Darin Brezeale
Modified by Vassilis Athitsos

The University of Texas at Arlington

Everything in memory has an address. C allows us to
obtain the address that a variable Is stored at. In fact,

If you have used scant () you have already done
this, for example,

scanf("'%d", &year);

A pointer Is a variable whose contents are the address
of another variable.

Pointers allow us to modify locations in memory by
orefixing an initialized pointer with an asterisk,
Known as the dereference operator.

void increment_number(int * x)

{

=+ 1, € Using dereference operator
}
int main()
{
inta = 10;
increment_number(&a); € Using address operator

printf("a = %d\n", a);
}

We can use pointers in much the same way we do the
variables that they point to.

inta=3, b=3; /7 aand b start with equal values */ iInt*
bptr = &b; /* we’ll modify b using a pointer */

at= 4;
*bptr += 4;
printf(""a 1s %d, b is %d\n", a, b);

a++:

(Cbptr)++; /* parentheses are necessary here to override the
order of precedence */
printf(’'a 1s %d, b 1s %d\n", a, b);

produces

ais 7, b 1s 7
ais 8, b i1s 8

Pointers are variables and they have their own type.
Example:
InNt™* numptr;

numptr hasatypeof Int * or pointer-to-int and
should be initialized to point to a variable of type

E Nt
Il .

Pointers can contain the address of another pointer.

int num = 5;
INt* numptr = #
InNt** ptr2 = &numptr; /* notice the two asterisks */

We need to differentiate between comparing the
contents of pointers and the variables that pointers

point to. To compare the addresses stored in pointers,
use

1IT(numptr == valptr)

To compare the values of the variables that pointers
point to, use

1 TCnumptr == *valptr)

e \When a pointer variable iIs created, its initial
value iIs whatever is in its allocated memory
location just like other variables.

o A pointer may be initialized with an address later
In a program based upon certain conditions.

e Sometimes we wish to initially set the pointer to
a value that later can be used to determine if the

pointer was never assigned an address.
e The value we use for this Is NULL (in uppercase).

#include <stdio.h>

int main(void) {
int num = 3;
int* numptr;

numptr = NULL;

iIT (numptr '= NULL)
printf(''num i1s %d\n", *numptr);
else
printf("'Oops. numptr has a value of %p\n', numptr);

}
produces
Oops. numptr has a value of 00000000

Previously, we made function calls like this:

iInt x = 3;
int y;
y = do_something (X);

In this case, a copy of the variable’s value are passed
to the function in a process called pass by value.

Chlanges made to the copy do not affect the original
value.

Pointers allow us to use a process called pass by
reference, in which we will be able to change the

value of the original variable. We do this by passing
the variable’s address to the function.

#include <stdio.h>
void tripleNum(int* aptr)

{

/* pass by reference */

*aptr = 3 * *aptr; // fTirst asterisk i1s for multiplication
// second i1s to dereference the pointer */

}

int main(void)

{

int num = 8;
INt* numptr = #
printf (“'before the function call, num i1s %d\n', num);

tripleNum (numptr);
printf (“‘after the function call, num 1s %d\n'", num);

}
Produces:

before the function call, num is 8
after the function call, num iIs 24

Just because a function has pointer arguments doesn’t
mean we must create pointer variables in the calling
function. Instead, we can use the address operator to

pass the address. In our previous example, we could
have used:

int main(void)
{
int num = 8;
printf (“'before the function call, num is %d\n", num);
tripleNum(&num); /* pass address */
printf (‘‘after the function call, num 1s %d\n', num);

When you write a function that returns a pointer, you

must make sure that the pointer points to a valid
memory location.

Good example:

int * good_ function()

{

int * x = (int *) malloc(sizeof(int) * 1);

*X = 5;

return X; €=
+

This is fine: the memory location that x points

<t mai to does not get deleted until we
En mainQ explicitly delete it by calling free here.

int * a = good_function();
printf("a = %d\n", *a);

free(a); €

When you write a function that returns a pointer, you
must make sure that the pointer points to a valid
memory location.

Bad example:

int * bad function()

{ lllegal: the memory location corresponding
int x = 5; . toxgets deleted as soon as bad_function
} return &X; é’ returns

int main()

int * a = bad _function();
printf(*'a = %d\n", *a);
+

