
CSE 1311
Introductory Programming for

Engineers & Scientists

Darin Brezeale

The University of Texas at Arlington

CSE 1311 – p.1/29

Goals of Course
Goals of the course:

• Introduction to the programming language C
• Learn how to program
• Learn ‘good’ programming practices

CSE 1311 – p.2/29

C Language
The C language was created in the early 1970s. The
version we will learn is C89 (sometimes referred to as
C90), which is based on the 1989 ANSI standard.

Why learn a 20 year old version of the language?
Because it is still the most common version.

CSE 1311 – p.3/29

Programming
What is computer programming?
Representation of a task or algorithm in a computer
language.

What is an algorithm?
A set of directions for accomplishing a task.

CSE 1311 – p.4/29

Example of an Algorithm
The algorithm for calculating the arithmetic mean
(i.e., the average) of a set of numbers is

1. add all the numbers together

2. divide this sum by the quantity of numbers

In mathematical terms this is written as

average=

n∑

i=1

xi

n

CSE 1311 – p.5/29

Levels of Abstraction
Suppose a student is asked to come to the front of the
class

• high-level – stand, walk to front

CSE 1311 – p.6/29

Levels of Abstraction
Suppose a student is asked to come to the front of the
class

• high-level – stand, walk to front
• mid-level – stand, turn90

◦ to the right, walk 15
feet, turn90

◦ to the left, walk 10 feet

CSE 1311 – p.6/29

Levels of Abstraction
Suppose a student is asked to come to the front of the
class

• high-level – stand, walk to front
• mid-level – stand, turn90

◦ to the right, walk 15
feet, turn90

◦ to the left, walk 10 feet
• low-level – contract specific muscles in a specific

order

CSE 1311 – p.6/29

Levels of Abstraction
Suppose a student is asked to come to the front of the
class

• high-level – stand, walk to front
• mid-level – stand, turn90

◦ to the right, walk 15
feet, turn90

◦ to the left, walk 10 feet
• low-level – contract specific muscles in a specific

order
• lowest-level – you think about walking, initiating

many electrochemical reactions

CSE 1311 – p.6/29

Levels of Abstraction cont.
Computer languages that correspond to these levels of
abstraction:

• high-level – perl, python, matlab
• mid-level – C
• low-level – assembly language
• lowest-level – machine code

CSE 1311 – p.7/29

Analyzing a Problem
Computers understand concrete steps, not abstract
concepts.

To determine the concrete steps involved in solving a
problem, we may

• Represent the problem using pseudocode
• Work through the process using a simpler or

smaller version of the problem

CSE 1311 – p.8/29

Analyzing a Problem cont.
Example: You must sort 1000 numbers in ascending
order.
Simpler version: Sort 3, 2, 4, 1 in ascending order

Pseudocode:

CSE 1311 – p.9/29

Basic Concepts
Much of programming consists of the following:

• Storing and updating information – Variables and
Statements
Example: store the answer given by a user

• Making decisions – Conditionals
Example:

if temperature > 150 degrees
print ‘‘It’s too hot!’’

• Repeating certain tasks – Loops
Example: calculate the first 1000 prime numbers

CSE 1311 – p.10/29

Variables
C requires the programmer to specify the type of
variable. Some examples are:

• int – used for integers, e.g., 1, 208, -19
• double – used for floating point numbers, e.g.,

1.98, 10.0
• char – used for characters, e.g., ‘A’, ‘7’, ‘?’

Different variable types use different amounts of
memory.

CSE 1311 – p.11/29

Variables cont.
C requires that variables be declared with the variable
type before use:

int age;
age = 45;

or we could declare the variable and initialize it
simultaneously

int age = 45;

Note how we end each statement with a semicolon.

CSE 1311 – p.12/29

Variables Names
Variable names

• must begin with a letter or an underscore
• can include letters, numbers, and underscores,

e.g.,age, first_name, answer12
• can’t be the same as keywords, e.g.,int, for
• are case sensitive, e.g.,name, Name

CSE 1311 – p.13/29

Operators
The basic operators that you have in math are also
available in C: +, -, *, /, =

There are many more operators available that
we will introduce over time.

Note: The inside of the back cover of the
textbook lists the operators available
in C and the order of precedence

CSE 1311 – p.14/29

Operators cont.
One place where operators in C (and some other
languages) differ from their math use is integer
division.

