
Strings

CSE 1310 – Introduction to Computers and Programming

Vassilis Athitsos

University of Texas at Arlington

1

Strings Store Text

• In the same way that int and float are designed to
store numerical values, the string type is designed to
store text.

• Strings can be enclosed in: single quotes, double
quotes, or triple double quotes.

• Examples:

name = 'George'

phone_number = "310-123-987"

message = """Please go shopping. We need milk,

cereal, bread, cheese, and apples. Also, put gas in

the car.""" 2

A Simple Program Using Strings

text = input("please enter a day: ")

weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

weekend = ['Saturday', 'Sunday']

if (text in weekdays):

 print('This is a weekday')

elif (text in weekend):

 print('This is a weekend day')

else:

 print('This is not a valid day')

3

Accessing the Elements of a String

• Accessing elements of a string is done as in lists,
using the [] operator.

>>> a = 'hello'

>>> a[0]

'h'

>>> a[2]

'l'

>>> a[1:3]

'el'

>>> a[-1]

'o'

>>> a[-2]

'l'
4

Accessing the Elements of a String

• Accessing elements of a string is done as in lists,
using the [] operator.

>>> 'goodbye'[3]

'd'

>>> 'goodbye'[4:1:-1]

'bdo'

>>> 'goodbye'[::2]

'gobe'

>>> 'goodbye'[:4]

'good'

>>> 'goodbye'[4:]

'bye'

5

Concatenation Using The + Operator

• The string1+string2 expression produces the
concatenation of string1 and string2.

>>> a = "hello"

>>> b = a + " " + "world"

>>> print(b)

hello world

6

Concatenation Using The += Operator

• The string1 += string2 statement assigns to string1
the concatenation of string1 and string2.

>>> c = "Arlington"

>>> c += ", TX"

>>> print(c)

Arlington, TX

7

The * Operator on Strings

>>> a = "hello"

>>> a*3

'hellohellohello'

• The string*integer expression repeats a
string as many times as the integer specifies.

8

For Loops with Strings

• Print out all letters in
a string.

text = "hello world"

for letter in text:

 print('found letter', letter)

9

OUTPUT:

found letter h

found letter e

found letter l

found letter l

found letter o

found letter

found letter w

found letter o

found letter r

found letter l

found letter d

String Comparisons

>>> my_strings = ["Welcome", "to", "the", "city", "of", "New",
"York"]

>>> my_strings

['Welcome', 'to', 'the', 'city', 'of', 'New', 'York']

>>> my_strings.sort()

>>> my_strings

['New', 'Welcome', 'York', 'city', 'of', 'the', 'to']

• Python uses a string order of its own.

– Follows alphabetical order, with the exception that
capital letters are always before lower case letters.

10

String Comparisons

• It is easy to verify the order that Python uses,
by trying out different pairs of strings.

>>> "hello" < "goodbye"

False

>>> "Hello" < "goodbye"

True

>>> "ab" > "abc"

False

11

String Comparisons

>>> "123" < "abc"

True

>>> "123" < "ABC"

True

• Numbers come before letters.

• Guideline: do not memorize these rules, just
remember that Python does NOT use exact
alphabetical order. 12

String Comparisons

>>> "123" == 123

• What will this line produce?

13

String Comparisons

>>> "123" == 123

False

• What will this line produce?

– False, because a string cannot be equal to a
number.

14

String Comparisons

>>> "123" < 150

• What will this line produce?

15

String Comparisons

>>> "123" < 150

Traceback (most recent call last):

 File "<pyshell#195>", line 1, in <module>

 "123" < 123

TypeError: unorderable types: str() < int()

• What will this line produce?

– An error message, because comparisons between
strings and numbers are illegal in Python.

16

Strings Cannot Change

>>> a = "Munday"

>>> a[1] = 'o'

Traceback (most recent call last):

 File "<pyshell#297>", line 1, in <module>

 a[1] = 'o'

TypeError: 'str' object does not support item assignment

17

If You Must Change a String…

• You cannot, but you can make your variable
equal to another string that is what you want.

• Example:

>>> my_string = "Munday"

– my_string contains a value that we want to
correct.

>>> my_string = "Monday"

– We just assign to variable my_string a new string
value, that is what we want.

 18

For More Subtle String Changes…

• Suppose that we want a program that:

– Gets a string from the user.

– Replaces the third letter of that string with the
letter A.

– Prints out the modified string. We just assign to
variable my_string a new string value, that is what
we want.

19

For More Subtle String Changes…

• Strategy:

– convert string to list of characters

– do any manipulations we want to the list (since
lists can change)

– convert list of characters back to a string

20

• Write a program that:

– Gets a string from the user.

– Modifies that string so that position 3 is an A.

– Prints the modified string.

21

An Example

An Example
my_string = input("please enter a string: ")

if (len(my_string) >= 3):

 # convert string to list, make the desired change (change third letter to "A")

 my_list = list(my_string)

 my_list[2] = "A";

 # create a string out of the characters in the list

 new_string = ""

 for character in my_list:

 new_string = new_string + character

 my_string = new_string

print("the modified string is", my_string)

22

A Variation
my_string = input("please enter a string: ")

my_string = my_string[0:2] + "A" + my_string[3:]

print("the modified string is", my_string)

23

The in Operator

>>> a = [1, 2, 3]

>>> 2 in a

True

>>> 5 in a

False

>>> vowels = 'aeiou'

>>> "a" in vowels

True

>>> "k" in vowels

False

 24

• The in operator works for
lists and strings.

