Darin Brezeale

The University of Texas at Arlington

General Inout and Outpbut — p. 1/26

In order to read or write to a file, we need to make a
connection to it. For this we will use the following

functions:

f open() —makes the connection to a file
fcl ose() —releases the connection to a file

Note thatf open() andf cl ose() are declared in
st di o. h.

General Inout and Outpbut — p. 2/26

When we make a connection to a file, we need a
variable name to associate with it. This requires that
we create a variable of tygd LE *. This variable Is
thefile pointer

Example:
FI LEx newfi | e;

We could be working with multiple files; each would
have its own file pointer.

General Inout and Outpbut — p. 3/26

When we usé open() to make a connectionto a
file, we need to provide it with two things:

1. the name of the file
2. the mode for accessing the file
Example:

#i ncl ude <stdio. h>
I nt mai n(voi d)

{
FILEx newfile; [create file pointer =/
[+ format is fopen(filenane, node) */
newfile = fopen("sonefile.txt", "r");
[+ do sonething with the file here */
fclose(newfile); [+ release file */
}

General Inout and Output — p. 4/26

mode purpose file to use

I
W
a
r+
W+
a+

read use existing

write create new, destroy existing
write to end create new, use existing
read & write use existing

read & write create new, destroy existing

read, write to end create new, use existing

General Inout and Outpbut — p. 5/26

When attempting to access files, there are many
opportunities for problems:

a file we wish to read may not exist

a file we wish to write to may be in use by
another program

Therefore, we should do some basic error checking
when Initiating access.

General Inout and Outpbut — p. 6/26

If we are unable to open a file, we will get a NULL
pointer.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

i nt mai n(voi d)

{
FI LEx newfil e;
if ((newfile = fopen("sonefile.txt", "r")) == NULL)
{
printf("this file could not be opened for reading\n");
exit(1l); [/* we should exit if there is an error =/
}
fclose(newfile);
}

General Inout and Output — p. 7/26

There are many functions in the Standard C Library
for reading and writing to files. Before discussing
them, let’s look again gir i nt f () andscanf ().

General Inout and Outpbut — p. 8/26

We've already been using i nt f () in all of our
programs.

Example:
printf("the value of x is %", X);

This is just a function call with two parameters: a
string and an nt .

General Inout and Outpbut — p. 9/26

The first (if there are more than one) parameter to be
passed t@ri ntf () should be a string. If we are

only passing a string tpri nt f () , then we can pass
It as a variable like we have with other functions.

Example:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
int x = 5;
char text[] = "this is a string\n";

printf(text);

General Inout and Output — p. 10/26

We can also use a pointer to a string.

Example:

#i ncl ude <stdi o. h>

i nt mai n(voi d)

{
int x = 5;
char textl1l[] = "x is greater than 4\n";
char text2[] = "x is not greater than 4\n";
char *ptr;

i f (x > 4)
ptr = text1l;
el se

ptr t ext 2;

printf(ptr);

General Inout and Output — p. 11/26

We have usedcanf () in afew programs to read
values that were stored aat s.scanf () allows us
to read other variable types as walkanf () has
format specifiers, such as

%d Int

%f float
%If double
%c char
%s string

Note how the format specifier for a double is %lf, not
%fasforprintf ().

General Inout and Outpbut — p. 12/26

We can read multiple values at once, using multiple
format specifiers:

Example:

i nt sone_int;
doubl e sone_doubl g;

printf("provide an int and a doubl e\n");
scanf ("%% f", &sonme_int, &sone_double);

Seeexanpl e-1 o-scanf . c onthe course
webpage.

General Inout and Output — p. 13/26

The Standard C library includes functions for reading
strings, either from the keyboard or from a file.

One such function ifget s() . Acalltof get s()
has the following form:

fgets(array nane, array_size, source_of input)

If the call tof get s() Is successful, it returns the
address of the array. Otherwise, it returns NULL.

General Inout and Output — p. 14/26

What we need to know abotiget s() Is:

We should make sure the array for storing the
Input Is large enough to hold all of the characters
plus a terminating,0.

A terminating\0 is automatically added to our

Input, either when we press the Enter key or we
reach the end of our allocated space.

