
Program State and Program Execution

CSE 1310 – Introduction to Computers and Programming

Vassilis Athitsos

University of Texas at Arlington

1

Program State vs. Program History

• The state of the program contains all the information
that we need to determine what the program will do
next.

• The state of the program is typically much more
simple than the history of the program, which
describes everything than the program did from the
beginning till now.

• The computer always keeps track of program state.

• As a rule (with rare exceptions) the computer does
NOT keep track of program history.

2

Understanding Program States

• Understanding any piece of code (whether it is
an if statement, while loop, function call)
means understanding how that piece of code
changes program state.

– Code that does not change the program state is
useless.

• Conversely, if you do not understand precisely
how some piece of code changes program
state, you do not understand that piece of
code.

3

Defining a Program State

• A program state consists of:

– Namespaces, that associate variable names with values.
• Only one namespace is visible at each moment in the program

execution, but multiple other namespaces may still be in memory,
and can become visible later.

– A calling stack, which describes what line(s) of code we are
currently executing.

4

The Calling Stack

• The calling stack describes what line(s) of code we are
executing right now. The calling stack contains a sequence of
program lines:
– The current line L_1 we are executing.

– The line L_2 that made the last function call.

– The line L_3 that made the second-to-last function call.

– And so on, until some line L_N that belongs to the main code.

• Important: for every line in the calling stack, additional
information is needed:
– Exactly which function call is being evaluated (lines of code may include

multiple function calls).

– Which subexpressions have already been evaluated and what values
they returned.

5

The Calling Stack

• The calling stack describes what line(s) of code we are
executing right now. The calling stack contains a sequence of
program lines:
– The current line L_1 we are executing.

– The line L_2 that made the last function call.

– The line L_3 that made the second-to-last function call.

– And so on, until some line L_N that belongs to the main code.

• Important: for every line in the calling stack, additional
information is needed:
– Exactly which function call is being evaluated (lines of code may include

multiple function calls).

– Which subexpressions have already been evaluated and what values
they returned. WE WILL GET BACK TO THIS TOPIC, IT IS IMPORTANT.

6

Correspondences between
Namespaces and Calling Stack

• At any point in the program, the number of
namespaces is equal to the number of lines in
the calling stack.

• Each line in the calling stack corresponds to a
different namespace.

– Why? Because each line in the calling stack
corresponds to a different function call.

7

The Order of Evaluating
Subexpressions

• For every line in the calling stack, we process it by evaluating its
subexpressions, and using the resulting values.

• In what order do we evaluate subexpressions?
– Evaluate simpler expressions before larger expressions that contain the

simple ones.

• Does this specify a complete order? NO

• The order in which subexpressions are evaluated may matter
(in bad code), but should never matter in good code.

8

The Order of Evaluating
Subexpressions

• For every line in the calling stack, we process it by evaluating its
subexpressions, and using the resulting values.

• In what order do we evaluate subexpressions?
– Evaluate simpler expressions before larger expressions that contain the

simple ones.

• Does this specify a complete order? NO

• The order in which subexpressions are evaluated may matter
(in bad code), but should never matter in good code.

• Example: what will this print?

>>> list1 = [4, 5, 6]

>>> list1.pop() - list1.pop()

9

The Order of Evaluating
Subexpressions

• For every line in the calling stack, we process it by evaluating its
subexpressions, and using the resulting values.

• In what order do we evaluate subexpressions?
– Evaluate simpler expressions before larger expressions that contain the

simple ones.

• Does this specify a complete order? NO

• The order in which subexpressions are evaluated may matter
(in bad code), but should never matter in good code.

• Example: what will this print?

>>> list1 = [4, 5, 6]

>>> list1.pop() - list1.pop()

10

It depends on whether the left pop or the
right pop is evaluated first.

If left pop is evaluated first, result is 1.
If the right pop is evaluated first, result is -1.

THIS IS HORRIBLE CODE, DO NOT USE.

An Example of Program Execution

def cube(n):

 result = n*n*n

 return result

start of main code

x = 3

result = cube(x) + cube(x+1)

print("result =", result)

11

An Example – Numbering Lines

12

To make it easy to refer to lines of code,
 we assign numbers to each line

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

Program Execution

13

Where do we start from?

How do we initialize the program state?

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

Program Execution

14

Main Namespace:

Calling Stack:

Initializing main

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

Program Execution

15

Main Namespace:

x = 3

Calling Stack:

Line 4

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

Program Execution

16

Main Namespace:

x = 3

Calling Stack:

Line 5: result = cube(x) + cube(x+1)

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

17

Main Namespace:

x = 3

Calling Stack:

Line 5: result = cube(x) + cube(x+1)

Note: it is not sufficient to just show Line 8
in the calling stack. We need to specify
which subexpression we will work on.

Which subexpression should we choose?

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

18

Note: it is not sufficient to just show Line 8
in the calling stack. We need to specify
which subexpression we will work on.

Which subexpression should we choose?

As long as the code follows good guidelines,
the order does not matter.

Main Namespace:

x = 3

Calling Stack:

Line 5: result = cube(x) + cube(x+1)

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

19

Main Namespace:

x = 3

Calling Stack:

Line 5: result = cube(x) + cube(x+1)

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

20

Main Namespace:

x = 3

Calling Stack:

Line 1: def cube(n):
Line 5: result = cube(x) + cube(x+1)

cube Namespace:

n = 3

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

21

Main Namespace:

x = 3

Calling Stack:

Line 2: result = n*n*n
Line 5: result = cube(x) + cube(x+1)

cube Namespace:

n = 3
result = 27

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

22

Main Namespace:

x = 3

Calling Stack:

Line 3: return result
Line 5: result = cube(x) + cube(x+1)

cube Namespace:

n = 3
result = 27

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

23

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 27 + cube(x+1)

Note:
- the namespace for cube disappears.
- in the calling stack, the returned
value replaces the function call in the
calling line.

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

24

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 27 + cube(x+1)

Next subexpression to evaluate
in current line: x+1

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

25

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 27 + cube(4)

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

26

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 27 + cube(4)

Next subexpression to evaluate
in current line: cube(4)

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

27

Main Namespace:

x = 3

Calling Stack:

Line 1: def cube(n):
Line 5: result = 27 + cube(4)

cube Namespace:

n = 4

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

28

Main Namespace:

x = 3

Calling Stack:

Line 2: result = n*n*n
Line 5: result = 27 + cube(4)

cube Namespace:

n = 4
result = 64

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

29

Main Namespace:

x = 3

Calling Stack:

Line 3: return result
Line 5: result = 27 + cube(4)

cube Namespace:

n = 4
result = 64

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

30

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 27 + 64

Note: in the calling stack, the returned
value replaces the function call in the
calling line.

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

31

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 27 + 64

Next subexpression to evaluate
in current line: 27 + 64

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

32

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 91

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

33

Main Namespace:

x = 3

Calling Stack:

Line 5: result = 91

Next to be done in Line 5: use computed
value(s) as prescribed by that line (i.e.,
do an assignment).

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

34

Main Namespace:

x = 3
result = 91

Calling Stack:

Line 5: result = 91

Next to be done in Line 5: use computed
value(s) as prescribed by that line (i.e.,
do an assignment).

Program Execution

Line 1: def cube(n):

Line 2: result = n*n*n

Line 3: return result

start of main code

Line 4: x = 3

Line 5: result = cube(x) + cube(x+1)

Line 6: print("result =", result)

35

Main Namespace:

x = 3
result = 91

Calling Stack:

Line 6: print("result =", result)

