
Statements
Darin Brezeale

The University of Texas at Arlington

Statements – p.1/14



Statements
Much of our programming will consist of writing
statements.

Examples include declaration statements, assignment
statements, and function calls, each of which is
terminated by a semicolon.

One thing to keep in mind when looking at a program
is that the code is processed from the top down.

Statements – p.2/14



Declaration Statements
Declaration statements are when we declare variables
for use. In C89, variables must be declared at the top
of the block in which they are used.

Example:
int cost;
int age = 42;

Both of these statements allocate memory for use.
The second statement also assigns an initial value to
the variable.

Statements – p.3/14



Assignment Statements
Assignment statements have a left side and a right
side. The right side could contain a single value, a
complicated expression, or a function call. In each
case, the right side will ultimately reduce to a single
value, which is then assigned to the variable named on
the left side.

Example:
int a, b;

a = 14;
b = a + 10;

Statements – p.4/14



Assignment
Many times we wish to modify the value of a variable
(e.g., add, subtract, etc.).

Example: We want to add 5 to the value of a. We can
use

a = a + 5;

Remember: The statement

some_variable = expression;

is assigning the value ofexpression to
some_variable; this isn’t an equation in the
mathematical sense.

Statements – p.5/14



Operators – Assignment
The following assignment operators are available in
C:

+= addition
-= subtraction
∗= multiplication
/= division

These are an alternative to what we saw on the
previous slide.

Example: Instead of
a = a + 5;

we could use
a += 5;

Statements – p.6/14



Assignment examples
int a = 3;

int b = 5;

printf("a has a value of %d\n", a);

a = a + b;

printf("now a has a value of %d\n", a);

/* we could have done this instead */

a += b;

printf("now a has a value of %d\n", a);

Output
a has a value of 3

now a has a value of 8

now a has a value of 13

Statements – p.7/14



Brief Introduction to Functions
Functions are collections of computer code that
perform a task. In order to use a function, we call it by
name and provide it with whatever information is
necessary to perform the task.

Example: We can determine the sine ofx using
y = sin(x);

instead of writing the code for the mathematical
function

sin(x) = x −

x
3

3!
+

x
5

5!
−

x
7

7!
+ · · ·

We’ll discuss how to write our own functions in a
future lecture.

Statements – p.8/14



Libraries of Functions
The C language (C89 standard) only has 32 keywords,
none of which deal with common tasks such as
printing, reading / writing files, performing complex
mathematical operations, and so forth.

Modern C compilers include functions for performing
these common tasks in the Standard C Library.

The function we will use most often in this course is
printf().

Statements – p.9/14



printf() example
We need to tell the compiler where to find the
information it needs to include the function code in
the program. This is why when we useprintf()
we put#include <stdio.h> at the top of the
file.

Example
#include <stdio.h>

int main(void)

{

int some_variable = 2;

printf("some_variable is %d\n", some_variable);

}

Output:

some_variable is 2 Statements – p.10/14



More about printf()
We would be severely limited if we had to know
exactly what our programs would print at the time we
wrote the code.

We can use variables, whose values may be unknown
at the time we write our programs, in our calls to
printf().

We useformat specifiersto indicate where our
variable will be located in the printed output and how
it will appear.

Statements – p.11/14



More about printf() cont.
#include <stdio.h>

int main(void)

{

int a = 23, b = 1000;

printf("a is %d\n", a);

printf("b is %d\n\n", b);

printf("a is %5d\n", a);

printf("b is %5d\n", b);

}

produces
a is 23

b is 1000

a is 23

b is 1000

Statements – p.12/14



printf() Format specifiers
Here are a few examples of the many format specifiers
available.

#include <stdio.h>

int main(void)

{

int a = 23, b = 1000;

printf("%d %d\n", a, b);

printf("%4d %d\n", a, b);

printf("%04d %d\n", a, b);

printf("%-4d %d\n", a, b);

}

produces
23 1000

23 1000

0023 1000

23 1000
Statements – p.13/14



printf() Format specifiers
We usef for floating point numbers.

#include <stdio.h>

int main(void)

{

double c = 123.456789;

printf("%f\n", c);

printf("%6.4f\n", c);

printf("%10.4f\n", c);

}

produces

123.456789

123.4568

123.4568

Statements – p.14/14


	Statements
	Declaration Statements
	Assignment Statements
	Assignment
	Operators -- Assignment
	Assignment examples
	Brief Introduction to Functions
	Libraries of Functions
		exttt {printf()}
example
	More about 	exttt {printf()}
	More about 	exttt {printf()}
cont.
		exttt {printf()}
Format specifiers
		exttt {printf()}
Format specifiers