WARNING:
integer
integer

= integer

Example:

int topnum = 9, bottomnum = 4;

int answer;

answer = topnum / bottomnum;

answer has a value of 2, not 2.25.
CSE 1311 – p.15/29

Operators cont.
One operator that we will use on many occasions is
themodulus operator: %. It returns the integer
remainder from integer division.

Example:
int topnum = 9, bottomnum = 4;

int answer;

answer = topnum % bottomnum;

answer has a value of 1.

CSE 1311 – p.16/29

Basic Structure of Program
int main(void)
{

/* your code goes here */
}

CSE 1311 – p.17/29

Example Program
#include <stdio.h>

int main(void)

{

int age = 41, old;

int weight;

weight = 180;

old = 2*age;

printf("You weigh %d pounds.\n", weight);

printf("You are %d years old.\n", age);

printf("People twice your age are %d years old.\n", old);

}

The output of this is
You weigh 180 pounds.

You are 41 years old.

People twice your age are 82 years old.
CSE 1311 – p.18/29

Compilation Process
A C program must be compiled in order to make an
executable. That is, the program written in the C
language must be translated to something the
computer understands before you can run it.

The entire compilation process consists of the
following:

source code⇒ preprocessor⇒ compiler⇒ assembler⇒ linker⇒ executable file

CSE 1311 – p.19/29

A ‘Good’ Program
There are different criteria by which one program may
be considered better than another. Some examples are:

• Readability
• Maintainability
• Portability
• Scalability
• Performance (e.g., how fast it runs or how much

memory it uses)

CSE 1311 – p.20/29

Programming Style
In this course, we care about readability, which is
related to maintainability. You want other people (or
you in the future) to be able to understand how the
program works. This can be done through the use of

• Comments
• White space
• Indentation
• Meaningful variable names

CSE 1311 – p.21/29

Programming Style cont.
Comments are enclosed by the characters/* and*/.

Some examples are:

/* this is a comment */

int some_variable;

or

/*
this is a comment

*/

int another_variable;

CSE 1311 – p.22/29

Programming Style cont.
Comments should assist the reader, not waste the time
of the programmer.

Good comment

/*
this function calculates pi using

the fast Fourier transform

*/

Useless comment

int age; /* this variable is the age */

CSE 1311 – p.23/29

Programming Style cont.
Version 1: no indentation or use of whitespace

#include <stdio.h>

int main(void){int age=41;printf("You are %d years old.\n",age);}

Version 1 is not a problem for the compiler, but it is
for the programmer.

CSE 1311 – p.24/29

Programming Style cont.
The C compiler ignores white space, so use it to
improve readability.

Version 2: uses whitespace and indentation
#include <stdio.h>

int main(void)

{

int age = 41;

printf("You are %d years old.\n", age);

}

CSE 1311 – p.25/29

Programming Style cont.
Meaningful variable names aid in reading and
debugging; they also eliminate the need for some
comments.

Version 1: variable names are not meaningful
int a = 10;

int b = 5;

int c;

c = a + b;

Version 2: meaningful variable names
int labor = 10;

int materials = 5;

int total_cost;

total_cost = labor + materials;

CSE 1311 – p.26/29

Source of Bugs
When a program does not function as intended, or
won’t compile, the cause is referred to as a ‘bug’. The
act of tracking down and correcting bugs is
debugging.

Bugs can be placed into two (broad) categories:
• code that is syntactically wrong
• logic errors

CSE 1311 – p.27/29

Types of Bugs
• syntax error

int int;

This attempts to create a variable calledint,
which is a keyword.

• logic error

you wrote

answer = 2 * 3;

when you meant

answer = 2 + 3;

CSE 1311 – p.28/29

Success in this course
There are several things you can do to improve your
chances of being successful in this course:

• run code that you know works
• modify code to see how it affects the results

(including breaking the code)
• write small programs to test concepts

CSE 1311 – p.29/29

	Goals of Course
	C Language
	Programming
	Example of an Algorithm
	Levels of Abstraction
	Levels of Abstraction cont.
	Analyzing a Problem
	Analyzing a Problem cont.
	Basic Concepts
	Variables
	Variables cont.
	Variables Names
	Operators
	Operators cont.
	Operators cont.
	Basic Structure of Program
	Example Program
	Compilation Process
	A `Good' Program
	Programming Style
	Programming Style cont.
	Programming Style cont.
	Programming Style cont.
	Programming Style cont.
	Programming Style cont.
	Source of Bugs
	Types of Bugs
	Success in this course

