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Introduction
Arrays allow us to create many variables of the same
type and reference them using a common name.

In most cases the elements of an array will be related
in some way, for example, represent values for the
months of a year.
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Introduction
What if we want to create objects of variables that
may or may not be of different types? In C, we can do
this by creating a structure.
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Structures
The form of a structure is

struct struct_name

{

var_type var1;

var_type var2;

. . .

};

where
• struct is the keyword for defining a structure
• struct_name is the name for this structure

(since there may be more than one)
• var1, var2, ... are the specific variables

that make up the structure
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Structures
To create a structure variable of the type
struct_name, we would use this:

struct struct_name variable_name;

We are allocating memory for a variable called
variable_name. The type of variable is a
structure, specifically astruct_name structure.

This is analogous to creating other types of variables,
for example,

int sum;
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Structures
We can think of a structure as being a template for an
object. For example, we may wish to create a
structure for storing information about a person:

struct person

{

char name[20];

int age;

double weight;

};

In our program, we might create two variables using
this structure:

struct person John = {"John Smith", 25, 170.5};

struct person Mary = {"Mary Jones", 32, 120};
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Accessing Structure Members
Once we have created a structure variable, we can
access the specific members using a period, known as
thestructure member operator.

struct person John = {"John Smith", 25, 170.5};

printf("%s is %d years old.", John.name, John.age);

Seeexample-structures.c on the course
website.
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Initializing Structure Variables
With other variables we have seen that we can declare
the variable and later initialize it:

int x;

x = 5;

We can do the same with structures:
struct person Darin;

strcpy(Darin.name, "Darin Brezeale");

Darin.age = 41;

Darin.weight = 185;
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Initializing Structure Variables
It’s also possible to define the structure and declare
variables of this type simultaneously:

int main(void)

{

struct person

{

char name[15];

int age;

} John, Mary;

strcpy(John, "John Smith");

John.age = 25;

strcpy(Mary, "Mary Jones");

Mary.age = 32;

}
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Arrays as Structure Elements
We can have arrays as elements of a structure also:

struct arrayStruct

{

int data[2][3];

double values[4];

};

int main(void)

{

struct arrayStruct numbers = { {{1, 2, 3}, {4, 5, 6}},

{10, 20, 30 ,40} };

int i, j;

for(i = 0; i < 2; i++)

for(j = 0; j < 3; j++)

printf("%d ", *(*(numbers.data + i) + j) );

for(i = 0; i < 4; i++)

printf("%2.0f ", numbers.values[i] );

}
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Arrays of Structures
Instead of creating many structure variables
individually, we can create an array of structures.

#include <stdio.h>

struct id

{

char name[20];

int age;

};

int main(void)

{

struct id person[2] = { {"John Smith", 25},

{"Mary Jones", 32} };

int i;

for(i = 0; i < 2; i++)

printf("%s, %d\n", person[i].name, person[i].age );

}

Structures – p.11/18



Pointers to Structures
Creating a pointer to a structure:

#include <stdio.h>

struct id

{

char name[20];

int age;

};

int main(void)

{

struct id person = {"John Smith", 25};

struct id *ptr = &person; /* requires & */

}

Notice this requires using the address operator,&, to get the

address of the beginning of the structure. This demonstrates that

structures and arrays are different things.
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Pointers to Structures
To access an element of the structure using the
pointer, we could do the following:

#include <stdio.h>

struct id

{

char name[20];

int age;

};

int main(void)

{

struct id person = {"John Smith", 25};

struct id *ptr = &person; /* requires & */

printf("%d\n", (*ptr).age );

}
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Pointers to Structures
To access a structure member, we use

(*ptr).age

This is not the same as

*(ptr.age)

which would be legal ifage was a pointer that was a
member of a structure calledptr, for example,

struct info

{

int* age;

double weight;

};

struct info ptr;
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Pointers to Structures
Instead of using(*ptr).age, there is an alternative
syntax:

ptr->age

where-> is thestructure pointer operator.

struct id person = {"John Smith", 25};

struct id *ptr = &person;

ptr->age = 50; /* change John’s age to 50 */
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Structures and Functions
We can pass either a copy of a structure or a pointer to
a structure to a function. Structures can also be the
return type of a function.

Keep in mind that passing copies of structures
requires more memory, which may be an issue in
some situations.
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More Examples
The following examples on the course website
demonstrate the use of structures and functions:

• example-structures789.c – pass by
value, pass by reference, and structure as function
return type

• example-structures10.c – pass array of
structures

• example-structures11.c – strings and
structures
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More Examples cont.
The following examples on the course website
demonstrate the use of structures and functions:

• example-structures12.c – pass array
elements to a function

• example-structures13.c – change array
values from function

• example-structures14.c – pass array of
structures several times

• example-struct-unique.txt – create
array of unique items
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