, 2, 3]

>>> a[0] = 100

>>> a

[100, 2, 3]

>>> b = (1, 2, 3)

>>> b[0] = 100

error message…

• Tuples are basically lists, …

• with one important difference: you
cannot change the contents of a
tuple.

57

Lists vs. Tuples
>>> a = [1, 2, 3]

>>> a[0] = 100

>>> a

[100, 2, 3]

>>> b = (1, 2, 3)

>>> b[0]

1

>>> b[1:3]

(2, 3)

>>> len(b)

3

>>> print b

(1, 2, 3)

• Any operation that you can do on
lists, and that does NOT change
contents, you can do on tuples.

• Examples:

– Indexing, e.g., b[0]

– Slicing, e.g., b[1:3]

– Taking the length, e.g., as len(b)

– Printing, e.g., print(b)

• Operations that change contents of
lists, produce errors on tuples.

• Examples: list methods pop, insert,
reverse, sort, append

58

Lists vs. Tuples
>>> a = [1, 2, 3]

>>> a[0] = 100

>>> a

[100, 2, 3]

>>> b = (1, 2, 3)

>>> b[0]

1

>>> b[1:3]

(2, 3)

>>> len(b)

3

>>> print b

(1, 2, 3)

• Creating a tuple can be done easily,
just use parentheses around the
elements, instead of brackets.

– See red lines on the left.

• When you print a tuple, you also see
parentheses instead of brackets.

59

Lists vs. Tuples

>>> a = [1, 2, 3]

>>> b = tuple(a)

>>> b

(1, 2, 3)

>>> b = (1, 2, 3)

>>> a = list(b)

>>> a

[1, 2, 3]

• You can easily copy lists into tuples,
and tuples into lists, as shown on the
left.

60

Lists vs. Tuples

>>> a = [1, 2, 3]

>>> b = tuple(a)

>>> b

(1, 2, 3)

>>> type(a)

<class 'list'>

>>> type(b)

<class 'tuple'>

• Lists are of type 'list', and tuples are
of type 'tuple'

61

Protection Against Shallow Copies

>>> tuple1 = ([40, 10], 20, [80,
70])

>>> tuple2 = tuple1

>>> tuple1[2] = 1000

<error message>

>>> tuple2[0][1] = 77

>>> tuple1

([40, 77], 20, [80, 70])

• tuple1 contains a list, an integer,
and a second list.

• tuple2 is a shallow copy of tuple1.

• Trying to replace the value at
position 2 does not work (tuples
cannot be modified).

• However, modifying tuple2[0][1]
also modifies tuple1.

• This problem is caused by having a
list as element of the tuple.

62

Protection Against Shallow Copies

>>> tuple1 = ((40, 10), 20, (80,
70))

>>> tuple2 = tuple1

>>> tuple1[2] = 1000

<error message>

>>> tuple2[0][1] = 77

<error message>

• tuple1 contains a tuple, an integer,
and a second tuple.

• tuple2 is a shallow copy of tuple1.

• Trying to replace the value at
position 2 does not work (tuples
cannot be modified).

• Modifying tuple2[0][1] also
doesn't work.

• Thus, we avoid the problem of
inadvertently modifying multiple
variables.

63

Do We Care About Tuples?

• Be aware that they exist.

– Know what they are if you see them in other
people's code.

– Use them if you find it beneficial.

– Use them if you want to ensure that modifying one
variable will NOT affect any other variable.

• We will see more uses of tuples later.

• Now you know these types:

– int, float, str, bool, list, tuple.

64