Basic error checking is performed by checking if
NULL was returned.

fgets() isinstdlib.h

General Inout and Output — p. 15/26

Example:

char input[101]; /* we assune we won't need to store nore
than 100 characters =*/
char *ptr;

printf("enter a string of text to be printed\n");
/* stdin here neans ’'standard input’, which in this case is

what the user types on the keyboard =/
ptr = fgets(input, 101, stdin);

Seeexanpl e-1 0-stri ngs. c onthe course
webpage.

General Inout and Outpbut — p. 16/26

The Standard C library includes functions for writing
strings, either to the screen or a file.

One such function ifput s() . Acalltof put s()
has the following form:

fputs(array_nane, destination)

General Inout and Output — p. 17/26

Example:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

I nt mai n(voi d)

{
char text[101] = "line one\nline two\nline three\n",;
fputs(text, stdout); /* stdout here neans ’'standard out’,

which is usually the screen * [

}

produces

| i ne one

| i ne two

line three

General Inout and Output — p. 18/26

We can usé¢ get s() andf put s() with files.

Seeexanpl e-10-fil es. c onthe course
webpage.

General Inout and Output — p. 19/26

printf () provides formatted output to stdout (i.e.,
the screen)scanf () provides formatted input from
stdin (1.e., the keyboard). The equivalent for files are
performed byf printf () andf scanf ().

fprintf() andf scanf () have forms similar to
printf() andscanf () exceptthat we must also
Include a file pointer.

Seeexanpl e-1o0-files2. cand
exanpl e-1 0-fi 1l es3. ¢c onthe course webpage.

General Inout and Output — p. 20/26

What is the difference betwedrscanf () and
fgets()?

f scanf () expects us to know the format of the
Input, for example, a string followed by two integers.

f get s() just gets a string, which we must then
process If we wish to break it into parts.

General Inout and Output — p. 21/26

Reading from the keyboard:

fgets(input _array, buffer _size, stdin)

Reading from a file:

fgets(input _array, buffer_size, pointer to file)

Writing to the screen:

fputs(input_array, stdout)

Writing to a file:

fputs(input _array, pointer _to file)

General Inout and Output — p. 22/26

To perform formatted input and output, we have the
following functions:

Reading from the keyboard:

scanf (string, variable(s))

Reading from a file:

fscanf(file pointer, string, variable(s) or expression(s))

Writing to the screen:

printf(string, variable(s))

Writing to a file:

fprintf(file_pointer, string, variable(s) or expression(s))

General Inout and Output — p. 23/26

We can also perform formatted I/O with strings using
sprintf() andsscanf () (note the beginning
letter s).

char text[30];

char name[] = "sonethi ng";
char first[20];

I Nt second;

sprintf(text, "% %", nane, 42);
printf("%\n", text);

sscanf(text, "% %", first, &second);
printf("%l %\n", second, first);

produces

sonet hing 42
42 sonet hi ng

General Inout and Output — p. 24/26

Sometimes we don’t know the name of the file(s) to
read or write until we run a program. Singal n()

IS a function, we can pass variables to it just as we
have other functions.

We do this using
int main (int argc, char rargv[])

wherear gc Is the number of command-line
parameters andr gv IS an array of pointers to each
command-line parameter.

General Inout and Output — p. 25/26

Example 1:
sonmefi | e.exe I nput.txt

Herear gc = 2,ar gv[O] = somefile.exe, and
ar gv| 1] = input.txt.

Example 2:
hw. exe 1 nput.txt output.txt

Herear gc = 3,ar gv[0] =hw.exeargv[1] =
Input.txt, andar gv|[2] = output.txt.

General Inout and Output — p. 26/26

	Connecting to Files
	Connecting to Files
	Connecting to Files
	File Access Modes
	Simple Error Checking
	Simple Error Checking
	File Input and Output
		exttt {printf()}
		exttt {printf()}
		exttt {printf()}
		exttt {scanf()}
		exttt {scanf()}
		exttt {fgets()}
		exttt {fgets()}
		exttt {fgets()}
		exttt {fputs()}
		exttt {fputs()}
	File I/O
	File I/O
		exttt {fscanf()}
vs 	exttt {fgets()}
	Summary of I/O Functions
	Summary of I/O Functions
	Formatted I/O with strings
	Command-line Parameters
	Command-line Parameters

