
General Input and Output
Darin Brezeale

The University of Texas at Arlington

General Input and Output – p. 1/26

Connecting to Files
In order to read or write to a file, we need to make a
connection to it. For this we will use the following
functions:

fopen() – makes the connection to a file
fclose() – releases the connection to a file

Note thatfopen() andfclose() are declared in
stdio.h.

General Input and Output – p. 2/26

Connecting to Files
When we make a connection to a file, we need a
variable name to associate with it. This requires that
we create a variable of typeFILE *. This variable is
thefile pointer.

Example:

FILE* newfile;

We could be working with multiple files; each would
have its own file pointer.

General Input and Output – p. 3/26

Connecting to Files
When we usefopen() to make a connection to a
file, we need to provide it with two things:

1. the name of the file

2. the mode for accessing the file

Example:

#include <stdio.h>

int main(void)

{

FILE* newfile; /* create file pointer */

/* format is fopen(filename, mode) */

newfile = fopen("somefile.txt", "r");

/* do something with the file here */

fclose(newfile); /* release file */

}

General Input and Output – p. 4/26

File Access Modes

mode purpose file to use
r read use existing
w write create new, destroy existing
a write to end create new, use existing
r+ read & write use existing
w+ read & write create new, destroy existing
a+ read, write to end create new, use existing

General Input and Output – p. 5/26

Simple Error Checking
When attempting to access files, there are many
opportunities for problems:

• a file we wish to read may not exist
• a file we wish to write to may be in use by

another program

Therefore, we should do some basic error checking
when initiating access.

General Input and Output – p. 6/26

Simple Error Checking
If we are unable to open a file, we will get a NULL
pointer.
#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE* newfile;

if ((newfile = fopen("somefile.txt", "r")) == NULL)

{

printf("this file could not be opened for reading\n");

exit(1); /* we should exit if there is an error */

}

fclose(newfile);

}

General Input and Output – p. 7/26

File Input and Output
There are many functions in the Standard C Library
for reading and writing to files. Before discussing
them, let’s look again atprintf() andscanf().

General Input and Output – p. 8/26

printf()
We’ve already been usingprintf() in all of our
programs.

Example:
printf("the value of x is %d", x);

This is just a function call with two parameters: a
string and anint.

General Input and Output – p. 9/26

printf()
The first (if there are more than one) parameter to be
passed toprintf() should be a string. If we are
only passing a string toprintf(), then we can pass
it as a variable like we have with other functions.

Example:
#include <stdio.h>

int main(void)

{

int x = 5;

char text[] = "this is a string\n";

printf(text);

}

General Input and Output – p. 10/26

printf()
We can also use a pointer to a string.

Example:
#include <stdio.h>

int main(void)

{

int x = 5;

char text1[] = "x is greater than 4\n";

char text2[] = "x is not greater than 4\n";

char *ptr;

if (x > 4)

ptr = text1;

else

ptr = text2;

printf(ptr);

}

General Input and Output – p. 11/26

scanf()
We have usedscanf() in a few programs to read
values that were stored asints.scanf() allows us
to read other variable types as well.scanf() has
format specifiers, such as

%d int
%f float
%lf double
%c char
%s string

Note how the format specifier for a double is %lf, not
%f as forprintf().

General Input and Output – p. 12/26

scanf()
We can read multiple values at once, using multiple
format specifiers:

Example:

int some_int;

double some_double;

printf("provide an int and a double\n");

scanf("%d%lf", &some_int, &some_double);

Seeexample-io-scanf.c on the course
webpage.

General Input and Output – p. 13/26

fgets()
The Standard C library includes functions for reading
strings, either from the keyboard or from a file.

One such function isfgets(). A call tofgets()
has the following form:

fgets(array_name, array_size, source_of_input)

If the call tofgets() is successful, it returns the
address of the array. Otherwise, it returns NULL.

General Input and Output – p. 14/26

fgets()
What we need to know aboutfgets() is:

• We should make sure the array for storing the
input is large enough to hold all of the characters
plus a terminating\0.

• A terminating\0 is automatically added to our
input, either when we press the Enter key or we
reach the end of our allocated space.

• Basic error checking is performed by checking if
NULL was returned.

