
Structures
Darin Brezeale

The University of Texas at Arlington

Structures – p.1/18

Introduction
Arrays allow us to create many variables of the same
type and reference them using a common name.

In most cases the elements of an array will be related
in some way, for example, represent values for the
months of a year.

Structures – p.2/18

Introduction
What if we want to create objects of variables that
may or may not be of different types? In C, we can do
this by creating a structure.

Structures – p.3/18

Structures
The form of a structure is

struct struct_name

{

var_type var1;

var_type var2;

. . .

};

where
• struct is the keyword for defining a structure
• struct_name is the name for this structure

(since there may be more than one)
• var1, var2, ... are the specific variables

that make up the structure
Structures – p.4/18

Structures
To create a structure variable of the type
struct_name, we would use this:

struct struct_name variable_name;

We are allocating memory for a variable called
variable_name. The type of variable is a
structure, specifically astruct_name structure.

This is analogous to creating other types of variables,
for example,

int sum;

Structures – p.5/18

Structures
We can think of a structure as being a template for an
object. For example, we may wish to create a
structure for storing information about a person:

struct person

{

char name[20];

int age;

double weight;

};

In our program, we might create two variables using
this structure:

struct person John = {"John Smith", 25, 170.5};

struct person Mary = {"Mary Jones", 32, 120};

Structures – p.6/18

Accessing Structure Members
Once we have created a structure variable, we can
access the specific members using a period, known as
thestructure member operator.

struct person John = {"John Smith", 25, 170.5};

printf("%s is %d years old.", John.name, John.age);

Seeexample-structures.c on the course
website.

Structures – p.7/18

Initializing Structure Variables
With other variables we have seen that we can declare
the variable and later initialize it:

int x;

x = 5;

We can do the same with structures:
struct person Darin;

strcpy(Darin.name, "Darin Brezeale");

Darin.age = 41;

Darin.weight = 185;

Structures – p.8/18

Initializing Structure Variables
It’s also possible to define the structure and declare
variables of this type simultaneously:

int main(void)

{

struct person

{

char name[15];

int age;

} John, Mary;

strcpy(John, "John Smith");

John.age = 25;

strcpy(Mary, "Mary Jones");

Mary.age = 32;

}

Structures – p.9/18

Arrays as Structure Elements
We can have arrays as elements of a structure also:

struct arrayStruct

{

int data[2][3];

double values[4];

};

int main(void)

{

struct arrayStruct numbers = { {{1, 2, 3}, {4, 5, 6}},

{10, 20, 30 ,40} };

int i, j;

for(i = 0; i < 2; i++)

for(j = 0; j < 3; j++)

printf("%d ", *(*(numbers.data + i) + j));

for(i = 0; i < 4; i++)

printf("%2.0f ", numbers.values[i]);

}

Structures – p.10/18

Arrays of Structures
Instead of creating many structure variables
individually, we can create an array of structures.

#include <stdio.h>

struct id

{

char name[20];

int age;

};

int main(void)

{

struct id person[2] = { {"John Smith", 25},

{"Mary Jones", 32} };

int i;

for(i = 0; i < 2; i++)

printf("%s, %d\n", person[i].name, person[i].age);

}

Structures – p.11/18

Pointers to Structures
Creating a pointer to a structure:

#include <stdio.h>

struct id

{

char name[20];

int age;

};

int main(void)

{

struct id person = {"John Smith", 25};

struct id *ptr = &person; /* requires & */

}

Notice this requires using the address operator,&, to get the

address of the beginning of the structure. This demonstrates that

structures and arrays are different things.
Structures – p.12/18

Pointers to Structures
To access an element of the structure using the
pointer, we could do the following:

#include <stdio.h>

struct id

{

char name[20];

int age;

};

int main(void)

{

struct id person = {"John Smith", 25};

struct id *ptr = &person; /* requires & */

printf("%d\n", (*ptr).age);

}

Structures – p.13/18

Pointers to Structures
To access a structure member, we use

(*ptr).age

This is not the same as

*(ptr.age)

which would be legal ifage was a pointer that was a
member of a structure calledptr, for example,

struct info

{

int* age;

double weight;

};

struct info ptr;

Structures – p.14/18

Pointers to Structures
Instead of using(*ptr).age, there is an alternative
syntax:

ptr->age

where-> is thestructure pointer operator.

struct id person = {"John Smith", 25};

struct id *ptr = &person;

ptr->age = 50; /* change John’s age to 50 */

Structures – p.15/18

Structures and Functions
We can pass either a copy of a structure or a pointer to
a structure to a function. Structures can also be the
return type of a function.

Keep in mind that passing copies of structures
requires more memory, which may be an issue in
some situations.

Structures – p.16/18

More Examples
The following examples on the course website
demonstrate the use of structures and functions:

• example-structures789.c – pass by
value, pass by reference, and structure as function
return type

• example-structures10.c – pass array of
structures

• example-structures11.c – strings and
structures

Structures – p.17/18

More Examples cont.
The following examples on the course website
demonstrate the use of structures and functions:

• example-structures12.c – pass array
elements to a function

• example-structures13.c – change array
values from function

• example-structures14.c – pass array of
structures several times

• example-struct-unique.txt – create
array of unique items

Structures – p.18/18

	Introduction
	Introduction
	Structures
	Structures
	Structures
	Accessing Structure Members
	Initializing Structure Variables
	Initializing Structure Variables
	Arrays as Structure Elements
	Arrays of Structures
	Pointers to Structures
	Pointers to Structures
	Pointers to Structures
	Pointers to Structures
	Structures and Functions
	More Examples
	More Examples cont.

