
IntroductiIntroducti

Dar
Modified b

The University

on to Pointerson to Pointers

rin Brezeale
y Vassilis Athitsos

y of Texas at Arlington

Addresses in Me
Everything in memory h
obtain the address that a vobta t e add ess t at a v
if you have used scanf
this, for example,, p ,

scanf("%d", &

emoryy
as an address. C allows us to
variable is stored at. In fact,va ab e s sto ed at. act,
() you have already done

&year);

Pointers
A pointer is a variable w
of another variableof another variable.

Pointers allow us to mod
fi i i i i li dprefixing an initialized p

known as the dereference

void increment_number(int * x)
{
*x = *x + 1;x x + 1;

}

int main()
{
int a = 10;
increment_number(&a);
printf("a = %d\n" a);printf(a = %d\n , a);

}

whose contents are the address

dify locations in memory by
i i h i kointer with an asterisk,

e operator.

Using dereference operatorUsing dereference operator

Using address operator

Pointers
We can use pointers in m
variables that they pointvariables that they point

int a = 3, b = 3; /* a and
bptr = &b; /* we’l

a+= 4;

*b t + 4*bptr += 4;

printf("a is %d, b is %d\n"

a++;a++;

(*bptr)++; /* parentheses a
order of precedence
printf("a is %d, b is %d\n"printf(a is %d, b is %d\n

producesp
a is
a is

much the same way we do the
toto.

b start with equal values */ int*
ll modify b using a pointer */

", a, b);

are necessary here to override the
*/

", a, b);, a, b);

7, b is 7
8, b is 8

Pointer Variable
Pointers are variables and

Example:

int* numptr;

h finumptr has a type of int
should be initialized to p
intint.

Typesyp
d they have their own type.

i i dt * or pointer-to-int and
point to a variable of type

Pointers to Point
Pointers can contain the

int num = 5;

int* numptr = #

i t** t 2 & t /*int** ptr2 = &numptr; /* no

ters
address of another pointer.

ti th t t i k */otice the two asterisks */

Comparing Poinp g
We need to differentiate
contents of pointers andcontents of pointers and
point to. To compare the
use

if(numptr ==

To compare the values of
i t tpoint to, use

if(*numptr ==if(*numptr ==

nters
between comparing the
the variables that pointersthe variables that pointers
addresses stored in pointers,

valptr)

f the variables that pointers

= *valptr)= *valptr)

Initializing Pointg
 When a pointer vari

value is whatever is
location just like oth

 A pointer may be iniA pointer may be ini
in a program based u

 Sometimes we wishSometimes we wish
a value that later can
pointer was never as

 The value we use for

ters to NULL
iable is created, its initial
in its allocated memoryy

her variables.
itialized with an address lateritialized with an address later
upon certain conditions.
h to initially set the pointer toh to initially set the pointer to
n be used to determine if the
ssigned an address.
r this is NULL (in uppercase).

Initializing Pointg

#include <stdio.h>

int main(void) {

in
in

numptr = NULL;

if (numptr != NULL)

printf("num is %d\n", *nump
elseelse

printf("Oops. nu

}

dproduces
Oops. numptr has

ters to NULL

nt num = 3;
nt* numptr;

ptr);

umptr has a value of %p\n", numptr);

a value of 00000000

Pointers and Fun
Previously, we made fun

int x = 3;
int y;y;
y = do_someth

In this case, a copy of the
to the function in a proce

Changes made to the cop
valuevalue.

nctions
nction calls like this:

hing (x);

e variable’s value are passed
ess called pass by value.

py do not affect the original

Pointers and Fun
Pointers allow us to use a
reference in which we wreference, in which we w
value of the original vari
the variable’s address to tthe variable s address to t

nctions
a process called pass by

will be able to change thewill be able to change the
able. We do this by passing
the function.the function.

Pointers and Fun
#include <stdio.h>

void tripleNum(int* aptr) /*
{{

*aptr = 3 * *aptr; // first a

// second

}}

int main(void)

{{
int num = 8;

int* numptr = #

printf ("before the functionprintf (before the function

tripleNum (numptr);
printf ("after the function c

}}

Produces:
before the fun
after the func

nctions
* pass by reference */

asterisk is for multiplication

is to dereference the pointer */

call, num is %d\n", num);call, num is %d\n , num);

call, num is %d\n", num);

nction call, num is 8
ction call, num is 24

Pointers and Fun
Just because a function h
mean we must create poimean we must create poi
function. Instead, we can
pass the address. In our p
h dhave used:

int main(void)int main(void)
{

int num = 8;

printf ("before the functp (

tripleNum(&num); /* pass

printf ("after the functi

nctions
has pointer arguments doesn’t
inter variables in the callinginter variables in the calling
n use the address operator to
previous example, we could

tion call, num is %d\n", num); , \ ,);

address */

ion call, num is %d\n", num);

Returning a Poing
When you write a functio
must make sure that the pmust make sure that the p
memory location.

d lGood example:

int * good function()int good_function()
{
int * x = (int *) malloc(
*x = 5;
return x;

}

int main()
{{
int * a = good_function()
printf("a = %d\n", *a);

free(a);free(a);
}

nter
on that returns a pointer, you
pointer points to a validpointer points to a valid

(sizeof(int) * 1);

This is fine: the memory location that x points
to does not get deleted until we
explicitly delete it by calling free here
);

explicitly delete it by calling free here.

Returning a Poing
When you write a functio
must make sure that the pmust make sure that the p
memory location.

d lBad example:

int * bad function()int bad_function()
{
int x = 5;
return &x;

}

int main()
{
int * a = bad_function();

i f(" %d\ " *)printf("a = %d\n", *a);
}

nter
on that returns a pointer, you
pointer points to a validpointer points to a valid

Illegal: the memory location corresponding
to x gets deleted as soon as bad_function
returns.

;