• fgets() is in stdlib.h

General Input and Output – p. 15/26

fgets()
Example:

char input[101]; /* we assume we won’t need to store more

than 100 characters */

char *ptr;

printf("enter a string of text to be printed\n");

/* stdin here means ’standard input’, which in this case is

what the user types on the keyboard */

ptr = fgets(input, 101, stdin);

Seeexample-io-strings.c on the course
webpage.

General Input and Output – p. 16/26

fputs()
The Standard C library includes functions for writing
strings, either to the screen or a file.

One such function isfputs(). A call tofputs()
has the following form:

fputs(array_name, destination)

General Input and Output – p. 17/26

fputs()
Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

char text[101] = "line one\nline two\nline three\n";

fputs(text, stdout); /* stdout here means ’standard out’,

which is usually the screen */

}

produces

line one

line two

line three

General Input and Output – p. 18/26

File I/O
We can usefgets() andfputs() with files.

Seeexample-io-files.c on the course
webpage.

General Input and Output – p. 19/26

File I/O
printf() provides formatted output to stdout (i.e.,
the screen);scanf() provides formatted input from
stdin (i.e., the keyboard). The equivalent for files are
performed byfprintf() andfscanf().

fprintf() andfscanf() have forms similar to
printf() andscanf() except that we must also
include a file pointer.

Seeexample-io-files2.c and
example-io-files3.c on the course webpage.

General Input and Output – p. 20/26

fscanf() vs fgets()
What is the difference betweenfscanf() and
fgets()?

fscanf() expects us to know the format of the
input, for example, a string followed by two integers.

fgets() just gets a string, which we must then
process if we wish to break it into parts.

General Input and Output – p. 21/26

Summary of I/O Functions
Reading from the keyboard:

fgets(input_array, buffer_size, stdin)

Reading from a file:
fgets(input_array, buffer_size, pointer_to_file)

Writing to the screen:
fputs(input_array, stdout)

Writing to a file:
fputs(input_array, pointer_to_file)

General Input and Output – p. 22/26

Summary of I/O Functions
To perform formatted input and output, we have the
following functions:

Reading from the keyboard:
scanf(string, variable(s))

Reading from a file:
fscanf(file_pointer, string, variable(s) or expression(s))

Writing to the screen:
printf(string, variable(s))

Writing to a file:
fprintf(file_pointer, string, variable(s) or expression(s))

General Input and Output – p. 23/26

Formatted I/O with strings
We can also perform formatted I/O with strings using
sprintf() andsscanf() (note the beginning
letter s).

char text[30];

char name[] = "something";

char first[20];

int second;

sprintf(text, "%s %d", name, 42);

printf("%s\n", text);

sscanf(text, "%s %d", first, &second);

printf("%d %s\n", second, first);

produces
something 42

42 something

General Input and Output – p. 24/26

Command-line Parameters
Sometimes we don’t know the name of the file(s) to
read or write until we run a program. Sincemain()
is a function, we can pass variables to it just as we
have other functions.

We do this using
int main (int argc, char *argv[])

whereargc is the number of command-line
parameters andargv is an array of pointers to each
command-line parameter.

General Input and Output – p. 25/26

Command-line Parameters
Example 1:

somefile.exe input.txt

Hereargc = 2,argv[0] = somefile.exe, and
argv[1] = input.txt.

Example 2:
hw.exe input.txt output.txt

Hereargc = 3,argv[0] = hw.exe,argv[1] =
input.txt, andargv[2] = output.txt.

General Input and Output – p. 26/26

	Connecting to Files
	Connecting to Files
	Connecting to Files
	File Access Modes
	Simple Error Checking
	Simple Error Checking
	File Input and Output
		exttt {printf()}
		exttt {printf()}
		exttt {printf()}
		exttt {scanf()}
		exttt {scanf()}
		exttt {fgets()}
		exttt {fgets()}
		exttt {fgets()}
		exttt {fputs()}
		exttt {fputs()}
	File I/O
	File I/O
		exttt {fscanf()}
vs 	exttt {fgets()}
	Summary of I/O Functions
	Summary of I/O Functions
	Formatted I/O with strings
	Command-line Parameters
	Command-line Parameters