• Syntax:

• element in container

• Returns true if the
element appears in the
container, false otherwise.

upper and lower

25

>>> vowels = 'aeiou'

>>> b = vowels.upper()

>>> vowels

'aeiou'

>>> b

'AEIOU'

>>> a = 'New York City'

>>> b = a.lower()

>>> b

'new york city'

• The string.upper() method
returns a new string where all
letters are upper case.

• The string.lower() method
returns a new string where all
letters are lower case.

• Note: upper() and lower() do
not modify the original string,
they just create a new string.

• Should be obvious,
because strings cannot be
modified.

The len Function

26

>>> len('hello')

5

• Similar as in lists, len returns
the number of letters in a
string.

Reversing a String

>>> a = "hello"

>>> b = a[::-1]

>>> b

'olleh'

>>> a[3:0:-1]

'lle'

• Slicing with step -1 can be used to reverse
parts, or all of the string.

27

The index method

28

>>> a = [10, 11, 12, 10, 11]

>>> a.index(10)

0

>>> a.index(11)

1

>>> b = "this is crazy"

>>> b.index('i')

2

>>> b.index('cr')

8

• The my_list.index(X) method
returns the first position
where X occurs.

• Gives an error if X is not in
my_list.

• The my_string.index(X)
behaves the same way, but:

• X can be a single letter or
more letters.

The find method

29

>>> b = "this is crazy"

>>> b.find('is')

2

>>> b.find('q')

-1

• The my_string.find(X) method,
like index, returns the first
position where X occurs.

• X can be a single letter or
more letters.

• Difference from index:
my_string.find(X) returns -1
if X is not found.

The isspace method

30

>>> b = "\t\n \t"

>>> b.isspace()

True

>>> "hello".isspace()

False

• The my_string.isspace()
method, returns True if the
string only contains white
space (space, tab, newline).

• X can be a single letter or
more letters.

• " " is the space character.

• "\t" is the tab character.

• "\n" is the newline
character.

The strip method

31

>>> a = " hello world "

>>> b = a.strip()

>>> b

'hello world'

• The my_string.strip() method,
returns a string that is equal to
my_string, except that white
space (space, tab, newline) has
been removed from the
beginning and the end of
my_string.

• White space in the middle
of the string (between non-
white-space characters) is
not removed.

Converting Other Types to Strings

32

>>> a = 2012

>>> b = str(a)

>>> b

'2012'

>>> a = ['h', 'e', 'l', 'l', 'o']

>>> b = str(a)

>>> b

"['h', 'e', 'l', 'l', 'o']"

• The str function converts
objects of other types into
strings.

• Note: str does NOT
concatenate a list of
characters (or strings). See
example on left.

Converting Strings Into Ints/Floats

33

>>> a = '2012'

>>> b = int(a)

>>> b

2012

>>> float(a)

2012.0

>>> a = "57 bus"

>>> int(a)

<error message>

• The int, float functions
convert strings to integers and
floats.

• Will give error message if
the string does not
represent an integer or
float.

ASCII Codes

• Each letter corresponds
to an integer, that is
called the ASCII code
for that letter.

• The ord function can
be used to get the
ASCII code of a letter.

34

ASCII Codes

• Each letter corresponds
to an integer, that is
called the ASCII code
for that letter.

• The ord function can
be used to get the
ASCII code of a letter.

for i in 'hello world':

 print(i, ord(i))

35

OUTPUT:

h 104

e 101

l 108

l 108

o 111

 32

w 119

o 111

r 114

l 108

d 100

From ASCII Code to Character

• The chr function can be
used to get the letter
corresponding to an ASCII
code.

36

From ASCII Code to Character

• The chr function can be
used to get the letter
corresponding to an ASCII
code.

list1 = [104, 101, 108, 108, 111]

text = ""

for item in list1:

 text = text + chr(item)

print("text =", text)
37

OUTPUT:

text = hello

Converting Strings Into Lists

38

>>> a = "hello"

>>> list(a)

['h', 'e', 'l', 'l', 'o']

• The list function can convert a
string to a list.

• Always works.

• Very handy if we want to
manipulate a string's
contents and create new
strings based on them.

Converting a List to a String

• To convert a list to a string, do not use the str
function.

>>> a = list('hello')

>>> a

['h', 'e', 'l', 'l', 'o']

>>> b = str(a)

>>> b

"['h', 'e', 'l', 'l', 'o']"

39

Converting a List to a String

• To convert a list to a string, use a for loop.

a = ['h', 'e', 'l', 'l', 'o']

b = ""

for letter in a:

 b = b+letter

>>> b

'hello'

 40

Example: Strings to Lists and Back

sort all the letters in a string.

text = input('Enter some text: ')

text_list = list(text)

text_list.sort()

new_text = ""

for letter in text_list:

 new_text = new_text + letter

print("The sorted text is:", new_text)

41

OUTPUT:

Enter some text: hello world
The sorted text is: dehllloorw

